
Introduction to the OreModules package

Calling Sequence:
 OreModules[<function>](args)
 <function>(args)

Description:

• OreModules is a Maple implementation of algorithms which compute parametrizations, extension modules (ext), resolutions and other
algebraic objects for linear systems of differential equations, time-delay systems, etc.

• The algebraic framework for OreModules are Ore algebras. In order to deal with modules over Ore algebras computationally, this
package is based on the Maple library Mgfun (cf. Ore_algebra, e.g. Ore algebras and non-commutative Groebner bases are developed
in Mgfun). Within this unified framework, OreModules handles:

• ordinary differential equations,

• partial differential equations,

• multidimensional discrete systems,

• differential time-delay systems,

• repetitive systems,

• multidimensional convolutional codes, etc.

• These systems may be time-invariant or time-varying with polynomial or rational coefficients.

• In the context of linear control systems, the main features of OreModules are the following:

• decide controllability and parametrizability,

• construct (minimal) parametrizations,

• compute Bezout identities (left/right/generalized inverses),

• decide flatness (also pi-freeness).

• The package OreModules, based on an original program by F. Chyzak and A. Quadrat, is maintained and further developed by A.
Quadrat and D. Robertz.

• To use a function of the OreModules package, either define that function alone using the command with(OreModules, <function>), or
define all OreModules functions using the command with(OreModules). Alternatively, invoke the function using the long form
OreModules[<function>].

• The functions available in the OreModules package are the following:

Define an Ore algebra:

 DefineOreAlgebra

 Module Theory:

 Exti(Rat) Extn(Rat)

 Torsion(Rat) SyzygyModule(Rat)
 Resolution(Rat) FreeResolution(Rat)

 ShorterFreeResolution(Rat) ShortestFreeResolution(Rat)

 MinimalParametrization(s)(Rat) GeneralizedInverse(Rat)
 LeftInverse(Rat) RightInverse(Rat)
 LocalLeftInverse GeneralizedInverse(Rat)
 OreRank(Rat) Dimension(Rat)
 ProjectiveDimension(Rat) HilbertSeries(Rat)
 Complement(Rat) LiftOperators(Rat)

 Linear Systems:

 AutonomousElements(Rat) Brunovsky(Rat)

 AutonomousElements(Rat) Brunovsky(Rat)

 Parametrization(Rat) PiPolynomial

 IntTorsion(Rat) ParticularSolution(Rat)

 FirstIntegral

 Control Theory:

 ControllabilityMatrix KalmanSystem

 TorsionElements(Rat) LQEquations

 FinalConditions

 Matrix tools:

 Mult ApplyMatrix

 Involution KroneckerProduct

 Tools for modules:

 Factorize(Rat) Quotient(Rat)

 Elimination(Rat) ReduceMatrix(Rat)
 KBasis Connection
 Integrability IdealIntersection
 PolIntersect

 Auxiliary tools:
 BoundaryTerms DiffToOre

• For the description of the basic algorithms and for detailed examples, see

F. Chyzak, A. Quadrat, D. Robertz, "Effective algorithms for parametrizing linear control systems over Ore algebras", Applicable
Algebra in Engineering, Communication and Computing (AAECC) 16 (2005), pp. 319-376,

A. Quadrat, D. Robertz, "Parametrizing all solutions of uncontrollable multidimensional linear systems", Proceedings of the 16th
IFAC World Congress, Prague, 2005,

F. Chyzak, A. Quadrat, D. Robertz, "OreModules: A symbolic package for the study of multidimensional linear systems", in: J.
Chiasson, J.-J. Loiseau (eds.), "Applications of Time-Delay Systems", LNCIS 352, Springer, 2006, pp. 233-264,

F. Chyzak, A. Quadrat, D. Robertz, OreModules project, http://wwwb.math.rwth-aachen.de/OreModules.

Examples:
> with(OreModules):

Example 1: Computation of autonomous elements

Linear differential time-delay system describing a flexible rod (see H. Mounier, Proprietes structurelles des systemes lineaires a
retards: aspects theoriques et pratiques, PhD thesis, University of Orsay, France, 1995):
> Alg := DefineOreAlgebra(diff=[Dt,t], dual_shift=[delta,s], polynom=[t,s],
shift_action=[delta,t,h]):

> R := evalm([[Dt, -Dt*delta, -1], [2*Dt*delta, -Dt-Dt*delta^2, 0]]);

 := R

Dt −Dt δ -1

2 Dt δ − −Dt Dt δ2 0
> ApplyMatrix(R, [y1(t),y2(t),u(t)], Alg);

− −()()D y1 t ()()D y2 −t h ()u t

− −2 ()()D y1 −t h ()()D y2 t ()()D y2 −t 2 h
> Exti(Involution(R, Alg), Alg, 1);

, ,

Dt 0 0

0 1 0

0 0 1

−2 δ +1 δ2 0

−Dt Dt δ 1

Dt δ −Dt δ

+1 δ2

2 δ

−Dt Dt δ2

> TorsionElements(R, [y1(t),y2(t),u(t)], Alg);

[],[]=()()D θ1 t 0 []=()θ1 t − + +2 ()y1 −t h ()y2 t ()y2 −t 2 h

Example 2: Study of flatness of linear systems

System of linear ordinary differential equations describing a bipendulum (J.-F. Pommaret, Partial Differential Control Theory, 2001):

> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t], comm=[g,l1,l2]):
> R := evalm([[D^2+g/l1, 0, -g/l1], [0, D^2+g/l2, -g/l2]]);

 := R

+D2
g

l1
0 −

g

l1

0 +D2
g

l2
−

g

l2
Check parametrizability of the system:
> Ext1 := Exti(Involution(R, Alg), Alg, 1);

 := Ext1

, ,

1 0

0 1

+l1 D2 g 0 −g

0 +l2 D2 g −g

+D2 l2 g g2

+D2 l1 g g2

+ + +D4 l2 l1 D2 l2 g D2 l1 g g2

Since Ext1[1] is an identity matrix, the system is (generically) controllable and parametrizable. Ext1[3] is a parametrization of the
system.
> P := Ext1[3];

 := P

+D2 l2 g g2

+D2 l1 g g2

+ + +D4 l2 l1 D2 l2 g D2 l1 g g2

A left inverse of the parametrization (if it exists) is a flat output of the system:
> F := LeftInverse(P, Alg);

 := F

−

l1

g2 ()− +l1 l2

l2

g2 ()− +l1 l2
0

We want to express the system variables x1, x2, and u in terms of the flat output:
> R2 := linalg[stackmatrix](R, F);

 := R2

+D2
g

l1
0 −

g

l1

0 +D2
g

l2
−

g

l2

−
l1

g2 ()− +l1 l2

l2

g2 ()− +l1 l2
0

> E := Elimination(R2, [x1,x2,u], [z1,z2,y], Alg);

E =1

0 0 −l2 g2 l1 g2

0 −l2 g l1 g 0

−l2 g l1 g 0 0

table([, :=

=2

+l2 D2 l1 2 g l1 2 − −l2 2 g l2 2 D2 l1 − + − − +l2 2 D2 g3 l2 D4 g2 l1 2 l2 2 D4 l1 g2 D2 g3 l1 2 g4 l1 g4 l2

l1 2 −l1 l2 − + − +D2 g2 l1 2 l1 D2 g2 l2 g3 l1 l2 g3

l1 l2 −l2 2 − + − +l1 D2 g2 l2 D2 g2 l2 2 g3 l1 l2 g3

])
> ApplyMatrix(E[1], [x1(t),x2(t),u(t)], Alg)=ApplyMatrix(E[2], [z1(t),z2(t),y(t)], Alg);

g2 ()− +l1 l2 ()u t

()− +l1 l2 g ()x2 t

()− +l1 l2 g ()x1 t

=

l2 l1 2

d

d2

t2 ()z1 t g l1 2 ()z1 t l2 2 l1

d

d2

t2 ()z2 t l2 2 g ()z2 t

d

d2

t2 ()y t l2 2 g3

d

d2

t2 ()y t g3 l1 2

d

d4

t4 ()y t l2 g2 l1 2+ − − + − −

d

d4

t4 ()y t l2 2 l1 g2 ()y t g4 l1 ()y t g4 l2+ − +

− − + − +l1 2 ()z1 t l1 l2 ()z2 t

d

d2

t2 ()y t l1 2 g2

d

d2

t2 ()y t l1 g2 l2 ()y t g3 l1 ()y t l2 g3

− − + − +l1 l2 ()z1 t l2 2 ()z2 t

d

d2

t2 ()y t l1 g2 l2

d

d2

t2 ()y t l2 2 g2 ()y t g3 l1 ()y t l2 g3

Up to invertible constants, the previous equations express x1, x2, and u in terms of the flat output y (modulo the system equations).

See Also:
with, Ore_algebra, DefineOreAlgebra, ApplyMatrix, Involution, Elimination, LeftInverse, Exti, TorsionElements, AutonomousElements,
Parametrization, LQEquations.

OreModules[ApplyMatrix] - apply operator to a (vector of) function(s)

Calling Sequence:
 ApplyMatrix(M,v,Alg)

Parameters:
 M - scalar in Alg or matrix with entries in Alg
 v - function or list or vector of functions
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• ApplyMatrix applies the operator represented by M to v which is a function or a list or a vector of functions, i.e. it computes the matrix
product of M by v, where scalar multiplication is replaced by the action of scalar operators (represented by elements in Alg) on
functions. (The action of elements in Alg on functions is determined by the commutation rules in the Ore algebra.)

• If M is a scalar in Alg, then M is applied to v if v is a function or to every entry in v if v is a list or vector of functions.

• If M is a matrix, then v is expected to be a list or a vector and the length of v must be equal to the number of columns of M.

• Alg is expected to be defined using DefineOreAlgebra.

• The result of ApplyMatrix is a function in case v is a function and a vector of functions if v is a list or a vector. In the latter case, the
length of the result equals the number of rows of M., if M is a matrix, or equals the number of entries of v, if M is a scalar in Alg.

• This command extends applyopr in Ore_algebra. DiffToOre provides a counterpart to ApplyMatrix. To compose two or more
operators, use Mult.

Examples:
> with(OreModules):

Example 1: Ordinary differential equations

> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t], comm=[g,l1,l2]):
System of linear ordinary differential equations describing a bipendulum (J.-F. Pommaret, Partial Differential Control Theory, 2001):
> R := evalm([[D^2+g/l1, 0, -g/l1], [0, D^2+g/l2, -g/l2]]);

 := R

+D2
g

l1
0 −

g

l1

0 +D2
g

l2
−

g

l2
> ApplyMatrix(R, [x1(t),x2(t),u(t)], Alg) = matrix([[0],[0]]);

=

+ −

d

d2

t2 ()x1 t
g ()x1 t

l1

g ()u t

l1

+ −

d

d2

t2 ()x2 t
g ()x2 t

l2

g ()u t

l2

0

0

Example 2: Differential time-delay systems

> Alg := DefineOreAlgebra(diff=[D,t], dual_shift=[delta,s], polynom=[t,s],
comm=[a,omega,zeta,k], shift_action=[delta,t]):

Differential time-delay system describing a wind tunnel (A. Manitius, Feedback controllers for a wind tunnel model involving a
delay: analytical design and numerical simulations, IEEE Trans. Autom. Contr. vol. 29 (1984), 1058-1068):
> R := evalm([[D+a, -k*a*delta, 0, 0], [0, D, -1, 0], [0, omega^2, D+2*zeta*omega,
-omega^2]]);

 := R

+D a −ka δ 0 0

0 D -1 0

0 ω2 +D 2 ζ ω −ω2

> ApplyMatrix(R, [x1(t),x2(t),x3(t),u(t)], Alg) = matrix([[0],[0],[0]]);

=

+ −()()D x1 t a ()x1 t ka ()x2 −t 1

−()()D x2 t ()x3 t

+ + −ω2 ()x2 t ()()D x3 t 2 ζ ω ()x3 t ω2 ()u t

0

0

0
> DiffToOre(lhs(%), [x1,x2,x3,u], Alg);

,

+D a −ka δ 0 0

0 D -1 0

0 ω2 +D 2 ζ ω −ω2

0

0

0

See Also:
DefineOreAlgebra, Ore_algebra[applyopr], Ore_algebra[Ore_to_diff], DiffToOre, Mult, Involution, KroneckerProduct, ReduceMatrix,
LeftInverse, RightInverse, GeneralizedInverse.

OreModules[AutonomousElements],

OreModules[AutonomousElementsRat] - return torsion elements in terms of the system variables and as
integrated autonomous elements

Calling Sequence:
 AutonomousElements(R,v,Alg)
 AutonomousElementsRat(R,v,Alg)

Parameters:
 R - matrix with entries in Alg
 v - list or vector of functions
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• AutonomousElements returns a generating set of the autonomous elements of the linear system of ordinary / partial differential
equations represented by the matrix R, a system of differential equations that defines the autonomous elements as functions, and, if
possible, the general solutions to these equations.

• R is a matrix with entries in the Ore algebra Alg.

• v is a list or vector of functions which depend on the independent variable of the ODE system. These functions are interpreted as the
system variables.

• Alg is expected to be defined using DefineOreAlgebra.

• The result of AutonomousElements is the empty list if there exist no autonomous elements of the linear system, or a list of three
vectors otherwise.

• If the result is a list of three vectors, then the first vector consists of a system of differential equations which defines a generating set
of the autonomous elements of the system.

• The second entry of the result is a vector that gives the autonomous elements of the linear system as functions.

• A vector whose entries define a generating set of the torsion elements expressed in the system variables given by v is the third entry of

the result. The ith generator is given by the right hand side of the equation which is the ith entry of this vector. The left hand side of
this equation is θi.

• AutonomousElementsRat performs the same computations as AutonomousElements, but the domain of coefficients of the Ore
algebra Alg is replaced by its quotient field, i.e. rational functions.

• In addition to the third entry of the result, the autonomous equations that the torsion elements satisfy can be obtained by using
TorsionElements. The integration of the torsion elements can also be achieved by using IntTorsion.

Examples:
> with(OreModules):

Example 1:

System of linear ordinary differential equations describing a bipendulum (J.-F. Pommaret, Partial Differential Control Theory, 2001):
> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t], comm=[g,l1,l2]):
> R := evalm([[D^2+g/l1, 0, -g/l1], [0, D^2+g/l2, -g/l2]]);

 := R

+D2
g

l1
0 −

g

l1

0 +D2
g

l2
−

g

l2
> AutonomousElements(R, [x1(t),x2(t),u(t)], Alg);

[]
There are no autonomous elements, i.e., generically, the bipendulum is controllable. However, if the lengths of the two pendula are
equal, there are autonomous elements:
> Rmod := subs(l2=l1, evalm(R));

 := Rmod

+D2
g

l1
0 −

g

l1

0 +D2
g

l1
−

g

l1
> AutonomousElements(Rmod, [x1(t),x2(t),u(t)], Alg);

, ,

=+g ()θ1 t l1

d

d2

t2 ()θ1 t 0

=θ1 +_C1

sin

g t

l1
_C2

cos

g t

l1
[]=θ1 −()x1 t ()x2 t

Example 2:

System of linear ordinary differential equations describing two pendula mounted on a cart (J. W. Polderman, J. C. Willems,
Introduction to Mathematical Systems Theory. A Behavioral Approach, TAM 26, Springer, 1998):
> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t], comm=[m1,m2,M,L1,L2,g]):
> R := evalm([[m1*L1*D^2, m2*L2*D^2, -1, (M+m1+m2)*D^2],

 [m1*L1^2*D^2-m1*L1*g, 0, 0, m1*L1*D^2],

 [0, m2*L2^2*D^2-m2*L2*g, 0, m2*L2*D^2]]);

 := R

m1L1 D2 m2L2 D2 -1 ()+ +M m1 m2 D2

−m1L12 D2 m1L1 g 0 0 m1L1 D2

0 −m2L22 D2 m2L2 g 0 m2L2 D2

> AutonomousElements(R, [x1(t),x2(t),x3(t),u(t)], Alg);

[]
> Rmod := subs(L2=L1, evalm(R));

 := Rmod

m1L1 D2 D2 L1 m2 -1 ()+ +M m1 m2 D2

−m1L12 D2 m1L1 g 0 0 m1L1 D2

0 −m2L12 D2 L1 g m2 0 D2 L1 m2
> AutonomousElements(Rmod, [x1(t),x2(t),x3(t),u(t)], Alg);

=−m2m1L1 g ()θ1 t L1 m2 ()θ3 t 0

=+L1 m2 ()θ2 t L1 m2 ()θ3 t 0

=−L1 m2

−g ()θ3 t L1

d

d2

t2 ()θ3 t 0

=θ1

+_C1 e

g t

L1
_C2 e

−

g t

L1

m1g

=θ2 − −_C1 e

g t

L1
_C2 e

−

g t

L1

=θ3 +_C1 e

g t

L1
_C2 e

−

g t

L1

, ,

=θ1 −()x1 t ()x2 t

=θ2 + − +()x2 t g m1 ()x2 t g m2 ()x3 t M

d

d2

t2 ()u t

=θ3 − − − + +()x2 t g m1 ()x2 t g m2 ()x2 t g M L1 M

d

d2

t2 ()x2 t ()x3 t

> TorsionElements(Rmod, [x1(t),x2(t),x3(t),u(t)], Alg);

,

=− +g ()θ1 t L1

d

d2

t2 ()θ1 t 0

=− +g ()θ2 t L1

d

d2

t2 ()θ2 t 0

=− +g ()θ3 t L1

d

d2

t2 ()θ3 t 0

=()θ1 t −()x1 t ()x2 t

=()θ2 t + − +()x2 t g m1 ()x2 t g m2 ()x3 t M

d

d2

t2 ()u t

=()θ3 t − − − + +()x2 t g m1 ()x2 t g m2 ()x2 t g M L1 M

d

d2

t2 ()x2 t ()x3 t

See Also:
DefineOreAlgebra, IntTorsion, TorsionElements, Parametrization, MinimalParametrization, Exti, Extn, Torsion, FirstIntegral,
PiPolynomial.

OreModules[BoundaryTerms] - return the boundary terms of an integration by parts

Calling Sequence:
 BoundaryTerms(z,P,y,Alg)

Parameters:
 z - function or list or vector of functions
 P - element of Alg or matrix with entries in Alg
 y - function or list or vector of functions
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• BoundaryTerms returns an expression in terms of the (entries of the) given z and y which allows to determine the boundary terms
obtained by integrating by parts the product z P y, where the second multiplication is the application of the (matrix of) ordinary
differential operator(s) in Alg to y and the first multiplication is just multiplication of functions on the left.

• The boundary terms of the integration by parts of z P y are obtained as the difference of the substitutions of the upper and lower
bound of the range of integration into the result of BoundaryTerms (see the examples below).

• P is an element of the Ore algebra Alg of ordinary differential operators or a matrix with entries in Alg.

• For the product z P y to be defined, z and y must be functions of the left indeterminate (i.e. independent variable) of Alg and P an
element of Alg, or z and y must be lists or vectors of functions of the left indeterminate of Alg and P a matrix with entries in Alg. In
the latter case, the length of z must equal the number of rows of P and the length of y must equal the number of columns of P.

• Alg is expected to be defined using DefineOreAlgebra.

• The result of BoundaryTerms is a sum of certain products of the entries of z and y and their derivatives.

• BoundaryTerms is used in LQEquations to determine boundary terms which are introduced by integration by parts when computing
the Euler-Lagrange equations.

Examples:
> with(OreModules):

Example 1:

> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t]):
> P := D;

 := P D
> B := BoundaryTerms(f(t), P, g(t), Alg);

 := B ()f t ()g t
The integral which is considered in this example is the following:
> int(f(t)*diff(g(t), t), t=a..b);

d

⌠

⌡

a

b

()f t

d

d

t
()g t t

The boundary terms of the integration by parts of ()f t

d

d

t
()g t are obtained by substituting the upper and lower bound of the range of

integration into B and taking the difference:
> subs(t=b, B)-subs(t=a, B);

−()f b ()g b ()f a ()g a

Example 2:

Example 2:

> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t]):
> z := vector([f1(t), f2(t)]);

 := z [],()f1 t ()f2 t
> P := evalm([[D, 1], [D^2, 0]]);

 := P

D 1

D2 0
> y := vector([g1(t), g2(t)]);

 := y [],()g1 t ()g2 t
> B := BoundaryTerms(z, P, y, Alg);

 := B + −()f1 t ()g1 t ()f2 t

d

d

t
()g1 t

d

d

t
()f2 t ()g1 t

The integral which is considered in this example is the following:
> int(evalm(z &* ApplyMatrix(P, y, Alg))[1], t=a..b);

d

⌠

⌡

a

b

+()f1 t

+

d

d

t
()g1 t ()g2 t ()f2 t

d

d2

t2 ()g1 t t

The boundary terms of the integration by parts of the previous integrand are obtained by substituting the upper and lower bound of
the range of integration into B and taking the difference:
> subs(t=b, B)-subs(t=a, B);

+ − − − +()f1 b ()g1 b ()f2 b

d

d

b
()g1 b

d

d

b
()f2 b ()g1 b ()f1 a ()g1 a ()f2 a

d

d

a
()g1 a

d

d

a
()f2 a ()g1 a

See Also:
DefineOreAlgebra, Mult, ApplyMatrix, Involution, LQEquations, FinalConditions, ControllabilityMatrix, Brunovsky, KalmanSystem,
TorsionElements.

OreModules[Brunovsky],

OreModules[BrunovskyRat] - find transformation of controllable linear ODE system to Brunovsky canonical form

Calling Sequence:
 Brunovsky(R,Alg)
 BrunovskyRat(R,Alg)

Parameters:
 R - matrix with entries in Alg
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• Brunovsky returns a matrix which defines a transformation of the system variables such that the given controllable linear system of
ordinary differential equations for these system variables transforms to Brunovsky canonical form (or canonical controller form, see
e.g. E. D. Sontag, Mathematical Control Theory, Springer, 2nd edition, 1998, or T. Kailath, Linear Systems, Prentice-Hall, 1980).

• R is a matrix with entries in the Ore algebra Alg representing a linear system of ordinary differential equations.

• Alg is expected to be defined using DefineOreAlgebra.

• The variable transformation defined by the matrix which is returned by Brunovsky brings the given linear system to the form

=
d

d

t
()x t +A ()x t B ()u t , where A is a block diagonal matrix with each non-zero block a companion matrix with zero last row, and B is

partitioned according to the block structure of A such that every block at position (i, i) in this structure is a column whose only
non-zero component is the last one which is 1 (see Example 2 below; see also E. D. Sontag, Mathematical Control Theory, Springer,
2nd edition, 1998, p. 191).

• BrunovskyRat performs the same computations as Brunovsky, but the domain of coefficients of the Ore algebra Alg is replaced by its
quotient field, i.e. rational functions.

Examples:
> with(OreModules):

Example 1: converting a second order ODE to a first order system

> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t]):
We consider the following linear ordinary differential equation:
> R := matrix([[D^2, -1]]);

 := R []D2 -1
> ApplyMatrix(R, [x(t),u(t)], Alg)=evalm([[0]]);

=

−

d

d2

t2 ()x t ()u t []0

Using Brunovsky, we find a transformation of the system variables that brings the system to Brunovsky canonical form:
> T := Brunovsky(R, Alg);

 := T

1 0

D 0

0 1
In terms of the system variables ()x t , ()u t and the new variables ()z1 t , ()z2 t , ()v t , this transformation can be written as follows:
> matrix(3,1,[z1(t),z2(t),v(t)])=ApplyMatrix(T, [x(t),u(t)], Alg);

=

()z1 t

()z2 t

()v t

()x t

d

d

t
()x t

()u t
> S := linalg[stackmatrix](T, R):
To find the Brunovsky canonical form satisfied by the new variables ()z1 t , ()z2 t , ()v t , we solve S (()x t , ()u t)^T = (()z1 t , ()z2 t , ()v t) for (
()x t , ()u t)^T:
> E := Elimination(S, [x,u], [z1,z2,v,0], Alg):
> ApplyMatrix(E[1], [x(t),u(t)], Alg)=ApplyMatrix(E[2], [z1(t),z2(t),v(t)], Alg);

=

0

0

()u t

()x t

− +

d

d

t
()z2 t ()v t

− +

d

d

t
()z1 t ()z2 t

()v t

()z1 t

Example 2:

Linear system of ordinary differential equations describing a satellite in a circular equatorial orbit (see T. Kailath, Linear Systems,
Prentice-Hall, 1980, p. 60):
> Alg := DefineOreAlgebra(diff=[Dt,t], polynom=[t], comm=[omega,m,r,a,b]):
> R := evalm([[Dt,-1,0,0,0,0], [-3*omega^2,Dt,0,-2*omega*r,-a/m,0], [0,0,Dt,-1,0,0],
[0,2*omega/r,0,Dt,0,-b/(m*r)]]);

 := R

Dt -1 0 0 0 0

−3 ω2 Dt 0 −2 ωr −
a

m
0

0 0 Dt -1 0 0

0
2 ω
r

0 Dt 0 −
b

m r
> ApplyMatrix(R, [seq(x[i](t),i=1..4),u1(t),u2(t)], Alg)=evalm([[0],[0],[0],[0]]);

=

−

d

d

t
()x1 t ()x2 t

−
− + +3 ω2 ()x1 t m

d

d

t
()x2 t m 2 ωr ()x4 t m a ()u1 t

m

−

d

d

t
()x3 t ()x4 t

+ −2 ω ()x2 t m

d

d

t
()x4 t m r b ()u2 t

m r

0

0

0

0

A transformation of the system variables that brings the system to Brunovsky canonical form is:
> T := Brunovsky(R, Alg);

 := T

1

b a
0 0 0 0 0

0
1

b a
0 0 0 0

3 ω2

a b
0 0

2 ωr

a b

1

b m
0

0 0
1

b a
0 0 0

0 0 0
1

b a
0 0

0 −
2 ω
a b r

0 0 0
1

m a r
> evalm([[z[1](t)],[z[2](t)],[v[1](t)],[z[3](t)],[z[4](t)],[v[2](t)]])=ApplyMatrix(T,
[seq(x[i](t),i=1..4),u1(t),u2(t)], Alg);

=

()z1 t

()z2 t

()v1 t

()z3 t

()z4 t

()v2 t

()x1 t

b a

()x2 t

b a

+ +3 ω2 ()x1 t m 2 ωr ()x4 t m a ()u1 t

m b a

()x3 t

b a

()x4 t

b a

−
−2 ω ()x2 t m b ()u2 t

b a m r
> S := linalg[stackmatrix](T, R):
> E := Elimination(S, [seq(x[i],i=1..4),u1,u2], [z[1],z[2],v[1],z[3],z[4],v[2],0,0,0,0],
Alg):

> C := ApplyMatrix(E[2], [[z[1](t)],[z[2](t)],[v[1](t)],[z[3](t)],[z[4](t)],[v[2](t)]],
Alg):

The first four equations in the following system are the equations satisfied by the new variables ()z1 t , ()z2 t , ()z3 t , ()z4 t , ()v1 t , ()v2 t , and
the last six equations give the inverse transformation to T:
> ApplyMatrix(E[1], [seq(x[i](t),i=1..4),u1(t),u2(t)], Alg)=evalm(C);

=

0

0

0

0

()u2 t

()u1 t

()x4 t

()x3 t

()x2 t

()x1 t

− +

d

d

t
()z4 t ()v2 t

− +

d

d

t
()z3 t ()z4 t

− +

d

d

t
()z2 t ()v1 t

− +

d

d

t
()z1 t ()z2 t

+2 a ωm ()z2 t a m r ()v2 t

− + −3 b ω2 m ()z1 t b m ()v1 t 2 b ωr m ()z4 t

b a ()z4 t

b a ()z3 t

b a ()z2 t

b a ()z1 t

If we define the matrices A and B as follows, then it is clearly visible that the new variables satisfy a Brunovsky canonical form:
> A := matrix(4,4,[0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0]); B := matrix(4,2,[0,0,1,0,0,0,0,1]);

 := A

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 := B

0 0

1 0

0 0

0 1
> ApplyMatrix(linalg[diag](Dt$4), [z1(t),z2(t),z3(t),z4(t)], Alg)=ApplyMatrix(A,
[z1(t),z2(t),z3(t),z4(t)], Alg)+ApplyMatrix(B, [v1(t),v2(t)], Alg);

=

d

d

t
()z1 t

d

d

t
()z2 t

d

d

t
()z3 t

d

d

t
()z4 t

+

()z2 t

0

()z4 t

0

0

()v1 t

0

()v2 t

Example 3:

Linearized system of ordinary differential equations describing two pendula mounted on a cart (see J. W. Polderman, J. C. Willems,
Introduction to Mathematical Systems Theory. A Behavioral Approach, Springer, 1998, p. 159-160):

> Alg := DefineOreAlgebra(diff=[Dt,t], polynom=[t], comm=[m1, m2, M, L1, L2, g]):
> R := evalm([[m1*L1*Dt^2, m2*L2*Dt^2,(M+m1+m2)*Dt^2,-1],

 [m1*L1^2*Dt^2-m1*L1*g, 0, m1*L1*Dt^2,0],

 [0, m2*L2^2*Dt^2-m2*L2*g, m2*L2*Dt^2,0]]);

 := R

m1L1 Dt 2 m2L2 Dt 2 ()+ +M m1 m2 Dt 2 -1

−m1L12 Dt 2 m1L1 g 0 m1L1 Dt 2 0

0 −m2L22 Dt 2 m2L2 g m2L2 Dt 2 0
In case the lengths L1 and L2 of the two pendula are not equal, we obtain the following transformation of the system variables that
brings the system to Brunovsky canonical form:
> T := Brunovsky(R, Alg);

 := T

L12

g2 ()− +L2 L1
−

L22

g2 ()− +L2 L1

1

g2 0

Dt L12

g2 ()− +L2 L1
−

Dt L22

g2 ()− +L2 L1

Dt

g2 0

L1

g ()− +L2 L1
−

L2

g ()− +L2 L1
0 0

L1 Dt

g ()− +L2 L1
−

L2 Dt

g ()− +L2 L1
0 0

1

− +L2 L1
−

1

− +L2 L1
0 0

Dt

− +L2 L1
−

Dt

− +L2 L1
0 0

g ()+ −L2 M L2 m1 m1L1

M L1 L2 ()− +L2 L1
−

()+ −M L1 L1 m2 m2L2 g

M L1 L2 ()− +L2 L1
0

1

L2 L1 M
> evalm([seq([z[i](t)],i=1..6),[v(t)]])=ApplyMatrix(T, [x1(t),x2(t),x3(t),u(t)], Alg);

=

()z1 t

()z2 t

()z3 t

()z4 t

()z5 t

()z6 t

()v t

− − +L12 ()x1 t L22 ()x2 t ()x3 t L2 ()x3 t L1

g2 ()− +L2 L1

− − +L12

d

d

t
()x1 t L22

d

d

t
()x2 t

d

d

t
()x3 t L2

d

d

t
()x3 t L1

g2 ()− +L2 L1

−L1 ()x1 t L2 ()x2 t

g ()− +L2 L1

−L1

d

d

t
()x1 t L2

d

d

t
()x2 t

g ()− +L2 L1

−()x1 t ()x2 t

− +L2 L1

−

d

d

t
()x1 t

d

d

t
()x2 t

− +L2 L1

+ − − − + − +g ()x1 t L2 M g ()x1 t L2 m1 g ()x1 t m1L1 g ()x2 t M L1 g ()x2 t L1 m2 g ()x2 t m2L2 ()u t L2 ()u t L1

M L1 L2 ()− +L2 L1
> S := linalg[stackmatrix](T, R):
> F := Elimination(S, [x1,x2,x3,u], [seq(z[i],i=1..6),v,0,0,0], Alg):
The Brunovsky canonical form can be read off from the following system of equations:
> ApplyMatrix(F[1], [x1(t),x2(t),x3(t),u(t)], Alg)=ApplyMatrix(F[2],
[seq(z[i](t),i=1..6),v(t)], Alg);

=

0

0

0

0

0

0

()u t

()x3 t

()x2 t

()x1 t

− +

d

d

t
()z6 t ()v t

− +

d

d

t
()z5 t ()z6 t

− +

d

d

t
()z4 t ()z5 t

− +

d

d

t
()z3 t ()z4 t

− +

d

d

t
()z2 t ()z3 t

− +

d

d

t
()z1 t ()z2 t

+ + − − − − +()z3 t g2 m2 ()z3 t g2 M ()z3 t g2 m1 ()z5 t L2 M g ()z5 t L2 m1g ()z5 t g L1 m2 ()z5 t g L1 M L2 L1 M ()v t

− − +g2 ()z1 t ()z3 t L2 g ()z3 t g L1 L2 L1 ()z5 t

−g ()z3 t L1 ()z5 t

−g ()z3 t L2 ()z5 t

See Also:

DefineOreAlgebra, Elimination, AutonomousElements, FirstIntegral, PiPolynomial, IntTorsion, ParticularSolution, ControllabilityMatrix,
KalmanSystem, TorsionElements, LQEquations, FinalConditions.

OreModules[Complement],

OreModules[ComplementRat],

OreModules[ComplementConstCoeff],

OreModules[AllComplementsConstCoeff] - return generating set of torsion elements in terms of the system
variables

Calling Sequence:
 Complement(T,R,Alg,d)
 ComplementRat(T,R,Alg,d)
 ComplementConstCoeff(T,R,Alg)
 AllComplementsConstCoeff(T,R,Alg)

Parameters:
 T, R - matrices with entries in Alg
 Alg - Ore algebra (given by DefineOreAlgebra)
 d - (optional) non-negative integer

Description:

• Complement, ComplementRat, ComplementConstCoeff, AllComplementsConstCoeff solve the matrix equation T - T S T = V R for S

and V, where T and R are given matrices with entries in the Ore algebra Alg.

• Complement solves the above matrix equation only for those matrices S and V such that the entries of S have degree at most d in the
operators and at most d in the coefficients given in the definition of the Ore algebra Alg. If the parameter d is not provided, the degree

in the operators and coefficients of the entries of S are bounded by 1 by default.

• ComplementConstCoeff is applicable only in the case, where each entry of T and R has constant coefficients as an operator in Alg.

Then the above equation is solved only for matrices S and V whose entries have constant coefficients as operators in Alg. However, in
this case the degrees of the entries is not bounded. Note that even if Complement and ComplementConstCoeff are applied to matrices
T and R over Alg whose entries have constant coefficients, in general different solutions are returned by Complement and
ComplementConstCoeff.

• If no solution to the above matrix equation could be found, then the result of these procedures is the empty list. Otherwise
Complement and ComplementConstCoeff return a list of three matrices with entries in Alg, and AllComplementsConstCoeff returns

a list of matrices with entries in Alg. In this case the result of Complement and ComplementConstCoeff is the list [I - S T, V, S],

where (S, V) is a particular solution to the above matrix equation and I is the identity matrix. The result of AllComplementsConstCoeff
in this case contains matrices I - S T, where I is the identity matrix and different matrices are substituted for S, namely the first S coming

from a particular solution to T - T S T = V R, and all remaining matrices S being obtained from this particular solution by adding each
matrix of a basis of solutions for the corresponding homogeneous linear system of equations.

• These procedures are intended for the following purpose: Let the residue classes of the rows of T in the left Alg-module M presented

by R be a generating set of the torsion submodule of M. That means we consider the left Alg-module M which is the factor module of
the free Alg-module of row vectors whose length equals the number of columns of R modulo the submodule which is generated by the

rows of R. (A generating set for its torsion submodule can be obtained e.g. using TorsionElements.) Then, from a each solution (S, V)

or T - T S T = V R we obtain a complement of the torsion submodule in M, i.e. a submodule N of M such that M is the direct sum of its

torsion submodule and N. Given S, the residue classes in M of the rows of the matrix U = I - S T, where I is the identity matrix, form a

generating set of such a submodule N.

• T and R are matrices with entries in the Ore algebra Alg and with the same number of columns.

• Alg is expected to be defined using DefineOreAlgebra.

• ComplementRat performs the same computations as Complement, but the domain of coefficients of the Ore algebra Alg is replaced
by its quotient field, i.e. rational functions.

• For more details see A. Quadrat, D. Robertz, "Parametrizing all solutions of uncontrollable multidimensional linear systems",
Proceedings of the 16th IFAC World Congress, Prague, 2005.

Examples:
> with(OreModules):

Example 1: Ordinary differential equations

We study a bipendulum, namely a system composed of a bar where two pendula are fixed. Here we only consider the case, where
both pendula have the same length l.

For more details, see J.-F. Pommaret, Partial Differential Control Theory, Kluwer, 2001, p. 569, and the Library of Examples at
http://wwwb.math.rwth-aachen.de/OreModules.
> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t], comm=[g,l]):
> R := evalm([[D^2+g/l, 0, -g/l], [0, D^2+g/l, -g/l]]);

 := R

+D2
g

l
0 −

g

l

0 +D2
g

l
−

g

l
> Ext1 := Exti(Involution(R, Alg), Alg, 1);

 := Ext1

, ,

+D2 l g 0

0 1

1 -1 0

0 +D2 l g −g

g

g

+D2 l g
> TorsionElements(R, [x1(t),x2(t),u(t)], Alg);

,

=+g ()θ1 t l

d

d2

t2 ()θ1 t 0 []=()θ1 t −()x1 t ()x2 t

The residue classes of the rows of T in the (left) Alg-module presented by R generate its torsion submodule:
> T := Ext1[2];

 := T

1 -1 0

0 +D2 l g −g
> C := Complement(T, R, Alg);

 := C

, ,

0 1 0

0 1 0

0 0 1

0 0

0 l

1 0

0 0

0 0
> U := C[1]: V := C[2]: S := C[3]:
We verify that T - T S T = T U = V R:
> simplify(Mult(T, U, Alg) - Mult(V, R, Alg));

0
Since the entries of T and R have constant coefficients as operators in Alg, also ComplementConstCoeff can be applied:
> C := ComplementConstCoeff(T, R, Alg);

 := C

, ,

0 1 0

0 1 0

0
+D2 l g

g
0

0 0

0 0

1 0

0 0

0 −
1

g
> A := AllComplementsConstCoeff(T, R, Alg);

A

0 1 0

0 1 0

0
+D2 l g

g
0

0 1 0

0 1 0

0 −
()− +1 g ()+D2 l g

g
g

g −1 g 0

g −1 g 0

0 −
()− +1 g ()+D2 l g

g
g

0 + +1 D2 l g −g

0 1 0

0
+D2 l g

g
0

, , , ,

 :=

0 + +1 D2 l g g2 −g2

0 +1 g ()+D2 l g −g2

0
()+ +1 D2 l g g2 ()+D2 l g

g
− −D2 l g g2

g −1 g 0

g −1 g 0

+D2 l g −
+ − −D2 l g g2 D2 l g

g
0

+D2 l g 1 −g

0 1 0

0
+D2 l g

g
0

, ,

Every matrix in the list A defines a complement of the torsion submodule of the (left) Alg-module presented by R.
> map(a->Factorize(Mult(T, a, Alg), R, Alg), A);

, , , , , ,

0 0

0 0

0 0

0 l g

0 0

l g 0

0 l

0 0

0 0

0 0

0 0

0 0

l 0

0 0

Example 2: Differential time-delay systems

Linear differential time-delay system describing a flexible rod (see H. Mounier, Proprietes structurelles des systemes lineaires a
retards: aspects theoriques et pratiques, PhD thesis, University of Orsay, France, 1995):
> Alg := DefineOreAlgebra(diff=[Dt,t], dual_shift=[delta,s], polynom=[t,s],
shift_action=[delta,t,h]):

> R := evalm([[Dt, -Dt*delta, -1], [2*Dt*delta, -Dt-Dt*delta^2, 0]]);

 := R

Dt −Dt δ -1

2 Dt δ − −Dt Dt δ2 0
> Ext1 := Exti(Involution(R, Alg), Alg, 1);

 := Ext1

, ,

Dt 0 0

0 1 0

0 0 1

−2 δ +1 δ2 0

−Dt Dt δ 1

Dt δ −Dt δ

+1 δ2

2 δ

−Dt Dt δ2

> TorsionElements(R, [y1(t),y2(t),u(t)], Alg);

[],[]=()()D θ1 t 0 []=()θ1 t − + +2 ()y1 −t h ()y2 t ()y2 −t 2 h

The residue classes of the rows of T in the (left) Alg-module presented by R generate its torsion submodule:
> T := Ext1[2];

 := T

−2 δ +1 δ2 0

−Dt Dt δ 1

Dt δ −Dt δ
> C := Complement(T, R, Alg);

 := C

, ,

+1 δ2 −
()+1 δ2 δ

2
0

2 δ −δ2 0

0 0 1

0 0

-1
δ
2

−δ
δ2

2

δ
2

0 0

1 0 0

0 0 0

> U := C[1]: V := C[2]: S := C[3]:
We verify that T - T S T = T U = V R:
> simplify(Mult(T, U, Alg) - Mult(V, R, Alg));

0
Since the entries of T and R have constant coefficients as operators in Alg, also ComplementConstCoeff can be applied:
> C := ComplementConstCoeff(T, R, Alg);

 := C

, ,

+1 δ2 −
()+1 δ2 δ

2
0

2 δ −δ2 0

−Dt Dt δ2 − +
1

2
Dt δ

1

2
Dt δ3 0

0 0

0 0

0 0

δ
2

0 0

1 0 0

0 − +
δ2

2
1

δ
2

> U := C[1]: V := C[2]: S := C[3]:
> simplify(Mult(T, U, Alg) - Mult(V, R, Alg));

0

See Also:
DefineOreAlgebra, Parametrization, IntTorsion, ParticularSolution, Factorize, MinimalParametrization, TorsionElements,
AutonomousElements, Exti, Extn, Torsion.

OreModules[Connection] - return matrix representations of left multiplication maps on a finite dimensional factor

module over an Ore algebra

Calling Sequence:
 Connection(R,Alg)

Parameters:
 R - matrix with entries in Alg
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• Connection returns the list of matrices which represent the left multiplication maps by indeterminates of Alg on the finite
dimensional left module which is presented by R with respect to the vector space basis returned by KBasis.

• Independently of the definition of the coefficient domain of Alg, Connection uses the Ore algebra which is obtained from Alg by
replacing the coefficient domain by its quotient field, i.e. rational functions. The residue class module which is considered by
Connection, namely the module presented by R, is the factor module of the free module of row vectors over this Ore algebra whose
length equals the number of columns of R modulo the submodule which is generated by the rows of R.

• The vector space endomorphisms of the module presented by R defined by left multiplication by the (remaining) non-invertible

indeterminates are represented as matrices with respect to the basis constructed by KBasis, i.e. the i-th row of the j-th resulting matrix
is the coefficient row vector of the product of the j-th indeterminate times the i-th element in the vector space basis returned by KBasis
with respect to this basis.

• If the factor module is the zero module, then Connection returns a list of zero times zero matrices.

• R is a matrix with entries in the Ore algebra Alg.

• Alg is expected to be defined using DefineOreAlgebra.

• Connection returns a list of square matrices with entries in the quotient field of the coefficient domain of Alg.

• Note that for Connection, in the same way as for KBasis, the domain of coefficients of the Ore algebra Alg is replaced by its quotient
field, i.e. rational functions.

Examples:
> with(OreModules):

Example 1:

> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], polynom=[x1,x2]):
> R := evalm([[D1, 0], [D2, D1], [0, D2]]);

 := R

D1 0

D2 D1

0 D2
> B := KBasis(R, Alg);

 := B [], ,λ1 λ2 λ2 D1
> Connection(R, Alg);

,

0 0 0

0 0 1

0 0 0

0 0 -1

0 0 0

0 0 0
Multiplication by D1 on the residue class module in terms of the vector space basis B:

> map(a->Mult(D1, a, Alg), B);

[], ,λ1 D1 λ2 D1 λ2 D12

> map(a->[coeff(a, B[1]), coeff(a, B[2])], %);

[], ,[],D1 0 [],0 D1 [],0 D12

> map(a->ReduceMatrix([a], R, Alg), %);

[], ,[] []0 D1 []
Hence, only the product of D1 by the second basis vector in B is non-zero, and the coefficient row vector of this product has only one
non-zero coefficient, which is 1.
Multiplication by D2 on the residue class module in terms of the vector space basis B:
> map(a->Mult(D2, a, Alg), B);

[], ,λ1 D2 λ2 D2 D2λ2 D1
> map(a->[coeff(a, B[1]), coeff(a, B[2])], %);

[], ,[],D2 0 [],0 D2 [],0 D2D1
> map(a->ReduceMatrix([a], R, Alg), %);

[], ,[]0 −D1 [] []
Hence, only the product of D2 by the first basis vector in B is non-zero, and the coefficient row vector of this product has only one
non-zero coefficient, which is -1.

Example 2:

> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], diff=[D3,x3], polynom=[x1,x2,x3]):
> R := matrix([[D1^3, x1], [D2, x1+D1], [D3, D2]]);

 := R

D13 x1

D2 +x1 D1

D3 D2
> KBasis(R, Alg);

[], , , , , , , ,λ1 D1λ1 D12 λ1 λ2 λ2 D2 λ2 D1 D1D2λ2 D12 λ2 λ2 D13

> Connection(R, Alg);

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 −x1 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 x1 0 0 -3 −x1

0 0 0 −x1 0 -1 0 0 0

0 0 0 -1 0 −x1 0 -1 0

0 0 0 0 0 -2 0 −x1 -1

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

, ,

0 0 0 0 -1 0 0 0 0

0 0 0 0 0 0 -1 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Example 3:

> R := matrix([[D1^3], [D2+x3], [D3+D1]]);

 := R

D13

+D2 x3

+D3 D1
> KBasis(R, Alg);

[]
> Connection(R, Alg);

[], ,[] [] []

See Also:
DefineOreAlgebra, KBasis, HilbertSeries, Dimension, OreRank, Factorize, Quotient, ReduceMatrix, Elimination, Integrability, Involution,
SyzygyModule.

OreModules[ControllabilityMatrix] - return controllability matrix of a linear ODE system

Calling Sequence:
 ControllabilityMatrix(F,G,k,Alg)

Parameters:
 F - square matrix with entries in Alg
 G - matrix with entries in Alg
 k - natural number
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• ControllabilityMatrix returns the controllability matrix for the Kalman system =
d

d

t
()x t +F ()x t G ()u t . More generally,

ControllabilityMatrix returns the matrix formed by juxtaposing ()G0 t , ()G1 t , ..., ()G −k 1 t , where =G0 ()G t and

=()G +i 1 t −()F t ()G t

d

d

t
()Gi t .

• F and G are matrices with entries in the Ore algebra Alg, where F is expected to be a square matrix and the number of rows of G equals
the number of columns of F.

• Alg is expected to be defined using DefineOreAlgebra.

• If F is an (n x n)-matrix and G is an (n x m)-matrix, then the result is an (n x km)-matrix.

Examples:
> with(OreModules):
> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t]):

Example 1:

Consider the Kalman system =
d

d

t
()x t +F ()x t G ()u t , where:

> F := matrix(2,2,[1,-1,0,1]);

 := F

1 -1

0 1
> G := matrix(2,1,[0,1]);

 := G

0

1
> C := ControllabilityMatrix(F, G, 2, Alg);

 := C

0 -1

1 1
> linalg[rank](C);

2
Since C has full rank, the above Kalman system is controllable.

Example 2:

Consider the linear ODE system =
d

d

t
()x t +()F t ()x t ()G t ()u t , where:

> F := matrix(2,2,[2,t-1,-1,1]);

 := F

2 −t 1

-1 1
> G := matrix(2,1,[t,1-t]);

 := G

t

−1 t
> C := ControllabilityMatrix(F, G, 2, Alg);

 := C

t − −4 t t2 2

−1 t − +2 t 2
> subs(t=1, evalm(C));

1 1

0 0
Hence, C does not have full rank for =t 1. Here we have to consider the larger controllability matrix:
> C := ControllabilityMatrix(F, G, 3, Alg);

 := C

t − −4 t t2 2 − −14 t 4 t2 10

−1 t − +2 t 2 − + +6 t t2 6
> linalg[rank](subs(t=1, evalm(C)));

2

See Also:
DefineOreAlgebra, Mult, ApplyMatrix, Involution, KalmanSystem, TorsionElements, LQEquations, FinalConditions.

OreModules[DefineOreAlgebra] - define an Ore algebra for the current session of OreModules

Calling Sequence:
 DefineOreAlgebra(=t1 l1, ... , =tn ln, options)

Parameters:

 ti - types of commutation

 li - lists of indeterminates whose lengths are determined by the corresponding ti
 options - (optional) options

Description:

• DefineOreAlgebra sets up a data structure representing an Ore algebra for the current session of OreModules. It extends the command
Ore_algebra[skew_algebra] so that most of its parameters and options are the same as in Ore_algebra[skew_algebra].

• Most of the commands in OreModules take one parameter Alg which is expected to be a result of the DefineOreAlgebra command.

• The result of DefineOreAlgebra is a list whose first entry is the result of Ore_algebra[skew_algebra] called with the same parameters
and all options as given to DefineOreAlgebra except for "shift_action". The other entries in the resulting list collect information about
the Ore algebra defined by the first entry.

• For the possible types of commutation and possible options, see Ore_algebra[commutation_rules] resp.
Ore_algebra[declaration_options].

• DefineOreAlgebra accepts an additional option "shift_action" which specifies how (matrices of) shift and advance operators are
applied to (vectors of) functions. The string "shift_action" is expected as left hand side of an equation whose right hand side is a list
with three entries. The first entry specifies an indeterminate δ declared in a preceding argument of DefineOreAlgebra which represents
a shift or advance operator. The second entry sets the indeterminate t on which the previous indeterminate δ acts. Here, t may be
different from the indeterminate which was declared together with δ. The third entry defines the length of the shift resp. advance. This
option effects the result of ApplyMatrix.

Examples:
> with(OreModules):

Example 1:

System of linear ordinary differential equations describing a bipendulum (J.-F. Pommaret, Partial Differential Control Theory, 2001):
> Alg1 := DefineOreAlgebra(diff=[D,t], polynom=[t], comm=[g,l1,l2]):
> R1 := evalm([[D^2+g/l1, 0, -g/l1], [0, D^2+g/l2, -g/l2]]);

 := R1

+D2
g

l1
0 −

g

l1

0 +D2
g

l2
−

g

l2
> Mult(D, t, Alg1);

+1 D t
> ApplyMatrix(R1, [x1(t),x2(t),u(t)], Alg1);

+ −

d

d2

t2 ()x1 t l1 g ()x1 t g ()u t

l1

−

− − +

d

d2

t2 ()x2 t l2 g ()x2 t g ()u t

l2

Example 2:

Linear differential time-delay system describing a flexible rod (see H. Mounier, Proprietes structurelles des systemes lineaires a
retards: aspects theoriques et pratiques, PhD thesis, University of Orsay, France, 1995):
> Alg2 := DefineOreAlgebra(diff=[Dt,t], dual_shift=[delta,s], polynom=[t,s],
shift_action=[delta,t,h]):

> R2 := evalm([[Dt, -Dt*delta, -1], [2*Dt*delta, -Dt-Dt*delta^2, 0]]);

 := R2

Dt −Dt δ -1

2 Dt δ − −Dt Dt δ2 0
> ApplyMatrix(R2, [y1(t),y2(t),u(t)], Alg2);

− −()()D y1 t ()()D y2 −t h ()u t

− −2 ()()D y1 −t h ()()D y2 t ()()D y2 −t 2 h

Example 3:

Linear system of PDEs that appears in mathematical physics, namely in the study of Lie-Poisson structures (see C. M. Bender, G. V.
Dunne, L. R. Mead, Underdetermined systems of partial differential equations, Journal of Mathematical Physics, vol. 41, no. 9
(2000), pp. 6388-6398 and W. M. Seiler, Involution analysis of the partial differential equations characterising Hamiltonian vector
fields, Journal of Mathematical Physics, vol. 44 (2003), pp. 1173-1182):
> Alg3 := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], diff=[D3,x3], polynom=[x1,x2,x3]):
> R3 := evalm([[x1*D3, x2*D3, 0], [-x1*D2+x2*D1, -1, x2*D3], [-1, -x2*D1+x1*D2, x1*D3]]);

 := R3

x1 D3 x2 D3 0

− +x1 D2 x2 D1 -1 x2 D3

-1 − +x2 D1 x1 D2 x1 D3
> ApplyMatrix(R3, [F(x1,x2,x3),G(x1,x2,x3),H(x1,x2,x3)], Alg3);

+x1

∂

∂
x3

()F , ,x1 x2 x3 x2

∂

∂
x3

()G , ,x1 x2 x3

− + − +x1

∂

∂
x2

()F , ,x1 x2 x3 x2

∂

∂
x1

()F , ,x1 x2 x3 ()G , ,x1 x2 x3 x2

∂

∂
x3

()H , ,x1 x2 x3

− + − +()F , ,x1 x2 x3 x1

∂

∂
x2

()G , ,x1 x2 x3 x2

∂

∂
x1

()G , ,x1 x2 x3 x1

∂

∂
x3

()H , ,x1 x2 x3

Example 4:

Linear system involving the Euler operator which occurs in the study of a sphere rolling on a surface (see J. Hadamard, Sur
l’equilibre des plaques elastiques circulaires libres ou appuyees et celui de la sphere isotrope, Annales scientifiques de l’E. N. S., 3e
serie, 18 (1901), pp. 313-342.)
> Alg4 := DefineOreAlgebra(euler=[D,rho], polynom=[rho], comm=[lambda,mu]):
> R4 := evalm([[D+1/2,((lambda+mu)/2)*(D-1),1/2,0], [2*D,-(3*lambda+2*mu),D+3,0],
[-D,lambda,-1,2*mu*(D+1)]]);

 := R4

+D
1

2

1

2
()+λ µ ()−D 1

1

2
0

2 D − −3 λ 2 µ +D 3 0

−D λ -1 2 µ ()+D 1
> ApplyMatrix(R4, [theta(rho),sigma(rho),K(rho),G(rho)], Alg4);

+ + + − − +ρ

d

d

ρ
()θ ρ

1

2
()θ ρ

1

2
ρ

d

d

ρ
()σ ρ λ

1

2
ρ

d

d

ρ
()σ ρ µ

1

2
λ ()σ ρ

1

2
()σ ρ µ

1

2
()K ρ

− − + +2 ρ

d

d

ρ
()θ ρ 3 λ ()σ ρ 2 ()σ ρ µ ρ

d

d

ρ
()K ρ 3 ()K ρ

− + − + +ρ

d

d

ρ
()θ ρ λ ()σ ρ ()K ρ 2 µ ρ

d

d

ρ
()G ρ 2 µ ()G ρ

See Also:
OreModules, Ore_algebra[skew_algebra], Ore_algebra[commutation_rules], Ore_algebra[declaration_options], Mult, ApplyMatrix.

OreModules[DiffToOre] - convert a linear (or affine) differential (time-delay) equation to an operator

Calling Sequence:
 DiffToOre(L,dvar,Alg)

Parameters:
 L - differential expression or list or vector of differential expressions in the dependent variables
 dvar - list of dependent variables
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• DiffToOre converts the linear (or affine) differential (time-delay) equation(s) L to an operator which is a matrix over the Ore algebra
defined by Alg.

• L is a differential expression or a list or vector of differential expressions in the functions whose names are provided by the list dvar.
The arguments of these functions may be shifted by constant values, if these shifts are representable by the action of shift operators
defined in Alg.

• Alg is expected to be defined using DefineOreAlgebra.

• The result of DiffToOre is a list of two matrices. The first matrix has entries in Alg and represents the linear part of L as an operator.
The second matrix of the result has only one column and consists of differential expressions. It is the difference of L written as a
vector and the linear part of L.

• This command provides a counterpart to ApplyMatrix and to Ore_to_diff in Ore_algebra. To compose two or more operators, use Mult.

Examples:
> with(OreModules):

Example 1: Ordinary differential equations

> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t]):
> L := [diff(x(t),t,t)-diff(x(t),t)+diff(u(t),t)+a(t), diff(x(t),t)+x(t)-u(t)+b(t)];

 := L

,− + +

d

d2

t2 ()x t

d

d

t
()x t

d

d

t
()u t ()a t + − +

d

d

t
()x t ()x t ()u t ()b t

> M := DiffToOre(L, [x,u], Alg);

 := M

,

−D2 D D

+D 1 -1

()a t

()b t
> evalm(ApplyMatrix(M[1], [x(t),u(t)], Alg) + M[2]);

− + +

d

d2

t2 ()x t

d

d

t
()x t

d

d

t
()u t ()a t

+ − +

d

d

t
()x t ()x t ()u t ()b t

> DiffToOre(L[1], [x,u], Alg);

[],[]−D2 D D ()a t

Example 2: Partial differential equations

> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], diff=[D3,x3], polynom=[x1,x2,x3]):
> L := [diff(y(x1,x2,x3),x1,x2)-diff(z(x1,x2,x3),x2)+diff(u(x1,x2,x3),x1),
diff(z(x1,x2,x3),x2,x3)-u(x1,x2,x3)];

 := L

,− +

∂ ∂

∂2

x2 x1
()y , ,x1 x2 x3

∂

∂
x2

()z , ,x1 x2 x3

∂

∂
x1

()u , ,x1 x2 x3 −

∂ ∂

∂2

x3 x2
()z , ,x1 x2 x3 ()u , ,x1 x2 x3

> DiffToOre(L, [y,z,u], Alg);

,

D2D1 −D2 D1

0 D3D2 -1

0

0

Example 3: Differential time-delay systems

> Alg := DefineOreAlgebra(diff=[D1,x1], shift=[delta,x2], dual_shift=[tau,x3],
polynom=[x1,x2,x3], shift_action=[delta,x1], shift_action=[tau,x1]):

> L := [D(y)(x1-1)+z(x1+2)+2*u(x1), (D@@2)(y)(x1+1)-y(x1)-u(x1)];

 := L [],+ +()()D y −x1 1 ()z +x1 2 2 ()u x1 − −()()()D
()2

y +x1 1 ()y x1 ()u x1
> DiffToOre(L, [y,z,u], Alg);

,

D1τ δ2 2

−D12 δ 1 0 -1

0

0

See Also:
DefineOreAlgebra, Ore_algebra[Ore_to_diff], Ore_algebra[skew_algebra], Ore_algebra[commutation_rules],
Ore_algebra[declaration_options], Mult, ApplyMatrix, Involution, KroneckerProduct.

OreModules[Dimension],

OreModules[DimensionRat] - return the Hilbert dimension of a finitely generated module over an Ore algebra

Calling Sequence:
 Dimension(R,Alg)
 DimensionRat(R,Alg)

Parameters:
 R - matrix with entries in Alg
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• Dimension returns the Hilbert dimension of the left module over the Ore algebra Alg presented by R. This command extends
hilbertdim in Groebner to left modules (however Dimension always uses the degree-reverse lexicographic termorder tdeg).

• For more details about the Hilbert dimension, see Groebner[hilbertdim].

• R is a matrix with entries in the Ore algebra Alg.

• Alg is expected to be defined using DefineOreAlgebra.

• If the left module presented by the matrix R is the zero module, then -infinity is returned.

• DimensionRat performs the same computations as Dimension, but the domain of coefficients of the Ore algebra Alg is replaced by its
quotient field, i.e. rational functions.

Examples:
> with(OreModules):

Example 1:

> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], polynom=[x1,x2]):
First we determine the Hilbert dimension of the zero left ideal in Alg:
> R := evalm([[0]]);

 := R []0
> Dimension(R, Alg);

4
We replace the domain of coefficients of Alg by its quotient field, i.e. by the field of rational functions in x1 and x2:
> DimensionRat(R, Alg);

2
The Hilbert dimension of the zero module is -infinity:
> Dimension([[1]], Alg);

−∞

Example 2:

> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], diff=[D3,x3], polynom=[x1,x2,x3]):
> R := matrix([[D1+x2], [D3+1]]);

 := R

+D1 x2

+D3 1
> Dimension(R, Alg);

4
> DimensionRat(R, Alg);

1

See Also:
DefineOreAlgebra, KBasis, Connection, HilbertSeries, OreRank, Factorize, Quotient, ReduceMatrix, Elimination, Integrability, Involution,
SyzygyModule.

OreModules[Elimination],

OreModules[EliminationRat] - eliminate variables in a linear system over an Ore algebra

Calling Sequence:
 Elimination(R,v,w,Alg,u)
 EliminationRat(R,v,w,Alg,u)

Parameters:

 R - matrix with entries in Alg or INJ(n) or SURJ(n) or ZERO, where n is a non-negative integer
 v - list of indeterminates
 w - list of indeterminates
 Alg - Ore algebra (given by DefineOreAlgebra)
 u - (optional) sublist of v

Description:

• Elimination solves, if possible, the linear system R =y z for y, where y (resp. z) is the vector whose components are the entries of v
(resp. w).

• R is a matrix with entries in the Ore algebra Alg.

• The number of entries in v (resp. w) must equal the number of columns (resp. rows) of R.

• Alg is expected to be defined using DefineOreAlgebra.

• The result is a table T containing two matrices such that T[1] y = T[2] z is equivalent to R =y z. These matrices are formed by the

coefficients in the Groebner basis of the left Alg-module generated by the left hand sides of R =−y z 0 w.r.t. an elimination order
which eliminates the variables v.

• If u is given, then R =y z is solved, if possible, for the indeterminates in v which are not contained in u, where y (resp. z) is the vector
whose components are the entries of v (resp. w).

• EliminationRat performs the same computations as Elimination, but the domain of coefficients of the Ore algebra Alg is replaced by
its quotient field, i.e. rational functions.

Examples:
> with(OreModules):

Example 1:

> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], diff=[D3,x3], polynom=[x1,x2,x3]):
> ivar := x1,x2,x3:
> R := evalm([[D1, 0, -D2], [0, D2, -D2], [D1, 0, D2]]);

 := R

D1 0 −D2

0 D2 −D2

D1 0 D2
> ApplyMatrix(R, [y1(ivar),y2(ivar),y3(ivar)],
Alg)=evalm([[z1(ivar)],[z2(ivar)],[z3(ivar)]]);

=

−

∂

∂
x1

()y1 , ,x1 x2 x3

∂

∂
x2

()y3 , ,x1 x2 x3

−

∂

∂
x2

()y2 , ,x1 x2 x3

∂

∂
x2

()y3 , ,x1 x2 x3

+

∂

∂
x1

()y1 , ,x1 x2 x3

∂

∂
x2

()y3 , ,x1 x2 x3

()z1 , ,x1 x2 x3

()z2 , ,x1 x2 x3

()z3 , ,x1 x2 x3

> E := Elimination(R, [y1,y2,y3], [z1,z2,z3], Alg);

 := E table([,])=1

0 0 2 D2

0 2 D2 0

2 D1 0 0

=2

-1 0 1

-1 2 1

1 0 1
> ApplyMatrix(E[1], [y1(ivar),y2(ivar),y3(ivar)], Alg)=ApplyMatrix(E[2],
[z1(ivar),z2(ivar),z3(ivar)], Alg);

=

2

∂

∂
x2

()y3 , ,x1 x2 x3

2

∂

∂
x2

()y2 , ,x1 x2 x3

2

∂

∂
x1

()y1 , ,x1 x2 x3

− +()z1 , ,x1 x2 x3 ()z3 , ,x1 x2 x3

− + +()z1 , ,x1 x2 x3 2 ()z2 , ,x1 x2 x3 ()z3 , ,x1 x2 x3

+()z1 , ,x1 x2 x3 ()z3 , ,x1 x2 x3

Example 2: Elimination computes input-output representation from state space representation

Linear system of ordinary differential equations describing a stirred tank (see H. Kwakernaak & R. Sivan, Linear Optimal Control
Systems, Wiley-Interscience, 1972).
> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t], comm=[theta,V0,c0,c1,c2]):
The state space representation is given by:
> R := evalm([[D+1/(2*theta),0,-1,-1],[0,D+1/theta,-(c1-c0)/V0,-(c2-c0)/V0]]);

 := R

+D
1

2

1

θ
0 -1 -1

0 +D
1

θ
−

−c1 c0

V0
−

−c2 c0

V0
> ApplyMatrix(R, [x1(t),x2(t),u1(t),u2(t)], Alg);

1

2

+ − −2

d

d

t
()x1 t θ ()x1 t 2 ()u1 t θ 2 ()u2 t θ

θ

+ − + − +

d

d

t
()x2 t θV0 ()x2 t V0 ()u1 t θc1 ()u1 t θc0 ()u2 t θc2 ()u2 t θc0

θV0
In terms of the states, the output is defined by:
> C := evalm([[1/(2*theta),0],[0,1]]);

 := C

1

2

1

θ
0

0 1
> evalm([[y1(t)],[y2(t)]])=ApplyMatrix(C, [x1(t),x2(t)], Alg);

=

()y1 t

()y2 t

1

2

()x1 t

θ

()x2 t

To find an input-output representation, we define the following matrix:
> Rf := linalg[stackmatrix](R, linalg[augment](C, matrix(2,2,0)));

 := Rf

+D
1

2

1

θ
0 -1 -1

0 +D
1

θ
−

−c1 c0

V0
−

−c2 c0

V0

1

2

1

θ
0 0 0

0 1 0 0
> E := Elimination(Rf, [x1,x2,u1,u2], [0,0,y1,y2], Alg, [u1,u2]);

 := E table([,])=1

0 0

0 0

0 1

1 0

=2

0 − −V0D θ V0 −θc1 θc0 −θc2 θc0

− −2 D θ 1 0 1 1

0 1 0 0

2 θ 0 0 0
> ApplyMatrix(E[1], [x1(t),x2(t)], Alg)=ApplyMatrix(E[2], [y1(t),y2(t),u1(t),u2(t)],
Alg);

=

0

0

()x2 t

()x1 t

− − + − + −θV0

d

d

t
()y2 t V0 ()y2 t ()u1 t θc1 ()u1 t θc0 ()u2 t θc2 ()u2 t θc0

− − + +2 θ

d

d

t
()y1 t ()y1 t ()u1 t ()u2 t

()y2 t

2 θ ()y1 t
The first two equations give the input-output behaviour of the system. The third and fourth equations express the state in terms of the
output which shows that the system is observable.

Example 3: Application of Elimination to the study of flatness of linear systems

System of linear ordinary differential equations describing a bipendulum (J.-F. Pommaret, Partial Differential Control Theory, 2001):
> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t], comm=[g,l1,l2]):
> R := evalm([[D^2+g/l1, 0, -g/l1], [0, D^2+g/l2, -g/l2]]);

 := R

+D2
g

l1
0 −

g

l1

0 +D2
g

l2
−

g

l2
Check parametrizability of the system:
> Ext1 := Exti(Involution(R, Alg), Alg, 1);

 := Ext1

, ,

1 0

0 1

+l1 D2 g 0 −g

0 +l2 D2 g −g

+D2 l2 g g2

+D2 l1 g g2

+ + +D4 l2 l1 D2 l2 g D2 l1 g g2

Since Ext1[1] is an identity matrix, the system is (generically) controllable and parametrizable. Ext1[3] is a parametrization of the
system.
> P := Ext1[3];

 := P

+D2 l2 g g2

+D2 l1 g g2

+ + +D4 l2 l1 D2 l2 g D2 l1 g g2

A left inverse of the parametrization (if it exists) is a flat output of the system:
> F := LeftInverse(P, Alg);

 := F

−

l1

g2 ()− +l1 l2

l2

g2 ()− +l1 l2
0

We want to express the system variables x1, x2, and u in terms of the flat output:
> R2 := linalg[stackmatrix](R, F);

 := R2

+D2
g

l1
0 −

g

l1

0 +D2
g

l2
−

g

l2

−
l1

g2 ()− +l1 l2

l2

g2 ()− +l1 l2
0

> E := Elimination(R2, [x1,x2,u], [z1,z2,y], Alg);

E =1

0 0 −l2 g2 l1 g2

0 −l2 g l1 g 0

−l2 g l1 g 0 0

table([, :=

=2

+l2 D2 l1 2 g l1 2 − −l2 2 g l2 2 D2 l1 − + − − +l2 2 D2 g3 l2 D4 g2 l1 2 l2 2 D4 l1 g2 D2 g3 l1 2 g4 l1 g4 l2

l1 2 −l1 l2 − + − +D2 g2 l1 2 l1 D2 g2 l2 g3 l1 l2 g3

l1 l2 −l2 2 − + − +l1 D2 g2 l2 D2 g2 l2 2 g3 l1 l2 g3

])
> ApplyMatrix(E[1], [x1(t),x2(t),u(t)], Alg)=ApplyMatrix(E[2], [z1(t),z2(t),y(t)], Alg);

g2 ()− +l1 l2 ()u t

()− +l1 l2 g ()x2 t

()− +l1 l2 g ()x1 t

=

l2 l1 2

d

d2

t2 ()z1 t g l1 2 ()z1 t l2 2 l1

d

d2

t2 ()z2 t l2 2 g ()z2 t

d

d2

t2 ()y t l2 2 g3

d

d2

t2 ()y t g3 l1 2

d

d4

t4 ()y t l2 g2 l1 2+ − − + − −

d

d4

t4 ()y t l2 2 l1 g2 ()y t g4 l1 ()y t g4 l2+ − +

− − + − +l1 2 ()z1 t l1 l2 ()z2 t

d

d2

t2 ()y t l1 2 g2

d

d2

t2 ()y t l1 g2 l2 ()y t g3 l1 ()y t l2 g3

− − + − +l1 l2 ()z1 t l2 2 ()z2 t

d

d2

t2 ()y t l1 g2 l2

d

d2

t2 ()y t l2 2 g2 ()y t g3 l1 ()y t l2 g3

Up to invertible constants, the previous equations express x1, x2, and u in terms of the flat output y (modulo the system equations).

See Also:
DefineOreAlgebra, Factorize, Quotient, Integrability, ReduceMatrix, Involution, SyzygyModule, ApplyMatrix, LeftInverse,
Parametrization.

OreModules[Exti],

OreModules[ExtiRat] - compute an extension module of a finitely presented module over an Ore algebra with values in

this Ore algebra

Calling Sequence:
 Exti(R,Alg,i)
 ExtiRat(R,Alg,i)

Parameters:
 R - matrix with entries in Alg or INJ(n) or SURJ(n), where n is a non-negative integer
 Alg - Ore algebra (given by DefineOreAlgebra)
 i - non-negative integer

Description:

• Exti computes the ith extension module with values in Alg of the left Alg-module M which is generated by the rows of R, i.e. the ith

homology module of the complex which is obtained from a free resolution of M by applying the hom functor. As a special case, for
=i 0 the computed extension module is the right Alg-module of homomorphisms from M into Alg, returned as a presentation of a left
Alg-module by means of an involution of Alg (cf. Involution).

• Exti uses an involution of Alg in order to turn the complex of right Alg-modules, obtained from a free resolution of M by applying

the hom functor, into a complex of left Alg-modules. Following the definition of the extension module, if i > 0, Exti computes a part

of a free resolution of M of length +i 1 (see Resolution) and applies Involution to the ith resp. the (+i 1)th matrix in this resolution to
obtain the matrix Li resp. L +i 1. Then Exti computes the syzygy module S of the left Alg-module presented by L +i 1 and the annihilator

of the generating elements of S in the left Alg-module presented by Li (see Quotient). This last step corresponds to the computation of

the ith homology module of the before mentioned complex. If =i 0, then Exti only computes the syzygy module of the left Alg

-module presented by L +i 1.

• R is a matrix with entries in Alg or INJ(n) or SURJ(n), where n is a non-negative integer.

• Alg is expected to be defined using DefineOreAlgebra.

• If =i 0, then the result is a matrix with entries in Alg. After applying Involution to this matrix, one obtains a presentation of the right
Alg-module of homomorphisms from the left Alg-module presented by R into Alg.

• If i > 0, then the result is a list of three matrices with entries in Alg. The residue classes of the rows of the second matrix in the left

Alg-module presented by Li form a generating set for S (see above). The first matrix gives the annihilator of these residue classes in

this module. The third matrix is L +i 1. The product of the second matrix by the third matrix is zero by construction. If the part of the

free resolution of M computed by Resolution is shorter than +i 1, then Exti returns [], ,undefined ZERO ZERO .

• If i > 0, the first matrix of the result is a matrix having a block diagonal structure, where each block consists of only one column but
may have several rows. The number of blocks equals the number of rows of the second matrix of the result. The entries of the ith
block form a Groebner basis (w.r.t. the degree reverse lexicographical ordering on the variables of Alg) of the annihilator of the ith

row of the second matrix in the left Alg-module presented by Li (see also Quotient).

• The ith extension module with values in Alg of M is the zero module if and only if the first matrix of the result of Exti is an identity
matrix. For an additional interpretation of the first extension module, see Torsion.

• ExtiRat performs the same computations as Exti, but the domain of coefficients of the Ore algebra Alg is replaced by its quotient
field, i.e. rational functions.

• Extn computes several extension modules at once. Torsion is synonymous with Exti for =i 1.

• For more details on the algorithm computing the extension modules over Ore algebras, see F. Chyzak, A. Quadrat, D. Robertz,

"Effective algorithms for parametrizing linear control systems over Ore algebras", Applicable Algebra in Engineering,
Communication and Computing (AAECC) 16 (2005), pp. 319-376.

Examples:
> with(OreModules):

Example 1:

> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], polynom=[x1,x2]):
> R := matrix([[2, -D2], [2*D1, -D1*D2]]);

 := R

2 −D2

2 D1 −D1D2
> Exti(R, Alg, 0);

[]D2 -2
To obtain the generator of the right Alg-module of homomorphisms from the left Alg-module M presented by R into Alg, one has to
apply an involution of Alg to the result of Exti:
> H := Involution(Exti(R, Alg, 0), Alg);

 := H

−D2

-2
Indeed, the homomorphism of free left Alg-modules represented by H maps the relations defining M to zero in Alg.
> Mult(R, H, Alg);

0

0

Example 2:

> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], polynom=[x1,x2]):
> R := matrix([[-D2+D1+2, -D2], [2, -D2], [2*D1, -D1*D2]]);

 := R

− + +D2 D1 2 −D2

2 −D2

2 D1 −D1D2
> Ext := Exti(R, Alg, 1);

 := Ext

, ,

−D1D2 D22 0

0 −D1D2 D22

1 0 0

0 -1 D1

0

−D1

-1
In this example, L1 is given by:
> L[1] := Involution(R, Alg);

 := L1

− +D2 D1 2 2 −2 D1

D2 D2 −D1D2
Ext[1] is the annihilator of the rows of Ext[2] in the Alg-module presented by L1, i.e.:
> ReduceMatrix(Mult(Ext[1], Ext[2], Alg), L[1], Alg);

[]
This annihilator can also be computed by:
> Quotient(Ext[2], L[1], Alg);

−D1D2 D22 0

0 −D1D2 D22

By construction, Ext[3] yields a parametrization of the system Ext[2] y = 0:
> Mult(Ext[2], Ext[3], Alg);

0

0

Example 3:

Linear system of partial differential equations with non-constant coefficients appearing in the study of the Lie algebra SU(2) (see C.
M. Bender, G. V. Dunne, L. R. Mead, Underdetermined systems of partial differential equations, Journal of Mathematical Physics,
vol. 41 no. 9 (2000), pp. 6388-6398):
> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], diff=[D3,x3], polynom=[x1,x2,x3]):
> R := Involution(evalm([[x3*D1-x1*D3, x3*D2-x2*D3, -1], [-1, x1*D2-x2*D1, x1*D3-x3*D1],
[x2*D1-x1*D2, -1, x2*D3-x3*D2]]), Alg);

 := R

−x1 D3 x3 D1 -1 −x1 D2 x2 D1

−x2 D3 x3 D2 −x2 D1 x1 D2 -1

-1 −x3 D1 x1 D3 −x3 D2 x2 D3
> Exti(R, Alg, 1);

, ,

−x2 D3 x3 D2 0 0

−x1 D3 x3 D1 0 0

−x1 D2 x2 D1 0 0

0 −x2 D3 x3 D2 0

0 −x1 D3 x3 D1 0

0 −x1 D2 x2 D1 0

0 0 1

x1 x2 x3

D1 D2 D3

-1 −x1 D2 x2 D1 −x1 D3 x3 D1

−x3 D2 x2 D3

−x1 D3 x3 D1

−x2 D1 x1 D2

> Exti(R, Alg, 2);

, ,

−x2 D3 x3 D2

−x1 D3 x3 D1

−x1 D2 x2 D1

[]1 ()SURJ 1

> Exti(R, Alg, 3);

[], ,undefined ZERO ZERO
Computing extension modules over the Weyl algebra with rational coefficients:
> ExtiRat(R, Alg, 1);

, ,

−x3 D2 x2 D3 0

−x3 D1 x1 D3 0

0 −x3 D2 x2 D3

0 −x3 D1 x1 D3

x1 x2 x3

0 − + −x12 D2 x1 x2 D1 x2 − + −x12 D3 x1 x3 D1 x3

−x3 D2 x2 D3

−x1 D3 x3 D1

−x2 D1 x1 D2

> ExtiRat(R, Alg, 2);

, ,

−x3 D2 x2 D3

−x3 D1 x1 D3
[]1 ()SURJ 1

See Also:
DefineOreAlgebra, Involution, SyzygyModule, Quotient, Resolution, FreeResolution, ShorterFreeResolution, ShortestFreeResolution,
ProjectiveDimension, Extn, Torsion, Parametrization, MinimalParametrization, AutonomousElements, PiPolynomial, TorsionElements.

OreModules[Extn],

OreModules[ExtnRat] - compute extension modules of a finitely presented module over an Ore algebra with values in

this Ore algebra

Calling Sequence:
 Extn(R,Alg,n)
 ExtnRat(R,Alg,n)

Parameters:
 R - matrix with entries in Alg or INJ(n) or SURJ(n), where n is a non-negative integer
 Alg - Ore algebra (given by DefineOreAlgebra)
 n - non-negative integer

Description:

• Extn computes the first, second, ..., and nth extension module with values in Alg of the left Alg-module M which is generated by the

rows of R, i.e. the first, second, ..., and nth homology module of the complex which is obtained from a free resolution of M by applying
the hom functor.

• R is a matrix with entries in Alg or INJ(n) or SURJ(n), where n is a non-negative integer.

• Alg is expected to be defined using DefineOreAlgebra.

• The result is a table of +n 1 lists. The entry of the result with index j equals the result of Exti applied to R with =i j.

• ExtnRat performs the same computations as Extn, but the domain of coefficients of the Ore algebra Alg is replaced by its quotient
field, i.e. rational functions.

• Exti computes the ith extension module for given i. Torsion is synonymous with Exti for =i 1.

• For more details on the algorithm computing the extension modules over Ore algebras, see F. Chyzak, A. Quadrat, D. Robertz,
"Effective algorithms for parametrizing linear control systems over Ore algebras", Applicable Algebra in Engineering,
Communication and Computing (AAECC) 16 (2005), pp. 319-376.

Examples:
> with(OreModules):

Example 1:

> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], polynom=[x1,x2]):
> R := matrix([[-D2+D1+2, -D2], [2, -D2], [2*D1, -D1*D2]]);

 := R

− + +D2 D1 2 −D2

2 −D2

2 D1 −D1D2
> Ext := Extn(R, Alg, 2);

Ext :=

table([, ,])=0 [], ,undefined ()INJ 2 undefined =1

, ,

−D1D2 D22 0

0 −D1D2 D22

1 0 0

0 -1 D1

0

−D1

-1

=2 [], ,[]1 []1 ()SURJ 1

> Exti(R, Alg, 0);

()INJ 2

> Exti(R, Alg, 1);

, ,

−D1D2 D22 0

0 −D1D2 D22

1 0 0

0 -1 D1

0

−D1

-1
> Exti(R, Alg, 2);

[], ,[]1 []1 ()SURJ 1

Example 2:

Linear system of partial differential equations with non-constant coefficients appearing in the study of the Lie algebra SU(2) (see C.
M. Bender, G. V. Dunne, L. R. Mead, Underdetermined systems of partial differential equations, Journal of Mathematical Physics,
vol. 41 no. 9 (2000), pp. 6388-6398):
> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], diff=[D3,x3], polynom=[x1,x2,x3]):
> R := Involution(evalm([[x3*D1-x1*D3, x3*D2-x2*D3, -1], [-1, x1*D2-x2*D1, x1*D3-x3*D1],
[x2*D1-x1*D2, -1, x2*D3-x3*D2]]), Alg);

 := R

−x1 D3 x3 D1 -1 −x1 D2 x2 D1

−x2 D3 x3 D2 −x2 D1 x1 D2 -1

-1 −x3 D1 x1 D3 −x3 D2 x2 D3
> Extn(R, Alg, 3);

=0 [], ,undefined []−x1 D2 x2 D1 −x2 D3 x3 D2 −x3 D1 x1 D3 undefinedtable([,

=1

, ,

−x2 D3 x3 D2 0 0

−x1 D3 x3 D1 0 0

−x1 D2 x2 D1 0 0

0 −x2 D3 x3 D2 0

0 −x1 D3 x3 D1 0

0 −x1 D2 x2 D1 0

0 0 1

x1 x2 x3

D1 D2 D3

-1 −x1 D2 x2 D1 −x1 D3 x3 D1

−x3 D2 x2 D3

−x1 D3 x3 D1

−x2 D1 x1 D2

,

=2

, ,

−x2 D3 x3 D2

−x1 D3 x3 D1

−x1 D2 x2 D1

[]1 ()SURJ 1 ,

=3 [], ,undefined ZERO ZERO

])
Computation of extension modules over the Weyl algebra with rational coefficients:
> ExtnRat(R, Alg, 3);

=0 [], ,undefined []−x2 D1 x1 D2 −x3 D2 x2 D3 −x1 D3 x3 D1 undefinedtable([,

=1

, ,

−x3 D2 x2 D3 0

−x3 D1 x1 D3 0

0 −x3 D2 x2 D3

0 −x3 D1 x1 D3

x1 x2 x3

0 − − +x2 x12 D2 x1 x2 D1 − − +x3 x12 D3 x1 x3 D1

−x3 D2 x2 D3

−x1 D3 x3 D1

−x2 D1 x1 D2

,

=2

, ,

−x3 D2 x2 D3

−x3 D1 x1 D3
[]1 ()SURJ 1 ,

=3 [], ,undefined ZERO ZERO

])

See Also:
DefineOreAlgebra, Involution, SyzygyModule, Quotient, Resolution, FreeResolution, ShorterFreeResolution, ShortestFreeResolution,
ProjectiveDimension, Exti, Torsion, Parametrization, MinimalParametrization, AutonomousElements, PiPolynomial, TorsionElements.

OreModules[Factorize],

OreModules[FactorizeRat] - right-divide a matrix over an Ore algebra by another one, if possible

Calling Sequence:
 Factorize(M1,M2,Alg)
 FactorizeRat(M1,M2,Alg)

Parameters:
 M1, M2 - matrices with entries in Alg
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• Factorize performs, if possible, a right-division of M1 by M2, i.e., Factorize returns a matrix F with entries in Alg, if it exists, such that

F M2 = M1.

• M1 and M2 are matrices with entries in the Ore algebra Alg having the same number of columns.

• Alg is expected to be defined using DefineOreAlgebra.

• The result is a matrix with entries in Alg or the empty list, if right-division failed.

• FactorizeRat performs the same computations as Factorize, but the domain of coefficients of the Ore algebra Alg is replaced by its
quotient field, i.e. rational functions.

Examples:
> with(OreModules):
> Alg := DefineOreAlgebra(diff=[D[1],x[1]], diff=[D[2],x[2]], polynom=[x[1],x[2]]):
> M1 := matrix([[-D[1],-D[2],0], [-1,0,-D[2]], [0,-1,D[1]]]);

 := M1

−D1 −D2 0

-1 0 −D2

0 -1 D1

> M2 := matrix([[-D[1]-2,-D[2]-3,-2*D[2]+3*D[1]], [-2,0,-2*D[2]], [0,17,-17*D[1]]]);

 := M2

− −D1 2 − −D2 3 − +2 D2 3 D1

-2 0 −2 D2

0 17 −17 D1

> F := Factorize(M1, M2, Alg);

 := F

1 -1
3

17

0
1

2
0

0 0
-1

17
> Mult(F, M2, Alg);

−D1 −D2 0

-1 0 −D2

0 -1 D1

> M1 := matrix([[D[1]]]);

 := M1 []D1

> M2 := matrix([[D[2]]]);

 := M2 []D2

> Factorize(M1, M2, Alg);

[]

See Also:
DefineOreAlgebra, Quotient, Elimination, Integrability, ReduceMatrix, Involution, SyzygyModule, Resolution, FreeResolution.

OreModules[FinalConditions] - extract the coefficients of variations of functions and their derivatives in a given
expression

Calling Sequence:
 FinalConditions(B,T)

Parameters:
 B - expression which is linear in all occuring variations of functions and their derivatives
 T - value serving as "final time" (to be substituted for the independent variable)

Description:

• FinalConditions first extracts the coefficients of the variations of functions and their derivatives which occur in B. Then T is
substituted for the independent variable which is the argument of the functions occuring in B. The list of the resulting expressions is
returned.

• B is expected to be an expression which is linear in all occuring variations of functions and their derivatives. Exactly the functions

named δ with subscript are interpreted as variations of functions.

• FinalConditions is intended to be applied to the second entry of the result of LQEquations. It then yields the left hand sides of the
equations determined by the boundary terms which were introduced in the computation of the Euler-Lagrange equations.

Examples:
> with(OreModules):

Example 1:

> B := a(t)*delta[xi[1]](t)+b(t)*diff(delta[xi[1]](t),t)+c(t)*diff(delta[xi[1]](t),t,t);

 := B + +()a t ()δξ
1

t ()b t

d

d

t
()δξ

1
t ()c t

d

d2

t2 ()δξ
1

t

> FinalConditions(B, T);

[], ,()a T ()b T ()c T

Example 2:

> B :=
6*delta[xi[1]](t)*xi[1](t)+12*delta[xi[1]](t)*diff(xi[1](t),t)-4*delta[xi[1]](t)*diff(x
i[1](t),t$3)+2*delta[xi[1]](t)*diff(xi[2](t),t)+2*diff(delta[xi[1]](t),t)*xi[1](t)+4*di
ff(delta[xi[1]](t),t)*diff(xi[1](t),t$2)+6*diff(delta[xi[1]](t),t)*diff(xi[1](t),t)-2*d
iff(delta[xi[1]](t),t)*xi[2](t)-3*delta[xi[1]](t)*xi[2](t);

B 6 ()δξ
1

t ()ξ1 t 12 ()δξ
1

t

d

d

t
()ξ1 t 4 ()δξ

1
t

d

d3

t3 ()ξ1 t 2 ()δξ
1

t

d

d

t
()ξ2 t 2

d

d

t
()δξ

1
t ()ξ1 t 4

d

d

t
()δξ

1
t

d

d2

t2 ()ξ1 t+ − + + + :=

6

d

d

t
()δξ

1
t

d

d

t
()ξ1 t 2

d

d

t
()δξ

1
t ()ξ2 t 3 ()δξ

1
t ()ξ2 t+ − −

> FinalConditions(B, T);

[],+ − + −6 ()ξ1 T 12 ()()D ξ1 T 4 ()()()D
()3

ξ1 T 2 ()()D ξ2 T 3 ()ξ2 T + + −2 ()ξ1 T 4 ()()()D
()2

ξ1 T 6 ()()D ξ1 T 2 ()ξ2 T
> collect(B, [delta[xi[1]](t), diff(delta[xi[1]](t),t)]);

+

+ − + −6 ()ξ1 t 12

d

d

t
()ξ1 t 4

d

d3

t3 ()ξ1 t 2

d

d

t
()ξ2 t 3 ()ξ2 t ()δξ

1
t

+ + −2 ()ξ1 t 4

d

d2

t2 ()ξ1 t 6

d

d

t
()ξ1 t 2 ()ξ2 t

d

d

t
()δξ

1
t

See Also:
LQEquations, BoundaryTerms, Mult, ApplyMatrix, Involution, ControllabilityMatrix, Brunovsky, KalmanSystem, TorsionElements.

OreModules[FirstIntegral] - compute first integrals for linear systems of ordinary differential equations

Calling Sequence:
 FirstIntegral(R,v,Alg)

Parameters:
 R - matrix with entries in Alg
 v - list or vector of functions
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• FirstIntegral returns the first integrals of the linear system of ordinary differential equations represented by R, i.e. the autonomous
elements of the system which are annihilated by the differential operator w.r.t. the independent variable. In other words, the first
integrals are those left Alg-linear combinations of the system variables whose derivative is a consequence of the system equations.

• R is a matrix with entries in the Ore algebra Alg of ordinary differential operators.

• v is a list or vector of functions which depend on the independent variable of the ODE system. These functions are interpreted as the
system variables.

• Alg is expected to be defined using DefineOreAlgebra.

• The result of FirstIntegral is a function of the independent variable of the ODE system which is given in terms of the system
variables specified by v. Since it is computed by solving a linear system of ordinary differential equations, the result depends on some
constants introduced by dsolve.

• For more information, see J.-F. Pommaret, A. Quadrat, "Localization and parametrization of linear multidimensional control systems",
Systems & Control Letters, 37 (1999), pp. 247-260.

Examples:
> with(OreModules):

Example 1:

(See Example 9 in J.-F. Pommaret, A. Quadrat, Localization and parametrization of linear multidimensional control systems, Systems
& Control Letters, 37 (1999), pp. 247-260.)
> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t]):
> R := evalm([[D, -1, -1], [-1, D, 1]]);

 := R

D -1 -1

-1 D 1
> z := FirstIntegral(R, [eta1(t),eta2(t),eta3(t)], Alg);

 := z _C1 e
()−t

()+()η1 t ()η2 t
> S := ApplyMatrix(R, [eta1(t),eta2(t),eta3(t)], Alg);

 := S

− −

d

d

t
()η1 t ()η2 t ()η3 t

− + +()η1 t

d

d

t
()η2 t ()η3 t

> diff(z, t) - _C1*exp(-t)*(S[1,1]+S[2,1]);

− + −_C1 e
()−t

()+()η1 t ()η2 t _C1 e
()−t

+

d

d

t
()η1 t

d

d

t
()η2 t _C1 e

()−t

− − +

d

d

t
()η1 t ()η2 t ()η1 t

d

d

t
()η2 t

> simplify(%);

0

Example 2:

We study a bipendulum, namely a system composed of a bar where two pendula are fixed, one of length l1 and one of length l2.

See J.-F. Pommaret, Partial Differential Control Theory, Kluwer, 2001, p. 569. Here we consider the case, where =l1 l2:
> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t], comm=[g, l1, l2]):
> R := subs(l2=l1, evalm([[D^2+g/l1, 0, -g/l1], [0, D^2+g/l2, -g/l2]]));

 := R

+D2
g

l1
0 −

g

l1

0 +D2
g

l1
−

g

l1
> AutonomousElements(R, [x1(t),x2(t),u(t)], Alg);

, ,

=+g ()θ1 t l1

d

d2

t2 ()θ1 t 0

=θ1 +_C1

sin

g t

l1
_C2

cos

g t

l1
[]=θ1 −()x1 t ()x2 t

> V := FirstIntegral(R, [x1(t),x2(t),u(t)], Alg);

V

d

d

t
()x1 t _C1

sin

g t

l1
l1

d

d

t
()x1 t _C2

cos

g t

l1
l1 ()x1 t _C1

cos

g t

l1
g ()x1 t _C2

sin

g t

l1
g+ − +

− :=

d

d

t
()x2 t _C1

sin

g t

l1
l1

d

d

t
()x2 t _C2

cos

g t

l1
l1 ()x2 t _C1

cos

g t

l1
g ()x2 t _C2

sin

g t

l1
g− − + − l1

> S := ApplyMatrix(R, [x1(t),x2(t),u(t)], Alg);

 := S

+ −g ()x1 t

d

d2

t2 ()x1 t l1 g ()u t

l1

+ −g ()x2 t

d

d2

t2 ()x2 t l1 g ()u t

l1
> L := expand(evalm([coeff(diff(V, t), diff(x1(t),t,t)),

 -coeff(diff(V, t), diff(x1(t),t,t))] &* S)[1]);

L

_C1

sin

g t

l1
g ()x1 t

l1
_C1

sin

g t

l1

d

d2

t2 ()x1 t

_C2

cos

g t

l1
g ()x1 t

l1
_C2

cos

g t

l1

d

d2

t2 ()x1 t− − − − :=

_C1

sin

g t

l1
g ()x2 t

l1
_C1

sin

g t

l1

d

d2

t2 ()x2 t

_C2

cos

g t

l1
g ()x2 t

l1
_C2

cos

g t

l1

d

d2

t2 ()x2 t+ + + +

> simplify(diff(V, t)-L);

0

Example 3:

The linearized ordinary differential equations for the satellite in a circular orbit (see T. Kailath, Linear Systems, Prentice-Hall, 1980,
p. 60 and p. 145). We consider the case where =a 0 and =b 1, i.e., the case where we only have a tangential thrust:
> Alg := DefineOreAlgebra(diff=[Dt,t], polynom=[t], comm=[omega,m,r,a,b]):
> Rab := evalm([[Dt,-1,0,0,0,0], [-3*omega^2,Dt,0,-2*omega*r,-a/m,0], [0,0,Dt,-1,0,0],
[0,2*omega/r,0,Dt,0,-b/(m*r)]]);

 := Rab

Dt -1 0 0 0 0

−3 ω2 Dt 0 −2 ωr −
a

m
0

0 0 Dt -1 0 0

0
2 ω
r

0 Dt 0 −
b

m r
> R := linalg[submatrix](subs(a=1,b=0,evalm(Rab)), 1..4, 1..5);

 := R

Dt -1 0 0 0

−3 ω2 Dt 0 −2 ωr −
1

m

0 0 Dt -1 0

0
2 ω
r

0 Dt 0

> AutonomousElements(R, [x1(t),x2(t),x3(t),x4(t),u1(t)], Alg);

, ,

=−3 ωm ()θ1 t ()θ2 t 0

=
d

d

t
()θ2 t 0

=θ1

_C1

3 ωm

=θ2 _C1

=θ1 +2 ω ()x1 t r ()x4 t

=θ2 − −2 m

d

d

t
()x2 t ωr m ()x4 t 2 ()u1 t

> FirstIntegral(R, [x1(t),x2(t),x3(t),x4(t),u1(t)], Alg);

1

2

_C1 ()+2 ω ()x1 t r ()x4 t

ω

Example 4:

System of linear ordinary differential equations describing two pendula mounted on a cart (J. W. Polderman, J. C. Willems,
Introduction to Mathematical Systems Theory. A Behavioral Approach, TAM 26, Springer, 1998):
> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t], comm=[m1,m2,M,L1,L2,g]):
> R := subs(L2=L1, evalm([[m1*L1*D^2, m2*L2*D^2, -1, (M+m1+m2)*D^2],
[m1*L1^2*D^2-m1*L1*g, 0, 0, m1*L1*D^2], [0, m2*L2^2*D^2-m2*L2*g, 0, m2*L2*D^2]]));

 := R

m1L1 D2 D2 L1 m2 -1 ()+ +M m1 m2 D2

−m1L12 D2 m1L1 g 0 0 m1L1 D2

0 −m2L12 D2 L1 g m2 0 D2 L1 m2
> AutonomousElements(R, [x1(t),x2(t),x3(t),u1(t)], Alg);

=−L1 m2m1g ()θ1 t L1 m2 ()θ3 t 0

=+L1 m2 ()θ2 t L1 m2 ()θ3 t 0

=−L1 m2

−g ()θ3 t L1

d

d2

t2 ()θ3 t 0

=θ1

+_C1 e

g t

L1
_C2 e

−

g t

L1

m1g

=θ2 − −_C1 e

g t

L1
_C2 e

−

g t

L1

=θ3 +_C1 e

g t

L1
_C2 e

−

g t

L1

, ,

=θ1 −()x1 t ()x2 t

=θ2 + − +()x2 t g m1 ()x2 t g m2 ()x3 t M

d

d2

t2 ()u1 t

=θ3 − − − + +()x2 t g m1 ()x2 t g m2 ()x2 t g M L1 M

d

d2

t2 ()x2 t ()x3 t

> FirstIntegral(R, [x1(t),x2(t),x3(t),u1(t)], Alg);

m1L1 L1

d

d

t
()x1 t _C1 e

2 g t

L1
L1

d

d

t
()x1 t _C2 L1 ()x1 t _C1 g e

2 g t

L1
L1 ()x1 t _C2 g L1

d

d

t
()x2 t _C1 e

2 g t

L1
+ − + −

L1

d

d

t
()x2 t _C2 L1 ()x2 t _C1 g e

2 g t

L1
L1 ()x2 t _C2 g− + −

 e

−

g t

L1

See Also:
DefineOreAlgebra, AutonomousElements, Brunovsky, KalmanSystem, TorsionElements, Parametrization, MinimalParametrization, Exti,
Extn, Torsion, PiPolynomial.

OreModules[FreeResolution],

OreModules[FreeResolutionRat] - compute a free resolution of a finitely presented module over an Ore algebra

Calling Sequence:
 FreeResolution(R,Alg)
 FreeResolutionRat(R,Alg)

Parameters:
 R - matrix with entries in Alg
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• FreeResolution iterates the computation of syzygy modules of the left module over the Ore algebra Alg which is presented by R, i.e.
of the factor module of the free Alg-module of tuples whose length equals the number of columns of R modulo the submodule which
is generated by the rows of R. That means that FreeResolution computes a free resolution of the left module presented by R.

• At first, FreeResolution computes a matrix the rows of which generate all left Alg-linear relations of the rows of R. Then
FreeResolution repeats the same for the matrix which has just been defined instead of R. This construction is iterated as long as there
exist non-trivial left Alg-linear relations of the rows of the matrix which has just been computed.

• R is a matrix with entries in the Ore algebra Alg.

• Alg is expected to be defined using DefineOreAlgebra.

• The result is a table which contains matrices with entries Alg and the name INJ(r) as last entry of the table, where r is the number of

rows of the last matrix occuring in the table. The matrix with index 1 in the result is R and the matrix with index i is the result of

SyzygyModule applied to the matrix with index −i 1, i > 1, i.e., the rows of the matrix with index i generate the syzygy module of the
left module generated by the rows of the matrix with index −i 1.

• In order to stop the computation of syzygy modules after a given number of iterations, Resolution can be used.

• FreeResolutionRat performs the same computations as FreeResolution, but the domain of coefficients of the Ore algebra Alg is
replaced by its quotient field, i.e. rational functions.

Examples:
> with(OreModules):

Example 1:

> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], diff=[D3,x3], polynom=[x1,x2,x3]):
> R := evalm([[D1],[D2],[D3]]);

 := R

D1

D2

D3
> Res := FreeResolution(R, Alg);

 := Res table([, , ,])=1

D1

D2

D3

=2

−D3 0 D1

−D2 D1 0

0 −D3 D2

=3 []−D2 D3 D1 =4 ()INJ 1

> Mult(Res[2], Res[1], Alg);

0

0

0
> Mult(Res[3], Res[2], Alg);

[]0 0 0

Example 2:

> Alg := DefineOreAlgebra(diff=[Dt,t], dual_shift=[delta,s], polynom=[t,s]):
> R := matrix([[0,Dt*delta], [t*Dt,t*delta], [Dt,Dt]]);

 := R

0 Dt δ

t Dt t δ

Dt Dt
> Res := FreeResolution(R, Alg, 3);

 := Res table([, , ,])=1

0 Dt δ

t Dt t δ

Dt Dt

=2

− +Dt t2 δ t2 −δ t Dt δ Dt δ t2

− − +2 δ Dt 2 t 2 Dt t Dt δ −Dt 2 δ +Dt 2 δ t 2 Dt δ
=3 []Dt −t =4 ()INJ 1

> Mult(Res[2], Res[1], Alg);

0 0

0 0
> Mult(Res[3], Res[2], Alg);

[]0 0 0

See Also:
DefineOreAlgebra, SyzygyModule, ShorterFreeResolution, ShortestFreeResolution, Resolution, ProjectiveDimension, LiftOperators, Exti,
Extn, Torsion, Parametrization, MinimalParametrization, Involution, Quotient, Integrability.

OreModules[GeneralizedInverse],

OreModules[GeneralizedInverseRat] - compute a generalized inverse of a matrix over an Ore algebra

Calling Sequence:
 GeneralizedInverse(M,Alg)
 GeneralizedInverseRat(M,Alg)

Parameters:
 M - matrix with entries in Alg
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• GeneralizedInverse computes (if possible) a generalized inverse of the matrix M, i.e. a matrix G with entries in Alg such that the

product M G M equals M.

• If no generalized inverse of M exists, GeneralizedInverse returns the empty list.

• M is a matrix with entries in the Ore algebra Alg.

• Alg is expected to be defined using DefineOreAlgebra.

• GeneralizedInverseRat performs the same computations as GeneralizedInverse, but the domain of coefficients of the Ore algebra Alg
is replaced by its quotient field, i.e. rational functions.

• Left (right) inverses of matrices over Ore algebras are computed by LeftInverse (RightInverse).

Examples:
> with(OreModules):

Example 1:

> Alg := DefineOreAlgebra(diff=[Dt,t], polynom=[t]):
> R := evalm([[0, 1], [0, 0]]);

 := R

0 1

0 0
> G := GeneralizedInverse(R, Alg);

 := G

0 0

1 0
> Mult(R, G, R, Alg);

0 1

0 0

Example 2:

Linear differential time-delay system describing a flexible rod (see H. Mounier, Proprietes structurelles des systemes lineaires a
retards: aspects theoriques et pratiques, PhD thesis, University of Orsay, France, 1995):
> Alg := DefineOreAlgebra(diff=[Dt,t], dual_shift=[delta,s], polynom=[t,s],
shift_action=[delta,t,h]):

> R := evalm([[Dt, -Dt*delta, -1], [2*Dt*delta, -Dt-Dt*delta^2, 0]]);

 := R

Dt −Dt δ -1

2 Dt δ − −Dt Dt δ2 0

> Ext := Exti(Involution(R, Alg), Alg, 1);

 := Ext

, ,

Dt 0 0

0 1 0

0 0 1

−2 δ +1 δ2 0

−Dt Dt δ 1

Dt δ −Dt δ

+1 δ2

2 δ

− +Dt δ2 Dt
> G := GeneralizedInverse(Ext[2], Alg);

 := G

1

2
δ 0 0

1 0 0

−
1

2
Dt δ 1 0

> Mult(Ext[2], G, Ext[2], Alg) - Ext[2];

0

See Also:
DefineOreAlgebra, LeftInverse, RightInverse, LocalLeftInverse, Mult, ApplyMatrix, Involution, KroneckerProduct, Factorize, Quotient,
Elimination, Integrability, ReduceMatrix.

OreModules[HilbertSeries],

OreModules[HilbertSeriesRat] - return Hilbert series of a finitely presented module over an Ore algebra

Calling Sequence:
 HilbertSeries(R,Alg,s)
 HilbertSeriesRat(R,Alg,s)

Parameters:
 R - matrix with entries in Alg
 Alg - Ore algebra (given by DefineOreAlgebra)
 s - indeterminate for the Hilbert series

Description:

• HilbertSeries returns the Hilbert series of the left module over Alg which is presented by R.

• The left Alg-module which is considered by HilbertSeries is the factor module of the free Alg-module of row vectors whose length
equals the number of columns of R modulo the submodule which is generated by the rows of R.

• The Hilbert series of a finitely presented left module over Alg is defined as follows: The Ore algebra Alg has a increasing filtration
defined by the order of its elements, namely an increasing sequence of vector subspaces of Alg such that the union of these vector

subspaces is Alg and the product of any element in the i-th vector subspace by any element in the j-th vector subspace lies in the (+i j

)-th vector subspace, where the k-th vector subspace consists of zero and all elements of Alg of order less than or equal to k. (For the
Weyl algebra this is the Bernstein filtration). The Hilbert series of a finitely presented left Alg-module is the generating function of
the (vector space) dimensions of the homogeneous components of the graded module associated to this left Alg-module with respect
to the above filtration.

• The result of HilbertSeries is a formal power series in s such that the coefficient of s^i is the dimension of the vector space containing

zero and all elements of order i (in the sense explained above) in the left Alg-module presented by R.

• R is a matrix with entries in the Ore algebra Alg.

• Alg is expected to be defined using DefineOreAlgebra.

• s is the indeterminate for the resulting Hilbert series.

• HilbertSeriesRat performs the same computations as HilbertSeries, but the domain of coefficients of the Ore algebra Alg is replaced
by its quotient field, i.e. rational functions.

Examples:
> with(OreModules):

Example 1:

> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], polynom=[x1,x2]):
The Hilbert series of the Ore algebra Alg is:
> HilbertSeries([[0]], Alg, lambda);

1

()− +1 λ 4

The Hilbert series of the algebra obtained by replacing the domain of coefficients of Alg by its quotient field is:
> HilbertSeriesRat([[0]], Alg, lambda);

1

()− +1 λ 2

Example 2:

> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], polynom=[x1,x2]):
> R := evalm([[D1, 0], [D2, D1], [0, D2]]);

 := R

D1 0

D2 D1

0 D2
> HilbertSeries(R, Alg, lambda);

+
1

()− +1 λ 2

+λ 1

()− +1 λ 2

> taylor(%, lambda=0, 12);

+ + + + + + + + + + + +2 5 λ 8 λ2 11 λ3 14 λ4 17 λ5 20 λ6 23 λ7 26 λ8 29 λ9 32 λ10 35 λ11 ()O λ12

> HilbertSeriesRat(R, Alg, lambda);

+2 λ
Hence, the dimension of the vector space containing zero and all elements of order zero in the left module presented by R over the

Ore algebra Alg with rational functions in x1, x2 as coefficients is 2. Similarly, the dimension of the vector space containing zero and
all elements of order one is 1. The list which is returned by KBasis contains bases of these vector spaces:
> KBasis(R, Alg);

[], ,λ1 λ2 λ2 D1

Example 3:

> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], diff=[D3,x3], polynom=[x1,x2,x3]):
> R := matrix([[D1^3, x1], [D2, x1+D1], [D3, D2]]);

 := R

D13 x1

D2 +x1 D1

D3 D2
> HilbertSeries(R, Alg, lambda);

− −
+ +λ2 λ 1

()− +1 λ 3

+ + +λ3 2 λ2 2 λ 1

()− +1 λ 3

> HilbertSeriesRat(R, Alg, lambda);

+ + +3 λ2 3 λ 2 λ3

> KBasis(R, Alg);

[], , , , , , , ,λ1 D1λ1 D12 λ1 λ2 λ2 D2 λ2 D1 D1D2λ2 D12 λ2 λ2 D13

Example 4:

> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], diff=[D3,x3], polynom=[x1,x2,x3]):
> R := matrix([[D1^3], [D2], [D3+D1]]);

 := R

D13

D2

+D3 D1
> HilbertSeriesRat(R, Alg, lambda);

+ +λ2 λ 1
> KBasis(R, Alg);

[], ,λ1 λ1 D3 D32 λ1

> R := matrix([[D1^3], [D2+x1], [D3+D1]]);

 := R

D13

+D2 x1

+D3 D1
> HilbertSeries(R, Alg, lambda);

0
> KBasis(R, Alg);

[]

See Also:
DefineOreAlgebra, KBasis, Connection, Dimension, OreRank, Factorize, Quotient, ReduceMatrix, Elimination, Integrability, Involution,
SyzygyModule.

OreModules[IdealIntersection] - intersect two left ideals of an Ore algebra

Calling Sequence:
 IdealIntersection(L1,L2,Alg)

Parameters:
 L1 - list of polynomials in Alg
 L2 - list of polynomials in Alg
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• IdealIntersection computes a Groebner basis (w.r.t. the degree-reverse lexicographical term order) of the intersection of the left ideals
generated by L1 and L2 in the Ore algebra defined by Alg.

• L1 and L2 are lists whose entries are polynomials in Alg.

• Alg is expected to be defined using DefineOreAlgebra.

• The result of IdealIntersection is a list of polynomials in Alg.

Examples:
> with(OreModules):
> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], polynom=[x1,x2]):
> L1 := [x1*D2+x2*D1-1]; L2 := [D1-D2];

 := L1 []+ −x1 D2 x2 D1 1

 := L2 []−D1 D2
> IdealIntersection(L1, L2, Alg);

[]− + − − +x1 D2D1 x1 D22 x2 D12 x2 D2D1 2 D1 2 D2
> L1 := [D2^2+D1,D1^2-1]; L2 := [D1^2-D2-1];

 := L1 [],+D22 D1 −D12 1

 := L2 []− −D12 D2 1
> IdealIntersection(L1, L2, Alg);

[],− − + − −D13 D1D2 D1 D22 D12 D23 D22 − + + + −2 D12 D2 1 D14 D2D12

See Also:
DefineOreAlgebra, PolIntersect, Mult, ApplyMatrix, Involution, KroneckerProduct, Factorize, Quotient, Elimination, Integrability,
ReduceMatrix, SyzygyModule.

OreModules[Integrability] - compute Groebner basis of the rows of a matrix over an Ore algebra

Calling Sequence:
 Integrability(R,Alg)

Parameters:

 R - matrix with entries in Alg or INJ(n) or SURJ(n), where n is a non-negative integer
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• Integrability returns the Groebner basis of the left module over the Ore algebra Alg which is generated by the left hand sides of R λ -

µ = 0, where λ and µ are vectors of suitable dimensions. The Groebner basis is computed w.r.t. an elimination ordering which
eliminates the indeterminates introduced to represent the standard basis vectors, i.e. the λi.

• Each elements of the resulting Groebner basis which contains no λi (i.e., which is a linear combination of the µi only) is a syzygy of the
rows of R (cf. also SyzygyModule). Hence, Integrability can be used to study formal integrability of linear systems of PDE.

• R is a matrix with entries in the Ore algebra Alg.

• Alg is expected to be defined using DefineOreAlgebra.

• The result is a list of linear combinations of λ1, ..., λp, µ1, ..., µq with coefficients in Alg. Here p (resp. q) equals the number of columns
(resp. rows) of R.

Examples:
> with(OreModules):
> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], polynom=[x1,x2]):
> R := matrix([[D1, 0, 0], [-D2, D1, 1], [0, D1, 1]]);

 := R

D1 0 0

−D2 D1 1

0 D1 1
> G := Integrability(R, Alg);

 := G [], , ,+ −D1µ2 D2µ1 D1µ3 + −λ2 D1 λ3 µ3 + −λ1 D2 µ2 µ3 −λ1 D1 µ1

> remove(has, parse(convert(G, string)), lambda);

[]+ −D1µ2 D2µ1 D1µ3

> SyzygyModule(R, Alg);

[]D2 D1 −D1

See Also:
DefineOreAlgebra, Factorize, Quotient, ReduceMatrix, Elimination, Involution, SyzygyModule.

OreModules[IntTorsion],

OreModules[IntTorsionRat] - integrate the torsion elements of a linear system of partial differential equations

Calling Sequence:
 IntTorsion(R,Alg)
 IntTorsionRat(R,Alg)

Parameters:
 R - matrix with entries in Alg
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• In order to find a parametrization of a linear system R y = 0 of partial differential equations having autonomous elements, R can be split

as a product R1 R2 such that the system R y = 0 is equivalent to R1 τ = 0 and τ = R2 η, namely R2 is a presentation matrix of the left Alg

-module M which is associated with R y = 0 modulo its torsion submodule. R2 can be obtained as the second entry of the result of

applying Exti for =i 1 to the formal adjoint (see Involution) of R, and R1 can be computed by applying Factorize to R and R2.

• IntTorsion integrates the torsion elements, i.e., it solves (essentially) the homogeneous linear system R1 τ = 0 for the vector of
functions τ.

• Those rows of R2 whose residue classes in M are zero are omitted by IntTorsion. Hence, strictly speaking, IntTorsion solves R1 τ = 0
for the functions in the vector τ which correspond to non-zero torsion elements in M.

• R is a matrix with entries in the Ore algebra Alg.

• Alg is expected to be defined using DefineOreAlgebra.

• First IntTorsion computes a generating set of the torsion submodule of the left Alg-module M which is associated with R y = 0. The

torsion elements of M are in bijective correspondence to the autonomous elements of the system (see also TorsionElements,
AutonomousElements). Then IntTorsion computes a generating set of the left Alg-relations satisfied by the generating set of
autonomous elements. This linear system of partial differential equations is then solved for the autonomous elements using pdsolve.

• The result of IntTorsion is a list with three entries. If the left Alg-module M which is associated with the linear system is torsion-free,
i.e. if the system has no autonomous elements, then the first two entries of the result equal the empty list.

• In any case, the third entry of the result is a matrix with entries in Alg having the same number of columns as R. The residue classes

in M of the rows of this matrix generate the torsion submodule of M.

• If the given linear system has autonomous elements, then the first entry of the result of IntTorsion is a matrix with entries in Alg
whose rows generate the left Alg-relations satisfied by the generating set of autonomous elements which corresponds to the
generating set of torsion elements given by the rows of the third entry of the result, i.e. this matrix constitutes the linear system of
partial differential equations which is solved by IntTorsion.

• The second entry of the result of IntTorsion is the solution (which may depend on arbitrary functions and constants) to the above
linear system of partial differential equations if it could be found by pdsolve. Otherwise the second entry of the result is the empty list.
Even in case pdsolve could only partially solve the system, the second entry of the result gives the result of pdsolve.

• To continue parametrizing the linear system R y = 0, a particular solution to R2 η = τ has to be found. This is done by ParticularSolution
. IntTorsion and ParticularSolution are used by Parametrization, if the system has autonomous elements.

• IntTorsionRat performs the same computations as IntTorsion, but the domain of coefficients of the Ore algebra Alg is replaced by its
quotient field, i.e. rational functions.

• For more details see A. Quadrat, D. Robertz, "Parametrizing all solutions of uncontrollable multidimensional linear systems",
Proceedings of the 16th IFAC World Congress, Prague, 2005.

Examples:
> with(OreModules):

Example 1: Ordinary differential equations

System of linear ordinary differential equations describing a bipendulum (J.-F. Pommaret, Partial Differential Control Theory, 2001):
> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t], comm=[g,l]):
> R := evalm([[D^2+g/l, 0, -g/l], [0, D^2+g/l, -g/l]]);

 := R

+D2
g

l
0 −

g

l

0 +D2
g

l
−

g

l
A generating set of the torsion submodule of the (left) Alg-module M which is associated with the given linear system can be
obtained as follows:
> TorsionElements(R, [x1(t),x2(t),u(t)], Alg);

,

=+g ()θ1 t l

d

d2

t2 ()θ1 t 0 []=()θ1 t −()x1 t ()x2 t

Equivalently, one can compute the first extension module with values in Alg of left Alg-module presented by the formal adjoint of R
:
> Ext := Exti(Involution(R, Alg), Alg, 1);

 := Ext

, ,

+D2 l g 0

0 1

1 -1 0

0 +D2 l g −g

g

g

+D2 l g
Then, R can be split as a product R1 R2 as follows:
> R2 := evalm(Ext[2]);

 := R2

1 -1 0

0 +D2 l g −g
> R1 := Factorize(R, R2, Alg);

 := R1

+D2
g

l

1

l

0
1

l
> Mult(R1, R2, Alg);

+D2 l g

l
0 −

g

l

0
+D2 l g

l
−

g

l
The residue class in M of the second row of R2 is zero. The residue class of the first row of R2 is a non-zero torsion element of M.
Hence, IntTorsion solves R1 ,1 1 τ1 = 0.
> IntTorsion(R, Alg);

, ,[]+D2 l g

+_C1

sin

g t

l
_C2

cos

g t

l
[]1 -1 0

We find: A generating set of the left Alg-relations satisfied by the autonomous elements, the integrated torsion elements, and a

generating set of torsion elements of M.
The information given by IntTorsion is used by Parametrization if the considered system has autonomous elements:
> Parametrization(R, Alg);

+ +_C1

sin

g t

l
_C2

cos

g t

l
g ()ξ1 t

g ()ξ1 t

+g ()ξ1 t l

d

d2

t2 ()ξ1 t

Example 2: Partial differential equations

Linear system of PDEs that appears in mathematical physics, namely in the study of Lie-Poisson structures (see C. M. Bender, G. V.
Dunne, L. R. Mead, Underdetermined systems of partial differential equations, Journal of Mathematical Physics, vol. 41, no. 9
(2000), pp. 6388-6398 and W. M. Seiler, Involution analysis of the partial differential equations characterising Hamiltonian vector
fields, Journal of Mathematical Physics, vol. 44 (2003), pp. 1173-1182):
> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], diff=[D3,x3], polynom=[x1,x2,x3]):
> R := evalm([[x1*D3, x2*D3, 0], [-x1*D2+x2*D1, -1, x2*D3], [-1, -x2*D1+x1*D2, x1*D3]]);

 := R

x1 D3 x2 D3 0

− +x1 D2 x2 D1 -1 x2 D3

-1 − +x2 D1 x1 D2 x1 D3
A generating set of the torsion submodule of the left Alg-module M which is associated with the given linear system can be obtained
as follows:
> TorsionElements(R, [F(x1,x2,x3),G(x1,x2,x3),H(x1,x2,x3)], Alg);

=
∂
∂
x3

()θ1 , ,x1 x2 x3 0

=− +x2

∂

∂
x1

()θ1 , ,x1 x2 x3 x1

∂

∂
x2

()θ1 , ,x1 x2 x3 0

=x2

∂

∂
x3

()θ2 , ,x1 x2 x3 0

=x1

∂

∂
x3

()θ2 , ,x1 x2 x3 0

=− +x2

∂

∂
x1

()θ2 , ,x1 x2 x3 x1

∂

∂
x2

()θ2 , ,x1 x2 x3 0

,

=()θ1 , ,x1 x2 x3 +x1 ()F , ,x1 x2 x3 x2 ()G , ,x1 x2 x3

=()θ2 , ,x1 x2 x3 + +

∂

∂
x1

()F , ,x1 x2 x3

∂

∂
x2

()G , ,x1 x2 x3

∂

∂
x3

()H , ,x1 x2 x3

Equivalently, one can compute the first extension module with values in Alg of left Alg-module presented by the formal adjoint of R
:
> Ext := Exti(Involution(R, Alg), Alg, 1);

 := Ext

, ,

D3 0 0

− +x2 D1 x1 D2 0 0

0 x2 D3 0

0 x1 D3 0

0 − +x2 D1 x1 D2 0

0 0 1

x1 x2 0

D1 D2 D3

-1 − +x2 D1 x1 D2 x1 D3

−x2 D3

x1 D3

− +x1 D2 x2 D1

Then, R can be split as a product R1 R2 as follows:
> R2 := evalm(Ext[2]);

 := R2

x1 x2 0

D1 D2 D3

-1 − +x2 D1 x1 D2 x1 D3
> R1 := Factorize(R, R2, Alg);

 := R1

D3 0 0

−D2 x2 0

0 0 1
> Mult(R1, R2, Alg);

x1 D3 x2 D3 0

− +x1 D2 x2 D1 -1 x2 D3

-1 − +x2 D1 x1 D2 x1 D3
The residue class in M of the third row of R2 is zero. The residue classes of the first and second row of R2 are non-zero torsion
elements of M. Hence, IntTorsion solves R1 τ = 0 for the first two components of τ.
> IntTorsion(R, Alg);

D3 0

D2 −x2

D1 −x1

0 x2 D3

0 x1 D3

0 − +x2 D1 x1 D2

+ +d
⌠
⌡
 x1 ()_F1 +x12 x22 x1 d

⌠

⌡

x2

− +2 d

⌠
⌡
 ()()D _F1 +x12 x22 x1 x1 ()_F1 +x12 x22 x2 _C1

()_F1 +x12 x22

, ,

x1 x2 0

D1 D2 D3

We find: A generating set of the left Alg-relations satisfied by the autonomous elements, the integrated torsion elements, and a

generating set of torsion elements of M.
The information given by IntTorsion is used by Parametrization if the considered system has autonomous elements:
> Parametrization(R, Alg);

=1

−()η1 , ,x1 x2 x3 x2

∂

∂
x3

()ξ1 , ,x1 x2 x3

+()η2 , ,x1 x2 x3 x1

∂

∂
x3

()ξ1 , ,x1 x2 x3

+ −()η3 , ,x1 x2 x3 x2

∂

∂
x1

()ξ1 , ,x1 x2 x3 x1

∂

∂
x2

()ξ1 , ,x1 x2 x3

table([,

2

+x1 ()η1 , ,x1 x2 x3 x2 ()η2 , ,x1 x2 x3

+ +

∂

∂
x1

()η1 , ,x1 x2 x3

∂

∂
x2

()η2 , ,x1 x2 x3

∂

∂
x3

()η3 , ,x1 x2 x3

− − + +()η1 , ,x1 x2 x3 x2

∂

∂
x1

()η2 , ,x1 x2 x3 x1

∂

∂
x2

()η2 , ,x1 x2 x3 x1

∂

∂
x3

()η3 , ,x1 x2 x3

=

=

+ +d
⌠
⌡
 x1 ()_F1 +x12 x22 x1 d

⌠

⌡

x2

− +2 d

⌠
⌡
 ()()D _F1 +x12 x22 x1 x1 ()_F1 +x12 x22 x2 _C1

()_F1 +x12 x22

0

])

See Also:
DefineOreAlgebra, Parametrization, ParticularSolution, Complement, MinimalParametrization, Exti, Extn, Torsion, TorsionElements,
Factorize, PiPolynomial, AutonomousElements.

OreModules[Involution] - apply involution of the Ore algebra to a matrix

Calling Sequence:
 Involution(M,Alg)

Parameters:
 M - matrix with entries in Alg or INJ(n) or SURJ(n) or ZERO, where n is a non-negative integer
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• Involution applies an involution of Alg to M.

• For each Ore algebra Alg the involution is fixed in OreModules. The matrix M is transposed and (an extension of)
Ore_algebra[dual_polynomial] is applied to each entry. Then, indeterminates representing differential or shift operators are mapped to
their negative, whereas the indeterminates occuring on the left in normal forms of elements in Alg are mapped to themselves. If the
option "shift+dual_shift" is used in DefineOreAlgebra to declare a shift and an advance operator at the same time, then the involution
is just transposition of matrices.

• M is a matrix with entries in the Ore algebra Alg.

• Alg is expected to be defined using DefineOreAlgebra.

• The result is a matrix whose shape is the transposed shape of M.

Examples:
> with(OreModules):

Example 1: Ordinary differential equations

> Alg := DefineOreAlgebra(diff=[D,x], polynom=[x]):
> M := matrix([[D, x], [0, x*D+D^2]]);

 := M

D x

0 +xD D2

> Involution(M, Alg);

−D 0

x − − +1 xD D2

Example 2: Shift and advance operator

> Alg := DefineOreAlgebra(‘shift+dual_shift‘=[tau,delta,t]):
> M := matrix([[delta, 0, t], [0, t*delta+tau^2, 1]]);

 := M

δ 0 t

0 +t δ τ2 1
> Involution(M, Alg);

δ 0

0 +t δ τ2

t 1

See Also:
DefineOreAlgebra, Ore_algebra[dual_polynomial], linalg[transpose], Mult, ApplyMatrix, KroneckerProduct, ReduceMatrix, LeftInverse,

RightInverse, GeneralizedInverse.

OreModules[KalmanSystem] - check structural properties of a Kalman system

Calling Sequence:
 KalmanSystem(A,B,Alg)
 KalmanSystem(n,m,Alg)

Parameters:
 A, B - matrices with entries in Alg
 n, m - positive integers
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• KalmanSystem returns structural information about a linear system of ordinary differential equations in Kalman form. The system in
Kalman form is either given explicitly in terms of two matrices A and B with entries in Alg, or a generic Kalman system of prescribed
dimension is considered.

• A and B are matrices with entries in the Ore algebra Alg. They represent a linear system of ordinary differential equations in Kalman

form D x = A x + B u, where x is the system variable representing the state of the system, u is the system variable representing the input

of the system, and D is the diagonal matrix with the differential operator with respect to time on the diagonal. Therefore, A must be a
square matrix. If A and B are provided, then n is set to the number of columns of A, and m is set to the number of columns of B.

• n and m are positive integers which define the dimension of state space respectively input space. If KalmanSystem is called with

positive integers n and m, then an n x n matrix A with entries A1, A2, ..., A(n*n) (enumerated row by row) and an n x m matrix B with

entries B1, B2, ..., B(n*m) are defined. In this case, the parameter Alg is optional. If Alg is not provided, then a suitable Ore algebra

with indeterminates D and t is defined.

• In any case, the system matrix is formed by juxtaposing D - A and B, where D is the diagonal matrix with the differential operator with
respect to time.

• Alg is expected to be defined using DefineOreAlgebra.

• The result of KalmanSystem is a list with five entries.

• The first entry of the result gives the result of TorsionElements applied to the system matrix of the Kalman system and system
variables x1, ..., xn, u1, ..., um, where n is the dimension of the state space and m is the dimension of the input space.

• The second entry of the result gives the result of Parametrization applied to the system matrix of the Kalman system.

• The third entry of the result gives the result of LeftInverse applied to the third entry of Exti applied to the adjoint of the system matrix
(obtained by Involution) and =i 1, i.e. the left inverse (if it exists) of the parametrization of the system computed along with the first
extension module with values in Alg of the adjoint of the left Alg-module associated with the system.

• The fourth entry of the result gives the result of RightInverse applied to the system matrix of the Kalman system.

• The fifth entry of the result is the Ore algebra which is used by KalmanSystem. (In case, A and B are defined by KalmanSystem as
above, then Alg needs to be adapted.)

Examples:
> with(OreModules):

Example 1:

We study the linear Kalman system of a satellite in a circular equatorial orbit in one go (see T. Kailath, Linear Systems, Prentice-Hall,
1980, p. 60 and 145; here mass and radius are set to 1; ω is the angular velocity):
> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t], comm=[omega]):
> mA := evalm([[0,1,0,0],[3*omega^2,0,0,2*omega],[0,0,0,1],[0,-2*omega,0,0]]);

 := mA

0 1 0 0

3 ω2 0 0 2 ω

0 0 0 1

0 −2 ω 0 0
> mB := evalm([[0,0],[1,0],[0,0],[0,1]]);

 := mB

0 0

1 0

0 0

0 1
> ApplyMatrix(evalm([[D,0,0,0],[0,D,0,0],[0,0,D,0],[0,0,0,D]]),
[x1(t),x2(t),x3(t),x4(t)], Alg)=

ApplyMatrix(mA, [x1(t),x2(t),x3(t),x4(t)], Alg) + ApplyMatrix(mB, [u1(t),u2(t)], Alg);

=

d

d

t
()x1 t

d

d

t
()x2 t

d

d

t
()x3 t

d

d

t
()x4 t

+

()x2 t

+3 ω2 ()x1 t 2 ω ()x4 t

()x4 t

−2 ω ()x2 t

0

()u1 t

0

()u2 t

> K := KalmanSystem(mA, mB, Alg):
There are no torsion elements of the system, i.e. the system is controllable:
> K[1];

[]
Parametrization of the system:
> K[2];

()ξ1 t

d

d

t
()ξ1 t

()ξ2 t

d

d

t
()ξ2 t

− + −3 ω2 ()ξ1 t

d

d2

t2 ()ξ1 t 2 ω

d

d

t
()ξ2 t

+2 ω

d

d

t
()ξ1 t

d

d2

t2 ()ξ2 t

There is a parametrization of the system using two free parameters ξ1, ξ2.
A flat output of the system can be obtained, if possible, as a left inverse of a parametrization. Then it is returned as third entry of the
result:
> K[3];

1 0 0 0 0 0

0 0 1 0 0 0

Right inverse of system matrix:
> K[4];

0 0 0 0

-1 0 0 0

0 0 0 0

0 0 -1 0

−D -1 2 ω 0

−2 ω 0 −D -1

Example 2:

We study a bipendulum, namely a system composed of a bar where two pendula are fixed. Here we only consider the case, where
both pendula have the same length l.

For more details, see J.-F. Pommaret, Partial Differential Control Theory, Kluwer, 2001, p. 569, and the Library of Examples at
http://wwwb.math.rwth-aachen.de/OreModules.
> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t], comm=[g, l]):
> mA := evalm([[0,0,1,0], [0,0,0,1], [-g/l,0,0,0], [0,-g/l,0,0]]);

 := mA

0 0 1 0

0 0 0 1

−
g

l
0 0 0

0 −
g

l
0 0

> mB := evalm([[0], [0], [g/l], [g/l]]);

 := mB

0

0

g

l

g

l
> ApplyMatrix(evalm([[D,0,0,0],[0,D,0,0],[0,0,D,0],[0,0,0,D]]),
[x1(t),x2(t),x3(t),x4(t)], Alg)=

ApplyMatrix(mA, [x1(t),x2(t),x3(t),x4(t)], Alg)+ApplyMatrix(mB, [u(t)], Alg);

=

d

d

t
()x1 t

d

d

t
()x2 t

d

d

t
()x3 t

d

d

t
()x4 t

+

()x3 t

()x4 t

−
g ()x1 t

l

−
g ()x2 t

l

0

0

g ()u t

l

g ()u t

l

> K := KalmanSystem(mA, mB, Alg):
Torsion elements in terms of the system variables x1, x2, x3, x4, u:
> K[1];

,

=+g ()θ1 t l

d

d2

t2 ()θ1 t 0

=+g ()θ4 t l

d

d2

t2 ()θ4 t 0

=()θ1 t −()x1 t ()x2 t

=()θ4 t −()x3 t ()x4 t

Parametrization of the linear system obtained by equating the torsion elements to zero:
> K[2];

− + +l _C1

cos

g t

l
l _C2

sin

g t

l
g

()/3 2
()ξ1 t

g

g ()ξ1 t

+ +_C1

sin

g t

l
_C2

cos

g t

l
g

d

d

t
()ξ1 t

g

d

d

t
()ξ1 t

+g ()ξ1 t l

d

d2

t2 ()ξ1 t

Flat output of the linear system obtained by equating the torsion elements to zero:
> K[3];

0

1

g
0 0 0

A right inverse of system matrix does not exist:
> K[4];

[]

Example 3:

We only give the dimensions of state and input space and let OreModules check the corresponding generic Kalman system:
> K := KalmanSystem(2, 1):
Generically, there are no torsion elements:
> K[1];

[]
Parametrization of the generic Kalman system:
> K[2];

− +()ξ1 t A2B2 ()ξ1 t B1A4 B1

d

d

t
()ξ1 t

− +()ξ1 t B1A3 ()ξ1 t B2A1 B2

d

d

t
()ξ1 t

− + − − +()ξ1 t A2A3 ()ξ1 t A1A4

d

d

t
()ξ1 t A1

d

d

t
()ξ1 t A4

d

d2

t2 ()ξ1 t

Flat output:
> K[3];

B2

− + − +B12 A3 A2B22 B2B1A4 B1A1B2
−

B1

− + − +B12 A3 A2B22 B2B1A4 B1A1B2
0

Right inverse of system matrix:
> K[4];

−
B2B1

− + − +B12 A3 A2B22 B2B1A4 B1A1B2

B12

− + − +B12 A3 A2B22 B2B1A4 B1A1B2

−
B22

− + − +B12 A3 A2B22 B2B1A4 B1A1B2

B2B1

− + − +B12 A3 A2B22 B2B1A4 B1A1B2

−
− + −B1A3 B2D B2A4

− + − +B12 A3 A2B22 B2B1A4 B1A1B2

− − +A2B2 B1A1 B1D

− + − +B12 A3 A2B22 B2B1A4 B1A1B2

See Also:
DefineOreAlgebra, Exti, Extn, Torsion, TorsionElements, AutonomousElements, Parametrization, LeftInverse, RightInverse, Mult,
ApplyMatrix, ControllabilityMatrix, FirstIntegral, LQEquations, FinalConditions.

OreModules[KBasis] - return a vector space basis of a finite dimensional factor module over an Ore algebra

Calling Sequence:
 KBasis(R,Alg)

Parameters:

 R - matrix with entries in Alg or INJ(n) or SURJ(n), where n is a non-negative integer
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• KBasis returns a vector space basis of the finite dimensional left module which is presented by R.

• Independently of the definition of the coefficient domain of Alg, KBasis uses the Ore algebra which is obtained from Alg by
replacing the coefficient domain by its quotient field, i.e. rational functions. The left module which is considered by KBasis, namely
the module presented by R, is the factor module of the free module of row vectors over this Ore algebra whose length equals the
number of columns of R modulo the submodule which is generated by the rows of R.

• If the module presented by R is the zero module, then KBasis returns the empty list. Otherwise the result is a list of multiples of λ1, ...,

λp by monomials in Alg, where p is the number of columns of R. If λ1, ..., λp are interpreted as the standard basis vectors of the free

module of rank p, then the residue classes which are represented by the entries of the result of KBasis form a vector space basis of the
module presented by R.

• R is a matrix with entries in the Ore algebra Alg.

• Alg is expected to be defined using DefineOreAlgebra.

• Note that, for KBasis, the domain of coefficients of the Ore algebra Alg is replaced by its quotient field, i.e. rational functions.

Examples:
> with(OreModules):

Example 1:

> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], polynom=[x1,x2]):
> R := evalm([[D1, 0], [D2, D1], [0, D2]]);

 := R

D1 0

D2 D1

0 D2
> KBasis(R, Alg);

[], ,λ1 λ2 λ2 D1

Example 2:

> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], diff=[D3,x3], polynom=[x1,x2,x3]):
> R := matrix([[D1^3, x1], [D2, x1+D1], [D3, D2]]);

 := R

D13 x1

D2 +x1 D1

D3 D2
> KBasis(R, Alg);

[], , , , , , , ,λ1 D1λ1 D12 λ1 λ2 λ2 D2 λ2 D1 D1D2λ2 D12 λ2 λ2 D13

Example 3:

> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], diff=[D3,x3], polynom=[x1,x2,x3]):
> R := matrix([[D1^3], [D2], [D3+D1]]);

 := R

D13

D2

+D3 D1
> KBasis(R, Alg);

[], ,λ1 λ1 D3 D32 λ1

> R := matrix([[D1^3], [D2+x1], [D3+D1]]);

 := R

D13

+D2 x1

+D3 D1
> KBasis(R, Alg);

[]

See Also:
DefineOreAlgebra, Connection, HilbertSeries, Dimension, OreRank, Factorize, Quotient, ReduceMatrix, Elimination, Integrability,
Involution, SyzygyModule.

OreModules[KroneckerProduct] - return the Kronecker product of two matrices over an Ore algebra

Calling Sequence:
 KroneckerProduct(A,B,Alg)

Parameters:
 A, B - matrices with entries in Alg
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• KroneckerProduct returns the Kronecker product of the matrices A and B.

• Alg is expected to be defined using DefineOreAlgebra.

Examples:
> with(OreModules):
> Alg := DefineOreAlgebra(diff=[D1,x1], polynom=[x1]):
> A := matrix(2,2,[D1,x1,D1,x1]);

 := A

D1 x1

D1 x1
> B := matrix(2,2,[x1*D1+1,x1^2,0,D1^2]);

 := B

+x1 D1 1 x12

0 D12

> KroneckerProduct(A, B, Alg[1]);

+x1 D12 2 D1 +D1x12 2 x1 +D1x12 x1 x13

0 D13 0 x1 D12

+x1 D12 2 D1 +D1x12 2 x1 +D1x12 x1 x13

0 D13 0 x1 D12

See Also:
DefineOreAlgebra, Mult, ApplyMatrix, DiffToOre, Involution, ReduceMatrix, LeftInverse, RightInverse, GeneralizedInverse.

OreModules[LeftInverse],

OreModules[LeftInverseRat] - compute a left inverse of a matrix over an Ore algebra

Calling Sequence:
 LeftInverse(M,Alg)
 LeftInverseRat(M,Alg)

Parameters:

 M - matrix with entries in Alg or INJ(n) or SURJ(n), where n is a non-negative integer
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• LeftInverse computes (if possible) a left inverse of the matrix M, i.e. a matrix L with entries in Alg such that the product of L by M is
the identity matrix.

• If no left inverse of M exists, LeftInverse returns the empty list.

• M is a matrix with entries in Alg.

• Alg is expected to be defined using DefineOreAlgebra.

• LeftInverseRat performs the same computations as LeftInverse, but the domain of coefficients of the Ore algebra Alg is replaced by
its quotient field, i.e. rational functions.

• Right inverses of matrices over Ore algebras are computed by RightInverse. Generalized inverses of matrices over Ore algebras are
computed by GeneralizedInverse.

Examples:
> with(OreModules):
> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], polynom=[x1,x2]):
> M1 := evalm([[0,1],[1,0],[0,1]]);

 := M1

0 1

1 0

0 1
> L1 := LeftInverse(M1, Alg);

 := L1

0 1 0

0 0 1
> Mult(L1, M1, Alg);

1 0

0 1
> M2 := evalm([[x2*D1+1], [D2]]);

 := M2

+x2 D1 1

D2
> L2 := LeftInverse(M2, Alg);

 := L2 []−1 x2 D2 +x22 D1 x2
> Mult(L2, M2, Alg);

[]1
> M3 := Involution(M2, Alg);

 := M3 []− +x2 D1 1 −D2
> LeftInverse(M3, Alg);

[]
> LeftInverse(SURJ(3), Alg);

1 0 0

0 1 0

0 0 1
> LeftInverse(INJ(2), Alg);

ZERO

See Also:
DefineOreAlgebra, RightInverse, LocalLeftInverse, GeneralizedInverse, Mult, ApplyMatrix, Involution, KroneckerProduct, Factorize,
Quotient, Elimination, Integrability, ReduceMatrix.

OreModules[LiftOperators],

OreModules[LiftOperatorsRat] - computes the lift operators for a linear operator defining a projective D-module

Calling Sequence:
 LiftOperators(R,Alg)
 LiftOperatorsRat(R,Alg)

Parameters:
 R - matrix with entries in Alg
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• The fact that the linear operator represented by the matrix R over the Ore algebra Alg defines a projective module, i.e. that the
cokernel of the map which multiplies rows to the left of the matrix R is projective, is characterized by the existence of a lift operator

for this operator. A lift operator P1 for the operator D1 represented by R is defined by the property D1 P1 D1 = D1 (as a composition of
operators), i.e. in terms of matrices, a lift operator is represented by a generalized inverse of R. If R admits a right inverse, then such a
right inverse represents a lift operator.

• LiftOperators constructs a free resolution of the left Alg-module presented by R using FreeResolution. Then, LiftOperators tries to
compute a right inverse of the last morphism in the free resolution. If such a right inverse does not exist, then LiftOperators returns
the empty list. Otherwise, LiftOperators returns a table of matrices, where the last matrix is a right inverse of the last morphism of the
free resolution and the previous ones represent lift operators of the corresponding operators represented by the morphisms in the free
resolution.

• R is a matrix with entries in the Ore algebra Alg.

• Alg is expected to be defined using DefineOreAlgebra.

• LiftOperatorsRat performs the same computations as LiftOperators, but the domain of coefficients of the Ore algebra Alg is replaced
by its quotient field, i.e. rational functions.

• Left (resp. right) inverses of matrices over Ore algebras are computed by LeftInverse (resp. RightInverse). Generalized inverses of
matrices over Ore algebras are computed by GeneralizedInverse.

• For more details about the computation of lift operators, cf. J.-F. Pommaret, A. Quadrat, Generalized Bezout Identity, Applicable
Algebra in Engineering, Communication and Computing 9 (1998), pp. 91-116.

Examples:
> with(OreModules):

Example 1:

> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], polynom=[x1,x2]):
> R := evalm([[-x2*D1+1, D2]]);

 := R []− +x2 D1 1 D2
> L := LiftOperators(R, Alg);

 := L table([])=1

+2 D2x2

−x22 D1 x2
> RightInverse(R, Alg);

+2 D2x2

−x22 D1 x2
> simplify(Mult(R, L[1], R, Alg) - R);

0

Example 2:

(See Examples 4, 9, 10 in J.-F. Pommaret, A. Quadrat, Generalized Bezout Identity, Applicable Algebra in Engineering,
Communication and Computing 9 (1998), pp. 91-116.)
> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], polynom=[x1,x2]):
> R := evalm([[D1, -1, 0], [D2, 0, -1], [0, D2, -D1]]);

 := R

D1 -1 0

D2 0 -1

0 D2 −D1
> L := LiftOperators(R, Alg);

 := L table([,])=1

0 0 0

-1 0 0

0 -1 0

=2

0

0

-1
> F := FreeResolution(R, Alg);

 := F table([, ,])=1

D1 -1 0

D2 0 -1

0 D2 −D1

=2 []−D2 D1 -1 =3 ()INJ 1

> RightInverse(F[2], Alg);

0

0

-1
> GeneralizedInverse(R, Alg);

0 0 0

-1 0 0

0 -1 0

See Also:
DefineOreAlgebra, Mult, ApplyMatrix, LeftInverse, RightInverse, GeneralizedInverse, SyzygyModule, FreeResolution, Resolution,
ProjectiveDimension, ShorterFreeResolution, ShortestFreeResolution.

OreModules[LocalLeftInverse] - compute left inverse of a matrix over a localization of an Ore algebra

Calling Sequence:
 LocalLeftInverse(M,v,Alg)

Parameters:

 M - matrix with entries in Alg or INJ(n) or SURJ(n), where n is a non-negative integer
 v - list containing a single indeterminate
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• LocalLeftInverse computes (if possible) a left inverse of the matrix M over the localization of the Ore algebra Alg with respect to the

multiplicatively closed set of all powers of the indeterminate given in v, i.e., LocalLeftInverse returns (if possible) a matrix L whose
entries are fractions whose numerators are in Alg and whose denominators are powers of the indeterminate given in v, such that the

product of L by M is the identity matrix.

• If no left inverse of M over the localization of Alg described above exists, LocalLeftInverse returns the empty list.

• M is a matrix with entries in the Ore algebra Alg.

• v is a list containing one of the indeterminates which were used to define Alg.

• Alg is expected to be defined using DefineOreAlgebra.

• Left (resp. right) inverses of matrices over Ore algebras are computed by LeftInverse (resp. RightInverse). Generalized inverses of
matrices over Ore algebras are computed by GeneralizedInverse.

Examples:
> with(OreModules):

Example 1:

Linear differential time-delay system of a wind tunnel model (see A. Manitius, Feedback controllers for a wind tunnel model
involving a delay: analyical design and numerical simulations, IEEE Trans. Autom. Contr. vol. 29 (1984), pp. 1058-1068):
> Alg := DefineOreAlgebra(diff=[Dt,t], dual_shift=[delta,s], polynom=[t,s],
comm=[a,omega,zeta,k], shift_action=[delta,t,h]):

> R := evalm([[Dt+a, -k*a*delta, 0, 0], [0, Dt, -1, 0], [0, omega^2, Dt+2*zeta*omega,
-omega^2]]);

 := R

+Dt a −ka δ 0 0

0 Dt -1 0

0 ω2 +Dt 2 ζ ω −ω2

> Ext1 := Exti(Involution(R, Alg), Alg, 1);

 := Ext1

, ,

1 0 0

0 1 0

0 0 1

+Dt a −ka δ 0 0

0 ω2 +Dt 2 ζ ω −ω2

0 Dt -1 0

−ω2 ka δ

− −Dt ω2 a ω2

− −ω2 Dt 2 ω2 a Dt

− − − − − −Dt ω2 a ω2 Dt 3 2 Dt 2 ζ ω a Dt 2 2 a Dt ζ ω
Ext1[3] provides us with a parametrization of the system. We try to compute a left inverse of Ext1[3]:
> LeftInverse(Ext1[3], Alg);

[]
Hence, no left inverse of Ext1[3] over Alg exists. The obstructions are given by the following possible π-polynomials:
> PiPolynomial(R, Alg);

[],δ +Dt a
We consider the localization of Alg with respect to the multiplicatively closed set of powers of δ and compute a left inverse of
Ext1[3] over this localization:
> L := LocalLeftInverse(Ext1[3], [delta], Alg);

 := L

−

1

δ ω2 ka
0 0 0

> Mult(L, Ext1[3], Alg);

[]1
Hence, we obtain a flat output of the system over the localized ring:
> evalm([[xi1(t)]])=ApplyMatrix(L, [x1(t),x2(t),x3(t),u(t)], Alg);

=[]()ξ1 t

−

()x1 +t h

ω2 ka

Example 2:

Linear differential time-delay system describing a satellite in a circular equatorial orbit (see T. Kailath, Linear Systems, Prentice-Hall,
1980, p. 60 and p. 145, and H. Mounier, Proprietes structurelles des systemes lineaires a retards: aspects theoriques et pratiques,
PhD Thesis, University of Orsay, France, 1995, p. 6 and p. 11):
> Alg := DefineOreAlgebra(diff=[Dt,t], dual_shift=[delta,s], polynom=[t,s],
comm=[omega,m,r,a,b], shift_action=[delta,t]):

> R := evalm([[Dt,-1,0,0,0,0], [-3*omega^2,Dt,0,-2*omega*r,-a*delta/m,0],
[0,0,Dt,-1,0,0], [0,2*omega/r,0,Dt,0,-b*delta/(m*r)]]);

 := R

Dt -1 0 0 0 0

−3 ω2 Dt 0 −2 ωr −
a δ
m

0

0 0 Dt -1 0 0

0
2 ω
r

0 Dt 0 −
b δ
m r

> Ext1 := Exti(Involution(R, Alg), Alg, 1);

 := Ext1

, ,

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−3 m ω2 m Dt 0 −2 ωr m −a δ 0

Dt -1 0 0 0 0

0 2 m ω 0 m r Dt 0 −b δ

0 0 Dt -1 0 0

b a δ 0

b a δDt 0

0 b a δ

0 b a δDt

− +3 b m ω2 Dt 2 b m −2 Dt b ωr m

2 a Dt m ω a Dt 2 m r
We find a parametrization of the system in Ext1[3]. We try to compute a left inverse of Ext1[3] over Alg:
> LeftInverse(Ext1[3], Alg);

[]
Therefore, no left inverse of Ext1[3] over Alg exists. The obstructions are given by the following π-polynomial:
> PiPolynomial(R, Alg, [delta]);

[]δ
We consider the localization of Alg with respect to the multiplicatively closed set of powers of δ and compute a left inverse of
Ext1[3] over this localization:
> L := LocalLeftInverse(Ext1[3], [delta], Alg);

 := L

0 0 −
Dt r ()+4 ω2 Dt 2

6 δa ω3 b
0 −

1

3 ω2 b m

Dt

6 a ω3 m

0 0
1

δb a
0 0 0

> Mult(L, Ext1[3], Alg);

1 0

0 1
Hence, we obtain a flat output of the system if we introduce the time-advance operator:
> evalm([[xi1(t)],[xi2(t)]])=ApplyMatrix(L, [x1(t),x2(t),x3(t),x4(t),u1(t),u2(t)], Alg);

=

()ξ1 t

()ξ2 t

−
1

6

+ + −r ()()()D
()3

x3 +t 1 m 4 r ()()D x3 +t 1 ω2 m 2 ()u1 t a ω ()()D u2 t b

a ω3 b m

()x3 +t 1

b a

See Also:
DefineOreAlgebra, LeftInverse, RightInverse, GeneralizedInverse, Mult, ApplyMatrix, Involution, KroneckerProduct, Factorize, Quotient,
Elimination, Integrability, ReduceMatrix.

OreModules[LQEquations],

OreModules[LQEquationsRat] - derive Euler-Lagrange equations for a linear optimal control problem with

quadratic cost functional

Calling Sequence:
 LQEquations(R,Q,Alg)
 LQEquationsRat(R,Q,Alg)

Parameters:
 R - matrix with entries in Alg
 Q - square matrix with entries in Alg
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• LQEquations transforms a linear optimal control problem to a variational problem without constraints. This requires that it is possible
to parametrize the solutions of the linear system of ordinary differential equations under consideration (see Parametrization). The
controllability of the given linear system is a sufficient condition.

• LQEquations constructs a parametrization of the linear system and substitutes this parametrization into the cost functional, in order to
obtain a variational problem without constraints. Then the Euler-Lagrange equations of the variational problem are derived.

• The result of LQEquations is a list containing three entries. The first entry is a matrix containing the integrand of the variation of the
cost functional, i.e. the Euler-Lagrange equations, obtained after integrating by parts in order to eliminate the derivatives of the
variations. From the second entry of the result the boundary terms which are introduced by this integration by parts can be
determined. The third entry of the result gives the parametrization of the linear system which has been substituted into the cost
functional.

• One way to solve the linear optimal control problem is to solve the necessary conditions given by the Euler-Lagrange equations and
the boundary terms, i.e. given by the first and second entry of the result of LQEquations (see the example below; for more detailed
examples see also the Library of Examples at http://wwwb.math.rwth-aachen.de/OreModules).

• The linear system of ordinary differential equations is given by the matrix R. The quadratic cost functional is defined as
1

2
 times the

integral from 0 to T of ztr Q z, where z is the vector of system variables.

• R and Q are matrices with entries in the Ore algebra Alg, where Q is expected to be a square matrix. Although in most applications Q
will be symmetric, this is not required for LQEquations.

• Alg is expected to be defined using DefineOreAlgebra.

• LQEquationsRat performs the same computations as LQEquations, but the domain of coefficients of the Ore algebra Alg is replaced
by its quotient field, i.e. rational functions.

• For more information, see A. Quadrat, "Analyse algebrique des systemes lineaires multidimensionnels", PhD thesis, Ecole Nationale
des Ponts et Chaussees, 1999, and J.-F. Pommaret, A. Quadrat, "A differential operator approach to multidimensional optimal control
", Int. J. Control, Vol. 77 (2004), No. 9., pp. 821-836.

Examples:
> with(OreModules):

Example:

> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t]):

We consider the linear system =
d

d

t
()x t − +()x t ()u t .

> R := evalm([[D+1, -1]]);

 := R []+D 1 -1
> ApplyMatrix(R, [x(t),u(t)], Alg)=evalm([[0]]);

=

+ −()x t

d

d

t
()x t ()u t []0

> TorsionElements(R, [x(t),u(t)], Alg);

[]
Since there are no torsion elements, the given linear system is controllable and parametrizable.
> Parametrization(R, Alg);

− ()ξ1 t

− −()ξ1 t

d

d

t
()ξ1 t

The quadratic cost functional is defined by means of the following matrix:
> Q := evalm([[1,0],[0,1]]);

 := Q

1 0

0 1
> L := LQEquations(R, Q, Alg);

 := L

, ,

−2 ()ξ1 t

d

d2

t2 ()ξ1 t ()δξ
1

t

+()ξ1 t

d

d

t
()ξ1 t

− ()ξ1 t

− −()ξ1 t

d

d

t
()ξ1 t

The left hand side of the Euler-Lagrange equation is:
> E := L[1][1,1];

 := E −2 ()ξ1 t

d

d2

t2 ()ξ1 t

> sol := dsolve(E, xi[1](t));

 := sol =()ξ1 t +_C1 e
()2 t

_C2 e
()− 2 t

> sol := rhs(sol);

 := sol +_C1 e
()2 t

_C2 e
()− 2 t

The boundary terms which were introduced by integration by parts of the variation of the cost function are:
> B := L[2];

 := B ()δξ
1

t

+()ξ1 t

d

d

t
()ξ1 t

The constants _C1 and _C2 of the general solution sol to the Euler-Lagrange equation are determined from the initial condition ()ξ1 0 =

− ()x 0 = −x0 and the final condition =+()ξ1 T ()()D ξ1 T 0 given by B:
> FinalConditions(B, T);

[]+()ξ1 T ()()D ξ1 T
> solve({subs(t=0, sol)+x0=0, subs(t=T, sol+diff(sol, t))=0}, {_C1,_C2});

,=_C2 −

e
()2 T

()+2 1 x0

()+ − +e
()2 T

2 e
()2 T

e
()− 2 T

2 e
()− 2 T

e0
=_C1 −

x0 e
()− 2 T

()−2 1

()+ − +e
()2 T

2 e
()2 T

e
()− 2 T

2 e
()− 2 T

e0

According to the parametrization used by LQEquations, which is given in L[3], we have:
> x = simplify(-subs(%, sol));

=x
x0 ()− + + +e

()− 2 ()−T t
e

()− 2 ()−T t
2 e

()2 ()−T t
e

()2 ()−T t
2

+ − +e
()2 T

2 e
()2 T

e
()− 2 T

2 e
()− 2 T

> u = simplify(subs(%%, -sol-diff(sol, t)));

=u
x0 ()−e

()− 2 ()−T t
e

()2 ()−T t

+ − +e
()2 T

2 e
()2 T

e
()− 2 T

2 e
()− 2 T

See Also:
DefineOreAlgebra, FinalConditions, BoundaryTerms, Mult, ApplyMatrix, Involution, ControllabilityMatrix, Brunovsky, TorsionElements
, KalmanSystem.

OreModules[MinimalParametrization],

OreModules[MinimalParametrizationRat],

OreModules[MinimalParametrizations],

OreModules[MinimalParametrizationsRat] - return minimal parametrization(s) of a linear system over an Ore

algebra

Calling Sequence:
 MinimalParametrization(R,Alg)
 MinimalParametrizationRat(R,Alg)
 MinimalParametrizations(R,Alg)
 MinimalParametrizationsRat(R,Alg)

Parameters:
 R - matrix with entries in Alg
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• MinimalParametrization constructs a minimal parametrization of the torsion-free left module over Alg which is presented by R,

namely a matrix Q with entries in Alg such that the rows of R generate all left Alg-relations (i.e. syzygies, see SyzygyModule) of the

rows of Q, and among all matrices with entries in Alg satisfying this property the result of MinimalParametrization has the least

number of columns. In particular, the product of R by Q is the zero matrix. The minimality of Q means that the left Alg-module

presented by Q is either the zero module or a torsion left Alg-module.

• MinimalParametrizations returns a list of several minimal parametrizations of the left Alg-module presented by R.

• The left module which is considered by MinimalParametrization(s), namely the module presented by R, is the factor module of the
free module of row vectors with entries in Alg whose length equals the number of columns of R modulo the submodule which is
generated by the rows of R.

• In the terminology of linear systems over Ore algebras, MinimalParametrization constructs a matrix which represents an operator P
such that all solutions of the parametrizable linear system R y = 0 are obtained as y = P z for some vector of functions z.

• Note that MinimalParametrization does not check whether the left Alg-module presented by R is torsion-free, i.e. whether the linear

system R y = 0 is parametrizable. If it is not, then the result will be a minimal parametrization of the left Alg-module presented by R

modulo its torsion submodule, i.e. a minimal parametrization of the linear system obtained from R y = 0 by adding a suitable set of
equations such that all autonomous elements of the system are set to zero. (See also Example 3 below).

• First MinimalParametrization computes the syzygy module of the left Alg-module presented by the formal adjoint of R (i.e.

SyzygyModule is applied to the result of Involution applied to R). Then the rank r of the left Alg-module presented by the syzygies is

determined using OreRank. The rank r gives the number of columns of the resulting matrix Q. Then Involution is applied to the first
matrix, found by selecting r rows of the matrix of syzygies computed before, whose rows do not satisfy any non-trivial left Alg-linear
relation, and the result is returned.

• MinimalParametrizations returns the list of formal adjoints of all matrices, found by selecting r rows of the matrix of syzygyies (see
previous point), whose rows do not satisfy any non-trivial left Alg-linear relation, i.e. which are left Alg-linearly independent.

• R is a matrix with entries in the Ore algebra Alg.

• Alg is expected to be defined using DefineOreAlgebra.

• The result of MinimalParametrization is a matrix with entries in Alg whose number of rows equals the number of columns of R. The
result of MinimalParametrizations is a list of matrices with entries in Alg whose numbers of rows equal the number of columns of R.

• MinimalParametrization(s)Rat performs the same computations as MinimalParametrization(s), but the domain of coefficients of the
Ore algebra Alg is replaced by its quotient field, i.e. rational functions.

• For more details about minimal parametrizations, see F. Chyzak, A. Quadrat, D. Robertz, "Effective algorithms for parametrizing
linear control systems over Ore algebras", Applicable Algebra in Engineering, Communication and Computing (AAECC) 16 (2005),
pp. 319-376.

Examples:
> with(OreModules):

Example 1:

We compute a minimal parametrization for the divergence operator:
> Alg := DefineOreAlgebra(diff=[d[1],x[1]], diff=[d[2],x[2]], diff=[d[3],x[3]],
polynom=[x[1],x[2],x[3]]):

> R := evalm([[d[1], d[2], d[3]]]);

 := R []d1 d2 d3

> Ext1 := Exti(Involution(R, Alg), Alg, 1);

 := Ext1

, ,[]1 []d1 d2 d3

d3 d2 0

0 −d1 d3

−d1 0 −d2

We find that the linear system given by the divergence operator is parametrizable, and Ext1[3] is a parametrization of the system:
> Mult(R, Ext1[3], Alg);

[]0 0 0
In fact, up to the sign and a permutation of the columns, Ext1[3] is the curl operator. However, this parametrization is not minimal.
We have that the rank of the Alg-module which is associated with the system is 2, i.e., there exists a parametrization of the system
which depends on two arbitrary functions only:
> OreRank(R, Alg);

2
> P := MinimalParametrization(R, Alg);

 := P

d3 d2

0 −d1

−d1 0
> Mult(R, P, Alg);

[]0 0
> MinimalParametrizations(R, Alg);

, ,

d3 d2

0 −d1

−d1 0

d3 0

0 d3

−d1 −d2

d2 0

−d1 d3

0 −d2

Example 2:

We consider the first set of Maxwell equations (for more details, see the Library of Examples at
http://wwwb.math.rwth-aachen.de/OreModules):
> Alg := DefineOreAlgebra(diff=[d[1],x[1]], diff=[d[2],x[2]], diff=[d[3],x[3]],
diff=[d[4],x[4]], polynom=[x[1],x[2],x[3],x[4]]):

> R := evalm([[d[4], 0, 0, 0, -d[3], d[2]],

 [0, d[4], 0, d[3], 0, -d[1]],

 [0, 0, d[4],-d[2], d[1], 0],

 [d[1], d[2], d[3], 0, 0, 0]]);

 := R

d4 0 0 0 −d3 d2

0 d4 0 d3 0 −d1

0 0 d4 −d2 d1 0

d1 d2 d3 0 0 0

In terms of equations, the first set of Maxwell equations is given by:
> ApplyMatrix(R, [seq(B[i](seq(x[j],j=1..4)),i=1..3),seq(E[i](seq(x[j],j=1..4)),i=1..3)],
Alg)=evalm([[0]$4]);

=

− +

∂

∂
x4

()B1 , , ,x1 x2 x3 x4

∂

∂
x3

()E2 , , ,x1 x2 x3 x4

∂

∂
x2

()E3 , , ,x1 x2 x3 x4

+ −

∂

∂
x4

()B2 , , ,x1 x2 x3 x4

∂

∂
x3

()E1 , , ,x1 x2 x3 x4

∂

∂
x1

()E3 , , ,x1 x2 x3 x4

− +

∂

∂
x4

()B3 , , ,x1 x2 x3 x4

∂

∂
x2

()E1 , , ,x1 x2 x3 x4

∂

∂
x1

()E2 , , ,x1 x2 x3 x4

+ +

∂

∂
x1

()B1 , , ,x1 x2 x3 x4

∂

∂
x2

()B2 , , ,x1 x2 x3 x4

∂

∂
x3

()B3 , , ,x1 x2 x3 x4

0

0

0

0

Let us check whether or not the first set of Maxwell equations is parametrizable. In order to do that, let us introduce the formal
adjoint R_adj of R:
> R_adj := Involution(R, Alg);

 := R_adj

−d4 0 0 −d1

0 −d4 0 −d2

0 0 −d4 −d3

0 −d3 d2 0

d3 0 −d1 0

−d2 d1 0 0

To check whether the system of Maxwell equations is parametrizable, we compute the first extension module with values in Alg of the
left Alg-module N which is associated with R_adj:
> Ext1 := Exti(R_adj, Alg, 1);

 := Ext1

, ,

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

d4 0 0 0 −d3 d2

d1 d2 d3 0 0 0

0 −d4 0 −d3 0 d1

0 0 d4 −d2 d1 0

d3 d2 0 0

0 −d1 d3 0

−d1 0 −d2 0

0 0 −d4 −d1

d4 0 0 −d2

0 −d4 0 −d3

Since Ext1[1] is the identity matrix, we see that the module M, which is associated with R, is torsion-free. Equivalently, the system of
Maxwell equations is parametrizable and Ext1[3] is a parametrization of the system. In what follows, we shall see that this
parametrization is not minimal. We first compute a free resolution of the Alg-module M associated with R:
> FreeResolution(R, Alg);

table([, ,])=1

d4 0 0 0 −d3 d2

0 d4 0 d3 0 −d1

0 0 d4 −d2 d1 0

d1 d2 d3 0 0 0

=2 []d1 d2 d3 −d4 =3 ()INJ 1

In particular, by summing alternatingly the number of columns of all the entries in this free resolution, we find that the rank of M is 6
- 4 + 1 = 3. This result can also be obtained using OreRank:
> OreRank(R, Alg);

3
Hence, a minimal parametrization of the system involves only three potentials. Let us compute some minimal parametrizations of the
system:
> Pmin := MinimalParametrizations(R, Alg);

 := Pmin

, , ,

d3 d2 0

0 −d1 d3

−d1 0 −d2

0 0 −d4

d4 0 0

0 −d4 0

d3 d2 0

0 −d1 0

−d1 0 0

0 0 −d1

d4 0 −d2

0 −d4 −d3

d3 0 0

0 d3 0

−d1 −d2 0

0 −d4 −d1

d4 0 −d2

0 0 −d3

d2 0 0

−d1 d3 0

0 −d2 0

0 −d4 −d1

0 0 −d2

−d4 0 −d3

Example 3:

If the left module which is associated with the linear system is a finite dimensional vector space (e.g. if the solution space of an
analytic linear system of PDEs is finite-dimensional over the field of constants), then this module is a torsion module:
> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t]):
> R := evalm([[D,0],[0,D]]);

 := R

D 0

0 D
> Ext1 := Exti(Involution(R, Alg), Alg, 1);

 := Ext1

, ,

D 0

0 D

1 0

0 1
()SURJ 2

> MinimalParametrization(R, Alg);

()SURJ 2
Here we use Parametrization to obtain a parametrization of this finite-dimensional solution space:
> Parametrization(R, Alg);

_C1

_C2

See Also:
DefineOreAlgebra, Parametrization, IntTorsion, ParticularSolution, Complement, Involution, OreRank, SyzygyModule, Resolution,
FreeResolution, Exti, Extn, Torsion, AutonomousElements, PiPolynomial, TorsionElements.

OreModules[Mult] - multiply scalars or matrices over an Ore algebra

Calling Sequence:
 Mult(M1,M2,...,Alg)

Parameters:
 M1, M2, ... - scalars in Alg or matrices with entries in Alg
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• Mult returns the product M1 M2 ..., where M1, M2, ... are scalars in Alg or matrices with entries in Alg (expecting that their product in
the given order is defined).

• Alg is expected to be defined using DefineOreAlgebra.

• The result of Mult is a scalar in Alg if all arguments (except Alg) are scalars. It is a matrix with entries in Alg if at least one matrix
occurs in the arguments of Mult.

• This command extends skew_product in Ore_algebra.

Examples:
> with(OreModules):
> Alg := DefineOreAlgebra(diff=[D[1],x[1]], diff=[D[2],x[2]], polynom=[x[1],x[2]]):
Multiplying scalars:
> Mult(D[1], x[1], Alg);

+1 D1 x1

> Mult(3, D[2], x[1]+1, Alg);

3 D2 ()+x1 1

Multiplying matrices:
> L1 := evalm([[x[2]*D[1]+1, D[2]], [0, D[1]]]);

 := L1

+x2 D1 1 D2

0 D1

> R1 := evalm([[2+x[2]*D[2], x[1]], [x[2]^2*D[1]-x[2], x[1]+x[2]]]);

 := R1

+2 x2 D2 x1

−x2

2
D1 x2 +x1 x2

> Mult(L1, R1, Alg);

+ +4 x2 D1 2 x2

2
D1 D2 1 + + + + +x1 x2 D1 x1 x2 1 D2 x1 x2 D2

D1 x2 ()−x2 D1 1 + +1 D1 x1 x2 D1

Multiplying scalar and matrices:
> Mult(7, L1, R1, Alg);

+ +28 x2 D1 14 x2

2
D1 D2 7 + + + + +7 x1 x2 D1 7 x1 7 x2 7 7 D2 x1 7 x2 D2

7 D1 x2 ()−x2 D1 1 + +7 7 D1 x1 7 x2 D1

See Also:
DefineOreAlgebra, Ore_algebra[skew_product], ApplyMatrix, Involution, KroneckerProduct, ReduceMatrix, LeftInverse, RightInverse,
GeneralizedInverse.

OreModules[OreRank],

OreModules[OreRankRat] - compute the rank of a finitely presented left module over an Ore algebra

Calling Sequence:
 OreRank(R,Alg)
 OreRankRat(R,Alg)

Parameters:
 R - matrix with entries in Alg
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• OreRank returns the rank of the left module over the Ore algebra Alg which is presented by R, namely the vector space dimension of
the tensor product of this module by the quotient (skew) field of Alg.

• The left module which is considered by OreRank, namely the left module presented by R, is the factor module of the free module of
row vectors over Alg whose length equals the number of columns of R modulo the submodule which is generated by the rows of R.

• The rank of the left module M presented by R is computed by constructing a finite free resolution of M and summing up alternatingly

the ranks of the free modules in this resolution. The resulting number, which is the Euler characteristic of M, equals the rank of M and
is returned by OreRank.

• R is a matrix with entries in the Ore algebra Alg.

• Alg is expected to be defined using DefineOreAlgebra.

• OreRankRat performs the same computations as OreRank, but the domain of coefficients of the Ore algebra Alg is replaced by its
quotient field, i.e. rational functions.

Examples:
> with(OreModules):

Example 1:

> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], polynom=[x1,x2]):
> R1 := matrix([[1, D2+1], [D1, D2]]);

 := R1

1 +D2 1

D1 D2
> OreRank(R1, Alg);

0
The rank of the left module presented by R1 is zero. In fact, this module is a torsion module, as one obtains a generating set of torsion
elements for the module by computing the first extension module with values in Alg of the adjoint module:
> Exti(Involution(R1, Alg), Alg, 1);

, ,

− + +D2 D1D2 D1 0

0 − + +D2 D1D2 D1

1 0

0 1
()SURJ 2

Example 2:

> R2 := matrix([[1, D2], [D1, D1*D2]]);

 := R2

1 D2

D1 D1D2

> OreRank(R2, Alg);

1
> R3 := matrix([[1, D2, 0], [D1, D1*D2, 0]]);

 := R3

1 D2 0

D1 D1D2 0
> OreRank(R3, Alg);

2

See Also:
DefineOreAlgebra, KBasis, Connection, HilbertSeries, Dimension, Involution, SyzygyModule, Resolution, FreeResolution, Exti, Extn,
Torsion, Elimination, Factorize.

OreModules[Parametrization],

OreModules[ParametrizationRat] - return, if possible, a parametrization of a linear system over an Ore algebra

Calling Sequence:
 Parametrization(R,Alg)
 ParametrizationRat(R,Alg)

Parameters:
 R - matrix with entries in Alg
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• Parametrization constructs, if possible, a parametrization of the linear system represented by the matrix R, i.e. in particular, it

constructs a vector z which depends on some arbitrary functions and possibly on some arbitrary constants such that R y = 0 holds

identically. Of course, the problem of parametrizing all solutions of R y = 0 in this way depends on the space of functions under

consideration, i.e. the space where the entries of y are searched for. For several types of linear systems and spaces of functions,
Parametrization yields a parametrization of the solutions of the linear system in the sense that all solutions of R y = 0 are found by

substituting appropriate functions into the parameters in z. For instance, if R y = 0 is a linear system of partial differential equations

with constant coefficients and the function space is chosen to be the set of all smooth functions, then all solutions of R y = 0 are

parametrized by the result z of Parametrization.

• If the left Alg-module M associated with the linear system is torsion-free, i.e. the factor module of the free left Alg-module of row
vectors whose length equals the number of columns of R modulo the submodule which is generated by the rows of R contains no

non-zero torsion elements, then Parametrization applies the parametrization obtained by Exti to a vector of arbitrary functions ξi and
returns the resulting vector of functions.

• If the left Alg-module M associated with the linear system is not torsion-free, i.e. the linear system under consideration has some
non-trivial autonomous elements, then Parametrization tries to integrate the torsion elements using IntTorsion and tries to glue these
integrated torsion elements with the parametrization (computed by Exti) of the linear system obtained from the given one by equating
all autonomous elements to zero. In the module-theoretic language, this can be achieved if the torsion submodule of M has a
complement in M (see Complement). The latter condition is always satisfied for linear systems of ordinary differential equations. Up to
now, Parametrization only uses ParticularSolution to glue the integrated torsion elements with the parametrization of the linear
system without non-trivial autonomous elements (see also ParticularSolution).

• R is a matrix with entries in the Ore algebra Alg.

• Alg is expected to be defined using DefineOreAlgebra.

• Depending on the structural properties of the linear system defined by R and the possibilities to integrate the resulting equations,
Parametrization returns either a matrix or a table of (equations of) matrices.

• If the given linear system is parametrizable by means of arbitrary functions (and/or constants) only, or if present torsion elements can
be integrated and glued with the parametrization of the corresponding linear system without non-trivial autonomous elements (see
above), then the result of Parametrization is a matrix P whose entries are linear expressions in arbitrary functions ξi of the independent

variables and in constants _Cj such that R P = 0, where multiplication is the action of the operators in Alg on functions. For the issue
of parametrizing all solutions in this way see the first paragraph.

• If the given linear system has autonomous elements and it is not possible to integrate them, Parametrization returns a table with three
entries. The first entry gives a parametrization of the linear system obtained from the given one by equating all autonomous elements
to zero. The second entry is the equation R2 η = ζ and the third entry is the equation R1 ζ = 0 (for the connection of these equations
with the glueing of parametrizations see ParticularSolution).

• If the given linear system has autonomous elements and it is possible to solve R1 τ = 0 (i.e. to integrate the torsion elements; for the

notation see ParticularSolution), but no particular solution to the linear system R2 η = τ can be found, then Parametrization returns a
table with two entries. The first entry gives a parametrization of the linear system obtained from the given one by equating all
autonomous elements to zero. The second entry of the result is the equation R2 η = τ.

• ParametrizationRat performs the same computations as Parametrization, but the domain of coefficients of the Ore algebra Alg is
replaced by its quotient field, i.e. rational functions.

• For more details see A. Quadrat, D. Robertz, "Parametrizing all solutions of uncontrollable multidimensional linear systems",
Proceedings of the 16th IFAC World Congress, Prague, 2005.

Examples:
> with(OreModules):

Example 1:

> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t]):
> R := evalm([[D]]);

 := R []D
> ApplyMatrix(R, [x(t)], Alg);

d

d

t
()x t

> Parametrization(evalm([[D]]), Alg);

[]_C1

Every solution of =
d

d

t
()x t 0 is a constant.

Example 2: Poincare sequence

> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], diff=[D3,x3], polynom=[x1,x2,x3]):
> R1 := evalm([[D1, D2, D3]]);

 := R1 []D1 D2 D3
> P1 := Parametrization(R1, Alg);

 := P1

+

∂

∂
x3

()ξ1 , ,x1 x2 x3

∂

∂
x2

()ξ2 , ,x1 x2 x3

− +

∂

∂
x1

()ξ2 , ,x1 x2 x3

∂

∂
x3

()ξ3 , ,x1 x2 x3

− −

∂

∂
x1

()ξ1 , ,x1 x2 x3

∂

∂
x2

()ξ3 , ,x1 x2 x3

The solutions of the divergence operator are parametrized (up to signs and permutation of columns) by the curl operator.
> R2 := DiffToOre(P1, [xi[1],xi[2],xi[3]], Alg)[1];

 := R2

D3 D2 0

0 −D1 D3

−D1 0 −D2
> P2 := Parametrization(R2, Alg);

 := P2

∂
∂
x2

()ξ1 , ,x1 x2 x3

−

∂

∂
x3

()ξ1 , ,x1 x2 x3

−

∂

∂
x1

()ξ1 , ,x1 x2 x3

The solutions of the curl operator are parametrized (up to signs) by the gradient operator:
> R3 := DiffToOre(P2, [xi[1]], Alg)[1];

 := R3

D2

−D3

−D1
> Mult(R1, R2, Alg);

[]0 0 0
> Mult(R2, R3, Alg);

0

0

0

Example 3: Differential time-delay system

Linear differential time-delay system describing a flexible rod (see H. Mounier, Proprietes structurelles des systemes lineaires a
retards: aspects theoriques et pratiques, PhD thesis, University of Orsay, France, 1995):
> Alg := DefineOreAlgebra(diff=[Dt,t], dual_shift=[delta,s], polynom=[t,s],
shift_action=[delta,t,h]):

> R := evalm([[Dt, -Dt*delta, -1], [2*Dt*delta, -Dt-Dt*delta^2, 0]]);

 := R

Dt −Dt δ -1

2 Dt δ − −Dt Dt δ2 0
> ApplyMatrix(R, [y1(t),y2(t),u(t)], Alg);

− −()()D y1 t ()()D y2 −t h ()u t

− −2 ()()D y1 −t h ()()D y2 t ()()D y2 −t 2 h
> P := Parametrization(R, Alg);

 := P

+ +
_C1

2
()ξ1 t ()ξ1 −t 2 h

+_C1 2 ()ξ1 −t h

− +()()D ξ1 −t 2 h ()()D ξ1 t

We find that P is a solution of R y = 0 for all smooth functions ξ1:
> ApplyMatrix(R, P, Alg);

0

0

Example 4: Partial differential equations

Linear system of PDEs that appears in mathematical physics, namely in the study of Lie-Poisson structures (see C. M. Bender, G. V.
Dunne, L. R. Mead, Underdetermined systems of partial differential equations, Journal of Mathematical Physics, vol. 41, no. 9
(2000), pp. 6388-6398 and W. M. Seiler, Involution analysis of the partial differential equations characterising Hamiltonian vector
fields, Journal of Mathematical Physics, vol. 44 (2003), pp. 1173-1182):
> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], diff=[D3,x3], polynom=[x1,x2,x3]):
> R := evalm([[x1*D3, x2*D3, 0], [-x1*D2+x2*D1, -1, x2*D3], [-1, -x2*D1+x1*D2, x1*D3]]);

 := R

x1 D3 x2 D3 0

− +x1 D2 x2 D1 -1 x2 D3

-1 − +x2 D1 x1 D2 x1 D3
In this example, no particular solution of R2 η = τ is found to glue the integrated torsion elements with the parametrization of the
linear system obtained from the given linear system by equating all autonomous elements to zero (for the notation see
ParticularSolution):
> Parametrization(R, Alg);

=1

−()η1 , ,x1 x2 x3 x2

∂

∂
x3

()ξ1 , ,x1 x2 x3

+()η2 , ,x1 x2 x3 x1

∂

∂
x3

()ξ1 , ,x1 x2 x3

+ −()η3 , ,x1 x2 x3 x2

∂

∂
x1

()ξ1 , ,x1 x2 x3 x1

∂

∂
x2

()ξ1 , ,x1 x2 x3

table([,

2

+x1 ()η1 , ,x1 x2 x3 x2 ()η2 , ,x1 x2 x3

+ +

∂

∂
x1

()η1 , ,x1 x2 x3

∂

∂
x2

()η2 , ,x1 x2 x3

∂

∂
x3

()η3 , ,x1 x2 x3

− − + +()η1 , ,x1 x2 x3 x2

∂

∂
x1

()η2 , ,x1 x2 x3 x1

∂

∂
x2

()η2 , ,x1 x2 x3 x1

∂

∂
x3

()η3 , ,x1 x2 x3

=

=

+ +d
⌠
⌡
 x1 ()_F1 +x12 x22 x1 d

⌠

⌡

−x2

−2 d

⌠
⌡
 ()()D _F1 +x12 x22 x1 x1 ()_F1 +x12 x22 x2 _C1

()_F1 +x12 x22

0

])
The first entry of this table is a parametrization of the linear system obtained from the given linear system by equating all autonomous
elements to zero. The second entry is the equation R2 η = τ, where τ is the general solution of the homogeneous linear system R1 τ = 0
(see ParticularSolution).
> ParametrizationRat(R, Alg);

=1

+()η1 , ,x1 x2 x3 x2

∂

∂
x3

()ξ1 , ,x1 x2 x3

−()η2 , ,x1 x2 x3 x1

∂

∂
x3

()ξ1 , ,x1 x2 x3

− +()η3 , ,x1 x2 x3 x2

∂

∂
x1

()ξ1 , ,x1 x2 x3 x1

∂

∂
x2

()ξ1 , ,x1 x2 x3

table([,

=2

=

+x1 ()η1 , ,x1 x2 x3 x2 ()η2 , ,x1 x2 x3

− + − −x2 ()η2 , ,x1 x2 x3 x2 x1

∂

∂
x1

()η2 , ,x1 x2 x3 x12

∂

∂
x2

()η2 , ,x1 x2 x3 x12

∂

∂
x3

()η3 , ,x1 x2 x3

− ()_F1 +x12 x22

()_F1 +x12 x22

])

See Also:
DefineOreAlgebra, IntTorsion, ParticularSolution, Complement, MinimalParametrization, DiffToOre, SyzygyModule, Resolution,
FreeResolution, ShorterFreeResolution, ShortestFreeResolution, ProjectiveDimension, Exti, Extn, Torsion, AutonomousElements,
PiPolynomial, TorsionElements.

OreModules[ParticularSolution],

OreModules[ParticularSolutionRat] - for parametrizing a linear system, find a particular solution after

integration of the torsion elements

Calling Sequence:
 ParticularSolution(R,Alg)
 ParticularSolutionRat(R,Alg)

Parameters:
 R - matrix with entries in Alg
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• In order to find a parametrization of a linear system R y = 0 of partial differential equations having autonomous elements, R can be split

as a product R1 R2 such that the system R y = 0 is equivalent to R1 τ = 0 and τ = R2 η, namely R2 is a presentation matrix of the left Alg

-module M which is associated with R y = 0 modulo its torsion submodule. R2 can be obtained as the second entry of the result of

applying Exti for =i 1 to the formal adjoint (see Involution) of R, and R1 can be computed by applying Factorize to R and R2.

• ParticularSolution first calls IntTorsion to obtain the general solution τ of the homogeneous linear system R1 τ = 0 and then tries to
find a particular solution η of the inhomogeneous linear system R2 η = τ.

• A particular solution η is obtained by applying a generalized inverse of R2 (see GeneralizedInverse, but see also Complement), if it
exists, to the vector of integrated torsion elements computed by IntTorsion.

• R is a matrix with entries in the Ore algebra Alg.

• Alg is expected to be defined using DefineOreAlgebra.

• The result of ParticularSolution is a list with three entries.

• The first entry of the result is a matrix with entries in Alg having the same number of columns as R. The residue classes of the rows of
this matrix in the module associated with the given system generate the torsion submodule (see also TorsionElements). This matrix
equals the second entry of the result of applying Exti for i = 1 to the formal adjoint of R.

• The second entry of the result of ParticularSolution is a particular solution eta of R2 η = τ, if a generalized inverse of R2 (see
GeneralizedInverse) exists. Otherwise this entry is the empty list.

• The third entry of the result is the vector τ, if IntTorsion succeeded to integrate the torsion elements. Otherwise this entry is the empty
list.

• The general solution of the homogeneous linear system R1 τ = 0 can be computed using IntTorsion. The commands IntTorsion and
ParticularSolution are used by Parametrization, if the system has autonomous elements.

• ParticularSolutionRat performs the same computations as ParticularSolution, but the domain of coefficients of the Ore algebra Alg
is replaced by its quotient field, i.e. rational functions.

• For more details see A. Quadrat, D. Robertz, "Parametrizing all solutions of uncontrollable multidimensional linear systems",
Proceedings of the 16th IFAC World Congress, Prague, 2005.

Examples:
> with(OreModules):

Example 1: Ordinary differential equations

System of linear ordinary differential equations describing a bipendulum (J.-F. Pommaret, Partial Differential Control Theory, 2001):

> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t], comm=[g,l]):
> R := evalm([[D^2+g/l, 0, -g/l], [0, D^2+g/l, -g/l]]);

 := R

+D2
g

l
0 −

g

l

0 +D2
g

l
−

g

l
> P := ParticularSolution(R, Alg);

 := P

, ,

1 -1 0

0 +D2 l g −g

+_C1

sin

g t

l
_C2

cos

g t

l

0

0

+_C1

sin

g t

l
_C2

cos

g t

l

0

We find: R2, a particular solution eta of R2 η = τ, and the general solution τ of R1 τ = 0.
> Exti(Involution(R, Alg), Alg, 1)[2];

1 -1 0

0 +D2 l g −g
> ApplyMatrix(P[1], P[2], Alg);

+_C1

sin

g t

l
_C2

cos

g t

l

0

Example 2: Partial differential equations

Linear system of PDEs that appears in mathematical physics, namely in the study of Lie-Poisson structures (see C. M. Bender, G. V.
Dunne, L. R. Mead, Underdetermined systems of partial differential equations, Journal of Mathematical Physics, vol. 41, no. 9
(2000), pp. 6388-6398 and W. M. Seiler, Involution analysis of the partial differential equations characterising Hamiltonian vector
fields, Journal of Mathematical Physics, vol. 44 (2003), pp. 1173-1182):
> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], diff=[D3,x3], polynom=[x1,x2,x3]):
> R := evalm([[x1*D3, x2*D3, 0], [-x1*D2+x2*D1, -1, x2*D3], [-1, -x2*D1+x1*D2, x1*D3]]);

 := R

x1 D3 x2 D3 0

− +x1 D2 x2 D1 -1 x2 D3

-1 − +x2 D1 x1 D2 x1 D3
> P := ParticularSolution(R, Alg);

P :=

, ,

x1 x2 0

D1 D2 D3

-1 − +x2 D1 x1 D2 x1 D3

[]

+ +d
⌠
⌡
 x1 ()_F1 +x12 x22 x1 d

⌠

⌡

x2

− +2 d

⌠
⌡
 ()()D _F1 +x12 x22 x1 x1 ()_F1 +x12 x22 x2 _C1

()_F1 +x12 x22

0
We find: R2, a particular solution η of R2 η = τ, and the general solution τ of R1 τ = 0.
> Exti(Involution(R, Alg), Alg, 1)[2];

x1 x2 0

D1 D2 D3

-1 − +x2 D1 x1 D2 x1 D3
> ParticularSolutionRat(R, Alg);

, ,

x1 x2 0

0 − −x1 x2 D1 x12 D2 x2 −x12 D3
[]

− ()_F1 +x12 x22

()_F1 +x12 x22

> ExtiRat(Involution(R, Alg), Alg, 1)[2];

x1 x2 0

0 − −x1 x2 D1 x12 D2 x2 −x12 D3

See Also:
DefineOreAlgebra, Parametrization, IntTorsion, Complement, MinimalParametrization, Exti, Extn, Torsion, TorsionElements,
AutonomousElements, PiPolynomial.

OreModules[PiPolynomial] - return a Groebner basis of the ideal of π-polynomials of a given linear system with

constant coefficients

Calling Sequence:
 PiPolynomial(R,Alg,v)

Parameters:
 R - matrix with entries in Alg with constant coefficients
 Alg - Ore algebra (given by DefineOreAlgebra)
 v - indeterminate or list of indeterminates

Description:

• PiPolynomial returns a Groebner basis of the ideal of the (commutative) polynomial ring in the indeterminate(s) v such that for every

of its non-zero elements π the localization of the Alg-module which is presented by R with respect to the multiplicatively closed set of

all powers of π is free. The command PiPolynomial is restricted to matrices R over Alg whose entries have constant coefficients (and
hence commute).

• Each non-zero element of the ideal generated by the result of PiPolynomial is called a π-polynomial for the given system over the Ore

algebra Alg with constant coefficients. For every π-polynomial π, the tensor product of the localization Alg[π
()−1

] with respect to the

set of powers of π with the Alg-module presented by R is a free Alg[π
()−1

]-module.

• R is a matrix with entries in the Ore algebra Alg.

• v is one of the indeterminates which were used to define Alg or a list of those.

• Alg is expected to be defined using DefineOreAlgebra.

• For more details about π-polynomials, see H. Mounier, "Proprietes structurelles des systemes lineaires a retards: aspects theoriques et
pratiques", PhD Thesis, University of Orsay, France, 1995, and F. Chyzak, A. Quadrat, D. Robertz, "Effective algorithms for
parametrizing linear control systems over Ore algebras", Applicable Algebra in Engineering, Communication and Computing
(AAECC) 16 (2005), pp. 319-376.

Examples:
> with(OreModules):

Example 1:

Linear differential time-delay system of a wind tunnel model (see A. Manitius, Feedback controllers for a wind tunnel model
involving a delay: analyical design and numerical simulations, IEEE Trans. Autom. Contr. vol. 29 (1984), pp. 1058-1068):
> Alg := DefineOreAlgebra(diff=[Dt,t], dual_shift=[delta,s], polynom=[t,s],
comm=[a,omega,zeta,k], shift_action=[delta,t,h]):

> R := evalm([[Dt+a, -k*a*delta, 0, 0], [0, Dt, -1, 0], [0, omega^2, Dt+2*zeta*omega,
-omega^2]]);

 := R

+Dt a −ka δ 0 0

0 Dt -1 0

0 ω2 +Dt 2 ζ ω −ω2

> Ext1 := Exti(Involution(R, Alg), Alg, 1);

 := Ext1

, ,

1 0 0

0 1 0

0 0 1

+Dt a −ka δ 0 0

0 ω2 +Dt 2 ζ ω −ω2

0 Dt -1 0

−ω2 ka δ

− −Dt ω2 a ω2

− −ω2 Dt 2 ω2 a Dt

− − − − − −Dt 3 2 Dt 2 ζ ω a Dt 2 Dt ω2 2 a Dt ζ ω a ω2

Ext1[3] provides us with a parametrization of the system. We try to compute a left inverse of Ext1[3]:
> LeftInverse(Ext1[3], Alg);

[]
Hence, no left inverse of Ext1[3] over Alg exists. The obstructions are given by the following possible π-polynomials:
> PiPolynomial(R, Alg);

[],δ +Dt a
We consider the localization of Alg with respect to the multiplicatively closed set of powers of δ and compute a left inverse of
Ext1[3] over this localization:
> L := LocalLeftInverse(Ext1[3], [delta], Alg);

 := L

−

1

δ ω2 ka
0 0 0

> Mult(L, Ext1[3], Alg);

[]1
Hence, we obtain a flat output of the system over the localized ring, i.e. the localization of the corresponding module is free:
> evalm([[xi1(t)]])=ApplyMatrix(L, [x1(t),x2(t),x3(t),u(t)], Alg);

=[]()ξ1 t

−

()x1 +t h

ω2 ka

Example 2:

Differential time-delay system describing an electric transmission line (see D. Salamon, Control and Observation of Neutral Systems,
Pitman, 1984, and H. Mounier, Proprietes structurelles des systemes lineaires a retards: aspects theoriques et pratiques, PhD Thesis,
University of Orsay, France, 1995):
> Alg := DefineOreAlgebra(diff=[Dt,t], diff=[delta,s], polynom=[t,s],
comm=[a[0],a[1],a[2],a[3],a[4],a[5],b[0]]):

> R := evalm([[Dt+a[0], -(a[4]*Dt+a[0])*delta, -a[0], 0, -b[0]*Dt],

 [-delta*(a[5]*Dt+a[1]), Dt+a[1], 0, a[1], 0],

 [a[2], -a[2]*a[4]*delta, Dt, 0, -a[2]*b[0]],

 [a[3]*a[5]*delta, -a[3], 0, Dt, 0]]);

 := R

+Dt a0 −()+a4 Dt a0 δ −a0 0 −b0 Dt

−δ()+a5 Dt a1 +Dt a1 0 a1 0

a2 −a2 a4 δ Dt 0 −a2 b0

a3 a5 δ −a3 0 Dt 0
> Exti(Involution(R, Alg), Alg, 1)[1];

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
Hence, the first extension module of the transposed module of the module presented by R with values in Alg is zero.
> Exti(Involution(R, Alg), Alg, 2)[1];

δ3 a1

2
a2 a0 a0

2
a5

2
a2

2
δ3 2 a0 a5

2
a2 a1 a3 δ3 a1

2
a3

2
a5

2
δ3 δDt a2 a1 a0 δDt a1

2
a3 δa0 a5 a2 a1 Dt δa1

2
a3 a5 Dt+ − + − + + −[

2 a0 a2 a1 a3 a5 δ δa1

2
a3

2
a5 a0

2
a5 a2

2
δ a1

2
δa2 a0+ − − −]

[]− + − − −δ2 Dt a1 Dt 2 a1 a3 a5 δ2 a1 Dt a1 a3 a5 δ2 a2 a0

[]+δDt 2 δa2 a0

a1 Dt 3 a1

2
Dt 2 a0 a5 a2 Dt 2 a5 a1 Dt 2 a3 δ2 a1

2
a2 a0 a0

2
a5

2
a2

2
δ2 2 a0 a5

2
a2 a1 a3 δ2 a1

2
a3

2
a5

2
δ2 Dt a1

2
a3+ + − + + − + +[

a0 a5 a2 a1 Dt a1

2
a3 a5 Dt a0 a1 a2 a3 a5 a5 a1

2
a3

2
+ − + −]

But the second extension module of the transposed module of the module presented by R with values in Alg is non-zero.
> pi := PiPolynomial(R, Alg, [delta]);

π a0

2
a2

2
δ5 a5

2
2 a0

2
a2

2
a5 δ3 a0

2
a2

2
δ 2 a0 a2 a1 a3 δ5 a5

2
4 a0 a2 a1 a3 δ3 a5 a1

2
δa2 a0 2 δ3 a1

2
a2 a0 2 δa1 a3 a2 a0− + − + + − −[:=

a0 a2 δ5 a1

2
a1

2
a3

2
δ5 a5

2
2 a1

2
a3

2
δ3 a5 a1

2
a3

2
δ+ + − +]

> factor(pi);

δ a0

2
a5

2
a2

2
δ4 2 δ2 a5 a0

2
a2

2
a0

2
a2

2
2 a0 a5

2
a2 a1 a3 δ4 4 a5 δ2 a3 a0 a2 a1 a1

2
a2 a0 2 δ2 a1

2
a2 a0 2 a1 a3 a0 a2− + − + + − −([

δ4 a1

2
a2 a0 a1

2
a3

2
a5

2
δ4 2 δ2 a5 a1

2
a3

2
a1

2
a3

2
+ + − +)]

> pi := PiPolynomial(R, Alg, [Dt]);

 := π []+ + + + +a1 a3 Dt 2 a0 a2 a1 Dt a1 a3 a0 a2 a1 Dt 3 Dt 2 a0 a2 Dt 4

> factor(pi);

[]()+ +a1 Dt a1 a3 Dt 2 ()+Dt 2 a0 a2

See Also:
DefineOreAlgebra, Exti, Extn, LeftInverse, RightInverse, LocalLeftInverse, Brunovsky, FirstIntegral, ControllabilityMatrix,
Parametrization, IntTorsion, ParticularSolution.

OreModules[PolIntersect] - intersect two left ideals of an Ore algebra

Calling Sequence:
 PolIntersect(L,v,Alg)

Parameters:
 L - list of polynomials in Alg
 v - list of indeterminates in Alg
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• PolIntersect computes a Groebner basis (w.r.t. the degree-reverse lexicographical term order) of the intersection of the left ideal
generated by L in the Ore algebra defined by Alg and the (skew) polynomial ring with indeterminates in v.

• L is a list of polynomials in Alg which generate the left ideal of Alg to be intersected with the (skew) polynomial ring in the variables
v.

• The indeterminates in the list v must be among those indeterminates which were used to define Alg.

• Alg is expected to be defined using DefineOreAlgebra.

• The result of PolIntersect is a list of polynomials in Alg.

Examples:
> with(OreModules):
> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], polynom=[x1,x2]):
> L := [x1*D2, x2*D1];

 := L [],x1 D2 x2 D1
> v := [x2,D2];

 := v [],x2 D2
> PolIntersect(L, v, Alg);

[],+2 D2 x2 D22 x22 D2
> Alg := DefineOreAlgebra(diff=[D,t], shift=[delta,s], polynom=[s,t]):
> L := [D*delta+s, delta^2];

 := L [],+D δ s δ2

> v := [s];

 := v []s
> PolIntersect(L, v, Alg);

[]+s2 s
> PolIntersect(L, [D,delta,t,s], Alg);

[], , ,+s2 s +δs δ δ2 +D δ s

See Also:
DefineOreAlgebra, IdealIntersection, Mult, ApplyMatrix, Involution, KroneckerProduct, Factorize, Quotient, Elimination, Integrability,
ReduceMatrix, SyzygyModule.

OreModules[ProjectiveDimension],

OreModules[ProjectiveDimensionRat] - compute the projective dimension of a finitely presented module over an

Ore algebra

Calling Sequence:
 ProjectiveDimension(R,Alg)
 ProjectiveDimensionRat(R,Alg)

Parameters:
 R - matrix with entries in Alg
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• ProjectiveDimension returns the (left) projective dimension of the left module over the Ore algebra Alg which is presented by R.

• The (left) projective dimension of a finitely presented left Alg-module M is the minimal length of a projective resolution of M. All Ore
algebras in the scope of OreModules have finite (left) global dimension which is an upper bound on the (left) projective dimension of
left Alg-modules. Hence, the result of ProjectiveDimension is always a non-negative integer.

• The left Alg-module which is considered by ProjectiveDimension is the factor module of the free Alg-module of row vectors whose
length equals the number of columns of R modulo the submodule which is generated by the rows of R.

• ProjectiveDimension computes a free resolution of the left Alg-module presented by R and reduces the length of this resolution as
much as possible using the same methods as ShorterFreeResolution and ShortestFreeResolution. As soon as the resolution cannot be
shortened anymore (i.e. when the last morphism in the resolution does not admit a right inverse), ProjectiveDimension returns the
length of this resolution. If ProjectiveDimension arrives at a free resolution of length 1 and the presentation matrix still admits a right
inverse, then it returns 0.

• R is a matrix with entries in the Ore algebra Alg.

• Alg is expected to be defined using DefineOreAlgebra.

• ProjectiveDimensionRat performs the same computations as ProjectiveDimension, but the domain of coefficients of the Ore algebra
Alg is replaced by its quotient field, i.e. rational functions.

• For more details, see T. Y. Lam, "Lectures on Modules and Rings", Springer, 1999, and A. Quadrat, D. Robertz, "Computation of
bases of free modules over the Weyl algebras", Journal of Symbolic Computation 42 (11-12), 2007, pp. 1113-1141.

Examples:
> with(OreModules):

Example 1:

(see J.-F. Pommaret, Partial Differential Equations and Group Theory: New Perspectives for Applications Kluwer, 1994, p. 162)
> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], diff=[D3,x3], polynom=[x1,x2,x3]):
> R := evalm([[1], [D1], [D2], [D3]]);

 := R

1

D1

D2

D3
> ShortestFreeResolution(R, Alg);

table([,])=1

1 0 0 0 0 0 0 0

D1 0 0 -1 0 0 0 0

D2 0 -1 0 0 0 0 0

D3 -1 0 0 0 0 0 0

0 D2 −D3 0 0 0 1 0

0 D1 0 −D3 1 0 0 0

0 0 D1 −D2 0 1 0 0

0 0 0 0 −D2 D3 D1 -1

=2 ()INJ 8

> ProjectiveDimension(R, Alg);

0
Hence, the (left) Alg-module which is presented by R is projective. For the details, see ShorterFreeResolution, Example 1.

Example 2:

(see J.-F. Pommaret, Partial Differential Control Theory, Kluwer, 2001, p. 665)
> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], polynom=[x1,x2]):
> R := evalm([[x2*D1, 1], [x2*D2, 0], [D1, D2]]);

 := R

x2 D1 1

x2 D2 0

D1 D2
> ShortestFreeResolution(R, Alg);

table([,])=1

x2 D1 1 0

x2 D2 0 0

D1 D2 1

=2 ()INJ 3

> ProjectiveDimension(R, Alg);

1

See Also:
DefineOreAlgebra, SyzygyModule, FreeResolution, ShorterFreeResolution, ShortestFreeResolution, Resolution, Exti, Extn, Torsion,
Parametrization, MinimalParametrization, Involution, Quotient, Integrability.

OreModules[Quotient],

OreModules[QuotientRat] - return annihilators of elements in a finitely presented module over an Ore algebra

Calling Sequence:
 Quotient(R1,R2,Alg)
 QuotientRat(R1,R2,Alg)

Parameters:
 R1, R2 - matrices with entries in Alg
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• For each row of R1, Quotient computes the left ideal of Alg containing all elements λ such that the left λ-multiple of the row of R1 is
in the left Alg-module generated by the rows of R2, i.e., Quotient computes the annihilators of the residue classes of the rows of R1 in
the left module over Alg which is presented by R2, i.e. of the factor module of the free Alg-module of tuples whose length equals the
number of columns of R2 modulo the submodule which is generated by the rows of R2.

• R1 and R2 are matrices with entries in the Ore algebra Alg having the same number of columns.

• Alg is expected to be defined using DefineOreAlgebra.

• The result of Quotient is a matrix having a block diagonal structure, where each block consists of only one column but may have
several rows. The number of blocks equals the number of rows of R1. The entries of the ith block form a Groebner basis (w.r.t. the

degree reverse lexicographical ordering on the variables of Alg) of the annihilator of the residue class of the ith row of R1 in the left
Alg-module presented by R2.

• QuotientRat performs the same computations as Quotient, but the domain of coefficients of the Ore algebra Alg is replaced by its
quotient field, i.e. rational functions.

• ReduceMatrix computes the normal form of each row in a given matrix over Alg modulo the Groebner basis of the rows of a second
matrix over Alg.

Examples:
> with(OreModules):
> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t]):
> R1 := evalm([[D, t], [0, D]]);

 := R1

D t

0 D
> R2 := Mult(evalm([[1,1],[0,1]]), R1, Alg);

 := R2

D +t D

0 D
> Quotient(R1, R2, Alg);

1 0

0 1
Hence, the left Alg-modules generated by the rows of R1 resp. R2 are equal.
> R3 := evalm([[D, t], [1, 0]]);

 := R3

D t

1 0
> Quotient(R1, R3, Alg);

1 0

0 t2

0 +2 t D
Hence, the first row of R1 is an element of the left Alg-module M3 generated by the rows of R3, and λ times the second row of R1 lies

in M3 if and only if λ is a left Alg-linear combination of t2 and +2 t D.
> Quotient(R3, R1, Alg);

1 0

0 − +D t D2

0 D3

Hence, the first row of R3 is an element of the left Alg-module M1 generated by the rows of R1, and λ times the second row in R3 lies

in M1 if and only if λ is a left Alg-linear combination of − +D t D2 and D3.

See Also:
DefineOreAlgebra, Factorize, Elimination, Integrability, ReduceMatrix, Involution, SyzygyModule, Exti.

OreModules[ReduceMatrix],

OreModules[ReduceMatrixRat] - reduce the rows of a matrix over an Ore algebra modulo the rows of another one

Calling Sequence:
 ReduceMatrix(R1,R2,Alg)
 ReduceMatrixRat(R1,R2,Alg)

Parameters:
 R1, R2 - matrices with entries in Alg
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• ReduceMatrix computes the normal form of each row in R1 modulo the Groebner basis of the rows of R2 (w.r.t. the degree-reverse
lexicographical ordering on the variables in Alg) and returns the matrix whose rows are these normal forms. Zero rows are omitted in
the result.

• R1 and R2 are matrices with entries in the Ore algebra Alg having the same number of columns.

• Alg is expected to be defined using DefineOreAlgebra.

• The result of ReduceMatrix is a matrix with the same number of columns as R1 and R2. The number of rows of the result may be
zero.

• ReduceMatrixRat performs the same computations as ReduceMatrix, but the domain of coefficients of the Ore algebra Alg is
replaced by its quotient field, i.e. rational functions.

• Quotient computes the annihilators of the rows of a given matrix over Alg in the left Alg-module presented by a second matrix over
Alg.

Examples:
> with(OreModules):
> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], polynom=[x1,x2]):
> R1 := evalm([[D1, 0, D2], [1, D1+D2, D2+1], [0, D2, 0]]);

 := R1

D1 0 D2

1 +D1 D2 +D2 1

0 D2 0
> R2 := evalm([[1, D1, D2], [0, D2, 1]]);

 := R2

1 D1 D2

0 D2 1
> ReduceMatrix(R1, R2, Alg);

D1 0 D2

0 0 -1
> ReduceMatrix(R1, R1, Alg);

[]

See Also:
DefineOreAlgebra, Factorize, Quotient, Elimination, Integrability, Involution, SyzygyModule.

OreModules[Resolution],

OreModules[ResolutionRat] - compute a given number of left modules in a free resolution of a finitely presented

module over an Ore algebra

Calling Sequence:
 Resolution(R,Alg,n)
 ResolutionRat(R,Alg,n)

Parameters:
 R - matrix with entries in Alg
 Alg - Ore algebra (given by DefineOreAlgebra)
 n - natural number

Description:

• Resolution iterates the computation of syzygy modules of the left module over the Ore algebra Alg which is presented by R, i.e. of the
factor module of the free Alg-module of tuples whose length equals the number of columns of R modulo the submodule which is
generated by the rows of R. That means that Resolution constructs the beginning of a free resolution of the left module presented by R.

• If n > 1, then Resolution first computes a matrix the rows of which generate all left Alg-linear relations of the rows of R. If n > 2, then
Resolution repeats the same for the matrix which has just been defined instead of R. All in all, this construction is iterated n-1 times,
i.e. n-1 new matrices are constructed such that the rows of every matrix generate all left Alg-linear relations of the rows of the
preceding matrix.

• If the rows of one of the matrices that are computed by Resolution do not satisfy any non-trivial left Alg-linear relation, then the

following entry of the result (if requested) is not a matrix, but the name INJ(r), where r is the number of rows of the previous matrix. If
more terms of the free resolution are to be constructed, then the following entries of the result will be the names ZERO.

• R is a matrix with entries in the Ore algebra Alg.

• Alg is expected to be defined using DefineOreAlgebra.

• The result is a table which contains matrices with entries Alg and possibly names INJ(r) and ZERO. The matrix with index 1 in the

result is R and the matrix with index i is the result of SyzygyModule applied to the matrix with index −i 1, i > 1, i.e., the rows of the

matrix with index i generate the syzygy module of the left module generated by the rows of the matrix with index −i 1.

• In order to iterate the computation of syzygy modules described above as long as possible, FreeResolution can be used.

• ResolutionRat performs the same computations as Resolution, but the domain of coefficients of the Ore algebra Alg is replaced by its
quotient field, i.e. rational functions.

Examples:
> with(OreModules):

Example 1:

> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], diff=[D3,x3], polynom=[x1,x2,x3]):
> R := matrix([[D1], [D2], [D3]]);

 := R

D1

D2

D3
> Resolution(R, Alg, 3);

table([, ,])=1 R =2

−D3 0 D1

−D2 D1 0

0 −D3 D2

=3 []−D2 D3 D1

> Res := Resolution(R, Alg, 4);

 := Res table([, , ,])=1 R =2

−D3 0 D1

−D2 D1 0

0 −D3 D2

=3 []−D2 D3 D1 =4 ()INJ 1

> Mult(Res[2], Res[1], Alg);

0

0

0
> Mult(Res[3], Res[2], Alg);

[]0 0 0

Example 2:

> Alg := DefineOreAlgebra(diff=[Dt,t], dual_shift=[delta,s], polynom=[t,s]):
> R := matrix([[0,Dt*delta], [t*Dt,t*delta], [Dt,Dt]]);

 := R

0 Dt δ

t Dt t δ

Dt Dt
> Res := Resolution(R, Alg, 3);

 := Res table([, ,])=1 R =2

− +Dt t2 δ t2 −δ t Dt δ Dt δ t2

− − +2 δ Dt 2 t 2 Dt t Dt δ −Dt 2 δ +Dt 2 δ t 2 Dt δ
=3 []Dt −t

> Mult(Res[2], Res[1], Alg);

0 0

0 0
> Mult(Res[3], Res[2], Alg);

[]0 0 0

See Also:
DefineOreAlgebra, SyzygyModule, FreeResolution, ShorterFreeResolution, ShortestFreeResolution, ProjectiveDimension, LiftOperators,
Exti, Extn, Torsion, Parametrization, MinimalParametrization, Involution, Quotient, Integrability.

OreModules[RightInverse],

OreModules[RightInverseRat] - compute a right inverse of a matrix over an Ore algebra

Calling Sequence:
 RightInverse(M,Alg)
 RightInverseRat(M,Alg)

Parameters:

 M - matrix with entries in Alg or INJ(n) or SURJ(n), where n is a non-negative integer
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• RightInverse computes (if possible) a right inverse of the matrix M, i.e. a matrix R with entries in Alg such that the product of M by R is
the identity matrix.

• If no right inverse of M exists, RightInverse returns the empty list.

• M is a matrix with entries in Alg.

• Alg is expected to be defined using DefineOreAlgebra.

• RightInverseRat performs the same computations as RightInverse, but the domain of coefficients of the Ore algebra Alg is replaced
by its quotient field, i.e. rational functions.

• Left inverses of matrices over Ore algebras are computed by LeftInverse. Generalized inverses of matrices over Ore algebras are
computed by GeneralizedInverse.

Examples:
> with(OreModules):
> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], polynom=[x1,x2]):
> M1 := evalm([[0,1,0],[1,0,0]]);

 := M1

0 1 0

1 0 0
> R1 := RightInverse(M1, Alg);

 := R1

0 1

1 0

0 0
> Mult(M1, R1, Alg);

1 0

0 1
> M2 := evalm([[-x2*D1+1, D2]]);

 := M2 []− +x2 D1 1 D2
> R2 := RightInverse(M2, Alg);

 := R2

+2 x2 D2

−x22 D1 x2
> Mult(M2, R2, Alg);

[]1
> M3 := Involution(M2, Alg);

 := M3

+x2 D1 1

−D2
> RightInverse(M3, Alg);

[]
> RightInverse(SURJ(3), Alg);

ZERO
> RightInverse(INJ(2), Alg);

1 0

0 1

See Also:
DefineOreAlgebra, LeftInverse, LocalLeftInverse, GeneralizedInverse, Mult, ApplyMatrix, Involution, KroneckerProduct, Factorize,
Quotient, Elimination, Integrability, ReduceMatrix.

OreModules[ShorterFreeResolution],

OreModules[ShorterFreeResolutionRat] - shorten (if possible) a free resolution of a finitely presented module

over an Ore algebra

Calling Sequence:
 ShorterFreeResolution(F,Alg)
 ShorterFreeResolutionRat(F,Alg)

Parameters:
 F - table representing a free resolution of a finitely presented module over Alg (e.g. given by FreeResolution)
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• Given a (finite) free resolution of a finitely presented left module over the Ore algebra Alg, ShorterFreeResolution tries to construct
a shorter free resolution of the same module. This is possible whenever the last morphism between free modules in this free resolution
admits a right inverse (see RightInverse).

• If the length m of the free resolution given by F is at least 3 and if the last morphism Rm between free modules given in F admits a right

inverse Sm, then a shorter free resolution is obtained by removing the last free module, augmenting the last but first morphism R −m 1

with Sm, i.e. replacing it by (R −m 1 Sm), and replacing the last but second morphism R −m 2 by the transpose of (R −m 2 0) in a compatible
way (note also that the last but second free module in the given free resolution must be adjusted).

• If the length m of the free resolution given by F equals 2 and if the last morphism R2 between free modules given in F admits a right

inverse S2, then a presentation of the module resolved by F is obtained by removing the last free module and augmenting the last but

first morphism R1 with S2, i.e. by defining the presentation matrix (R1 S2).

• If the length m of the free resolution given by F is less than 2, then ShorterFreeResolution returns F.

• F is a table which represents a free resolution of a finitely presented left module over Alg. Most commonly, F is the result of either
FreeResolution or Resolution.

• Alg is expected to be defined using DefineOreAlgebra.

• The result of ShorterFreeResolution is of the same format as the input F, i.e. a table representing a free resolution of a finitely
presented left module over Alg (see FreeResolution), which is shorter than the given one or equals the given one.

• The procedure described above can be iterated using the command ShortestFreeResolution.

• ShorterFreeResolutionRat performs the same computations as ShorterFreeResolution, but the domain of coefficients of the Ore
algebra Alg is replaced by its quotient field, i.e. rational functions.

• For more details, see A. Quadrat, D. Robertz, "Computation of bases of free modules over the Weyl algebras", Journal of Symbolic
Computation 42 (11-12), 2007, pp. 1113-1141.

Examples:
> with(OreModules):

Example 1:

(see J.-F. Pommaret, Partial Differential Equations and Group Theory: New Perspectives for Applications Kluwer, 1994, p. 162)
> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], diff=[D3,x3], polynom=[x1,x2,x3]):
> R := evalm([[1], [D1], [D2], [D3]]);

 := R

1

D1

D2

D3
We start with a free resolution of the (left) Alg-module presented by R:
> F := FreeResolution(R, Alg);

 := F table([, , , ,])=1

1

D1

D2

D3

=2

D3 0 0 -1

D2 0 -1 0

D1 -1 0 0

0 −D3 0 D1

0 −D2 D1 0

0 0 −D3 D2

=3

D2 −D3 0 0 0 1

D1 0 −D3 1 0 0

0 D1 −D2 0 1 0

0 0 0 −D2 D3 D1

=5 ()INJ 1 =4 []D1 −D2 D3 -1

> ShorterFreeResolution(F, Alg);

table([, , ,])=1

1

D1

D2

D3

=2

D3 0 0 -1

D2 0 -1 0

D1 -1 0 0

0 −D3 0 D1

0 −D2 D1 0

0 0 −D3 D2

0 0 0 0

=3

D2 −D3 0 0 0 1 0

D1 0 −D3 1 0 0 0

0 D1 −D2 0 1 0 0

0 0 0 −D2 D3 D1 -1

=4 ()INJ 4

> ShorterFreeResolution(%, Alg);

table([, ,])=1

1

D1

D2

D3

0

0

0

0

=2

D3 0 0 -1 0 0 0 0

D2 0 -1 0 0 0 0 0

D1 -1 0 0 0 0 0 0

0 −D3 0 D1 0 1 0 0

0 −D2 D1 0 0 0 1 0

0 0 −D3 D2 1 0 0 0

0 0 0 0 D1 −D2 D3 -1

=3 ()INJ 7

> ShorterFreeResolution(%, Alg);

table([,])=1

1 0 0 0 0 0 0 0

D1 0 0 -1 0 0 0 0

D2 0 -1 0 0 0 0 0

D3 -1 0 0 0 0 0 0

0 D2 −D3 0 0 0 1 0

0 D1 0 −D3 1 0 0 0

0 0 D1 −D2 0 1 0 0

0 0 0 0 −D2 D3 D1 -1

=2 ()INJ 8

> ShorterFreeResolution(%, Alg);

table([,])=1

1 0 0 0 0 0 0 0

D1 0 0 -1 0 0 0 0

D2 0 -1 0 0 0 0 0

D3 -1 0 0 0 0 0 0

0 D2 −D3 0 0 0 1 0

0 D1 0 −D3 1 0 0 0

0 0 D1 −D2 0 1 0 0

0 0 0 0 −D2 D3 D1 -1

=2 ()INJ 8

Hence, it was possible to reduce the length of the free resolution represented by F in each step, finally arriving at a free resolution of
length 1. These steps can be done at once by calling ShortestFreeResolution:
> ShortestFreeResolution(F, Alg);

table([,])=1

1 0 0 0 0 0 0 0

D1 0 0 -1 0 0 0 0

D2 0 -1 0 0 0 0 0

D3 -1 0 0 0 0 0 0

0 D2 −D3 0 0 0 1 0

0 D1 0 −D3 1 0 0 0

0 0 D1 −D2 0 1 0 0

0 0 0 0 −D2 D3 D1 -1

=2 ()INJ 8

In fact, the module presented by R is stably free because a right inverse of the presentation matrix obtained by ShortestFreeResolution
admits a right inverse:
> RightInverse(%[1], Alg);

1 0 0 0 0 0 0 0

D3 0 0 -1 0 0 0 0

D2 0 -1 0 0 0 0 0

D1 -1 0 0 0 0 0 0

0 −D3 0 D1 0 1 0 0

0 −D2 D1 0 0 0 1 0

0 0 −D3 D2 1 0 0 0

0 0 0 0 D1 −D2 D3 -1
In particular, this module is projective, which can also be checked via ProjectiveDimension:
> ProjectiveDimension(R, Alg);

0

Example 2:

Spencer operator (see J.-F. Pommaret, Partial Differential Equations and Group Theory: New Perspectives for Applications, Kluwer,
1994, p. 163)
> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], polynom=[x1,x2]):
> R := evalm([[1], [D1], [D2], [D1^2], [D1*D2], [D2^2]]);

 := R

1

D1

D2

D12

D1D2

D22

We start again with a free resolution of the (left) Alg-module presented by R:
> F := FreeResolution(R, Alg);

 := F table([, , ,])=1

1

D1

D2

D12

D1D2

D22

=2

D2 0 -1 0 0 0

D1 -1 0 0 0 0

0 D2 0 0 -1 0

0 D1 0 -1 0 0

0 0 D2 0 0 -1

0 0 D1 0 -1 0

0 0 0 −D2 D1 0

0 0 0 0 −D2 D1

=3

D1 −D2 -1 0 0 1 0 0

0 0 D1 −D2 0 0 1 0

0 0 0 0 D1 −D2 0 1

=4 ()INJ 3

> ShorterFreeResolution(F, Alg);

table([, ,])=1

1

D1

D2

D12

D1D2

D22

0

0

0

=2

D2 0 -1 0 0 0 0 0 0

D1 -1 0 0 0 0 0 0 0

0 D2 0 0 -1 0 0 0 0

0 D1 0 -1 0 0 0 0 0

0 0 D2 0 0 -1 0 0 0

0 0 D1 0 -1 0 1 0 0

0 0 0 −D2 D1 0 0 1 0

0 0 0 0 −D2 D1 D2 0 1

=3 ()INJ 8

> ShorterFreeResolution(%, Alg);

table([,])=1

1 0 0 0 0 0 0 0 0

D1 0 -1 0 0 0 0 0 0

D2 -1 0 0 0 0 0 0 0

D12 0 −D1 0 -1 0 0 0 0

D1D2 0 −D2 -1 0 0 0 0 0

D22 −D2 0 0 0 -1 0 0 0

0 D1 −D2 -1 0 0 1 0 0

0 0 0 D1 −D2 0 0 1 0

0 0 0 0 0 D1 −D2 0 1

=2 ()INJ 9

> ShorterFreeResolution(%, Alg);

table([,])=1

1 0 0 0 0 0 0 0 0

D1 0 -1 0 0 0 0 0 0

D2 -1 0 0 0 0 0 0 0

D12 0 −D1 0 -1 0 0 0 0

D1D2 0 −D2 -1 0 0 0 0 0

D22 −D2 0 0 0 -1 0 0 0

0 D1 −D2 -1 0 0 1 0 0

0 0 0 D1 −D2 0 0 1 0

0 0 0 0 0 D1 −D2 0 1

=2 ()INJ 9

> ShortestFreeResolution(F, Alg);

table([,])=1

1 0 0 0 0 0 0 0 0

D1 0 -1 0 0 0 0 0 0

D2 -1 0 0 0 0 0 0 0

D12 0 −D1 0 -1 0 0 0 0

D1D2 0 −D2 -1 0 0 0 0 0

D22 −D2 0 0 0 -1 0 0 0

0 D1 −D2 -1 0 0 1 0 0

0 0 0 D1 −D2 0 0 1 0

0 0 0 0 0 D1 −D2 0 1

=2 ()INJ 9

Again we arrived at a free resolution of the presented module of length 1. The presented module is stably free because the
presentation matrix admits a right inverse:
> RightInverse(%[1], Alg);

1 0 0 0 0 0 0 0 0

D2 0 -1 0 0 0 0 0 0

D1 -1 0 0 0 0 0 0 0

0 D2 0 0 -1 0 0 0 0

0 D1 0 -1 0 0 0 0 0

0 0 D2 0 0 -1 0 0 0

0 0 D1 0 -1 0 1 0 0

0 0 0 −D2 D1 0 0 1 0

0 0 0 0 −D2 D1 D2 0 1
In particular, the module is projective (ProjectiveDimension actually performs the same steps as above to compute the projective
dimension):
> ProjectiveDimension(R, Alg);

0

Example 3:

(see J.-F. Pommaret, Partial Differential Control Theory, Kluwer, 2001, p. 665)
> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], polynom=[x1,x2]):
> R := evalm([[x2*D1, 1], [x2*D2, 0], [D1, D2]]);

 := R

x2 D1 1

x2 D2 0

D1 D2
> F := FreeResolution(R, Alg);

 := F table([, ,])=1

x2 D1 1

x2 D2 0

D1 D2

=2 []−D2 D1 1 =3 ()INJ 1

> ShorterFreeResolution(F, Alg);

table([,])=1

x2 D1 1 0

x2 D2 0 0

D1 D2 1

=2 ()INJ 3

> ShorterFreeResolution(%, Alg);

table([,])=1

x2 D1 1 0

x2 D2 0 0

D1 D2 1

=2 ()INJ 3

Here we arrive at a free resolution of the left module presented by R of length 1, but the presentation matrix does not admit a right
inverse:
> RightInverse(%[1], Alg);

[]
The presented module is not stably free. It is not projective either as shown by the following computation of its projective dimension:
> ProjectiveDimension(R, Alg);

1

See Also:
DefineOreAlgebra, SyzygyModule, FreeResolution, ShortestFreeResolution, Resolution, ProjectiveDimension, Exti, Extn, Torsion,
Parametrization, MinimalParametrization, Involution, Quotient, Integrability.

OreModules[ShortestFreeResolution],

OreModules[ShortestFreeResolutionRat] - return a shortest free resolution of a finitely presented module over

an Ore algebra

Calling Sequence:
 ShortestFreeResolution(F,Alg)
 ShortestFreeResolutionRat(F,Alg)

Parameters:
 F - matrix with entries in Alg or table representing a free resolution of a finitely presented module over Alg (e.g. given by
FreeResolution)
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• ShortestFreeResolution iterates the application of ShorterFreeResolution to a finite free resolution of a finitely presented left module
over the Ore algebra Alg and returns a free resolution of the same module which cannot be shortened in this way anymore.

• F is either a matrix with entries in Alg or a table which represents a free resolution of a finitely presented left module over Alg. In the
first case, a free resolution of the left Alg-module presented by F is computed first. In the second case, most commonly, F is the result
of either FreeResolution or Resolution. Then, in both cases, ShorterFreeResolution is applied repeatedly to the resolution until
ShorterFreeResolution does not change the resolution anymore.

• Alg is expected to be defined using DefineOreAlgebra.

• The result of ShortestFreeResolution is of the same format as the input F, i.e. a table representing a free resolution of a finitely
presented left module over Alg (see FreeResolution).

• ShortestFreeResolutionRat performs the same computations as ShortestFreeResolution, but the domain of coefficients of the Ore
algebra Alg is replaced by its quotient field, i.e. rational functions.

• For more details, see A. Quadrat, D. Robertz, "Computation of bases of free modules over the Weyl algebras", Journal of Symbolic
Computation 42 (11-12), 2007, pp. 1113-1141.

Examples:
> with(OreModules):

Example 1:

(see J.-F. Pommaret, Partial Differential Equations and Group Theory: New Perspectives for Applications Kluwer, 1994, p. 162)
> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], diff=[D3,x3], polynom=[x1,x2,x3]):
> R := evalm([[1], [D1], [D2], [D3]]);

 := R

1

D1

D2

D3
> ShortestFreeResolution(R, Alg);

table([,])=1

1 0 0 0 0 0 0 0

D1 0 0 -1 0 0 0 0

D2 0 -1 0 0 0 0 0

D3 -1 0 0 0 0 0 0

0 D2 −D3 0 0 0 1 0

0 D1 0 −D3 1 0 0 0

0 0 D1 −D2 0 1 0 0

0 0 0 0 −D2 D3 D1 -1

=2 ()INJ 8

We show how ShortestFreeResolution applies ShorterFreeResolution to a free resolution of the (left) Alg-module presented by R (for
more details see ShorterFreeResolution):
> F := FreeResolution(R, Alg);

 := F table([, , , ,])=1

1

D1

D2

D3

=2

D3 0 0 -1

D2 0 -1 0

D1 -1 0 0

0 −D3 0 D1

0 −D2 D1 0

0 0 −D3 D2

=3

D2 −D3 0 0 0 1

D1 0 −D3 1 0 0

0 D1 −D2 0 1 0

0 0 0 −D2 D3 D1

=5 ()INJ 1 =4 []D1 −D2 D3 -1

> ShorterFreeResolution(F, Alg);

table([, , ,])=1

1

D1

D2

D3

=2

D3 0 0 -1

D2 0 -1 0

D1 -1 0 0

0 −D3 0 D1

0 −D2 D1 0

0 0 −D3 D2

0 0 0 0

=3

D2 −D3 0 0 0 1 0

D1 0 −D3 1 0 0 0

0 D1 −D2 0 1 0 0

0 0 0 −D2 D3 D1 -1

=4 ()INJ 4

> ShorterFreeResolution(%, Alg);

table([, ,])=1

1

D1

D2

D3

0

0

0

0

=2

D3 0 0 -1 0 0 0 0

D2 0 -1 0 0 0 0 0

D1 -1 0 0 0 0 0 0

0 −D3 0 D1 0 1 0 0

0 −D2 D1 0 0 0 1 0

0 0 −D3 D2 1 0 0 0

0 0 0 0 D1 −D2 D3 -1

=3 ()INJ 7

> ShorterFreeResolution(%, Alg);

table([,])=1

1 0 0 0 0 0 0 0

D1 0 0 -1 0 0 0 0

D2 0 -1 0 0 0 0 0

D3 -1 0 0 0 0 0 0

0 D2 −D3 0 0 0 1 0

0 D1 0 −D3 1 0 0 0

0 0 D1 −D2 0 1 0 0

0 0 0 0 −D2 D3 D1 -1

=2 ()INJ 8

> ShorterFreeResolution(%, Alg);

table([,])=1

1 0 0 0 0 0 0 0

D1 0 0 -1 0 0 0 0

D2 0 -1 0 0 0 0 0

D3 -1 0 0 0 0 0 0

0 D2 −D3 0 0 0 1 0

0 D1 0 −D3 1 0 0 0

0 0 D1 −D2 0 1 0 0

0 0 0 0 −D2 D3 D1 -1

=2 ()INJ 8

Example 2:

Spencer operator (see J.-F. Pommaret, Partial Differential Equations and Group Theory: New Perspectives for Applications, Kluwer,
1994, p. 163)
> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], polynom=[x1,x2]):
> R := evalm([[1], [D1], [D2], [D1^2], [D1*D2], [D2^2]]);

 := R

1

D1

D2

D12

D2D1

D22

> ShortestFreeResolution(R, Alg);

table([,])=1

1 0 0 0 0 0 0 0 0

D1 0 -1 0 0 0 0 0 0

D2 -1 0 0 0 0 0 0 0

D12 0 −D1 0 -1 0 0 0 0

D2D1 0 −D2 -1 0 0 0 0 0

D22 −D2 0 0 0 -1 0 0 0

0 D1 −D2 -1 0 0 1 0 0

0 0 0 D1 −D2 0 0 1 0

0 0 0 0 0 D1 −D2 0 1

=2 ()INJ 9

For the details, see ShorterFreeResolution, Example 2.

Example 3:

(see J.-F. Pommaret, Partial Differential Control Theory, Kluwer, 2001, p. 665)
> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], polynom=[x1,x2]):
> R := evalm([[x2*D1, 1], [x2*D2, 0], [D1, D2]]);

 := R

x2 D1 1

x2 D2 0

D1 D2
> ShortestFreeResolution(R, Alg);

table([,])=1

x2 D1 1 0

x2 D2 0 0

D1 D2 1

=2 ()INJ 3

> F := FreeResolution(R, Alg);

 := F table([, ,])=1

x2 D1 1

x2 D2 0

D1 D2

=2 []−D2 D1 1 =3 ()INJ 1

> ShortestFreeResolution(F, Alg);

table([,])=1

x2 D1 1 0

x2 D2 0 0

D1 D2 1

=2 ()INJ 3

See Also:
DefineOreAlgebra, SyzygyModule, FreeResolution, Resolution, ShorterFreeResolution, ProjectiveDimension, Exti, Extn, Torsion,
Parametrization, MinimalParametrization, Involution, Quotient, Integrability.

OreModules[SyzygyModule],

OreModules[SyzygyModuleRat] - return syzygy module of a finitely presented left module over an Ore algebra

Calling Sequence:
 SyzygyModule(R,Alg)
 SyzygyModuleRat(R,Alg)

Parameters:

 R - matrix with entries in Alg or INJ(n) or SURJ(n) or ZERO, where n is a non-negative integer
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• SyzygyModule computes the syzygy module of the left module over the Ore algebra given by Alg which is presented by R, i.e. of the
factor module of the free Alg-module of tuples whose length equals the number of columns of R modulo the submodule which is
generated by the rows of R. Hence, the rows of the resulting matrix generate all left Alg-linear relations of the rows of R.

• R is either a matrix with entries in the Ore algebra Alg or INJ(n) or SURJ(n) or ZERO, where n is a non-negative integer.

• Alg is expected to be defined using DefineOreAlgebra.

• The result of SyzygyModule is a matrix whose rows form a Groebner basis of the syzygy module of the left Alg-module which is
presented by R.

• SyzygyModuleRat performs the same computations as SyzygyModule, but the domain of coefficients of the Ore algebra Alg is
replaced by its quotient field, i.e. rational functions.

Examples:
> with(OreModules):
> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], polynom=[x1,x2]):
> R := matrix([[D1, 0, 0], [-D2, D1, 1], [0, D1, 1]]);

 := R

D1 0 0

−D2 D1 1

0 D1 1
> SyzygyModule(R, Alg);

[]D2 D1 −D1
> R := matrix([[-D2, D1, 1], [0, D1, 1]]);

 := R

−D2 D1 1

0 D1 1
> SyzygyModule(R, Alg);

()INJ 2
> SyzygyModule(INJ(3), Alg);

ZERO
> SyzygyModule(SURJ(2), Alg);

1 0

0 1
> R := matrix([[x1], [D1]]);

 := R

x1

D1
> SyzygyModule(R, Alg);

−x1 D1 1 −x12

D12 − −2 x1 D1
> SyzygyModuleRat(R, Alg);

[]−x1 D1 1 −x12

See Also:
DefineOreAlgebra, Resolution, FreeResolution, ShorterFreeResolution, MinimalResolution, ProjectiveDimension, Exti, Extn, Torsion,
Parametrization, MinimalParametrization, Quotient, Factorize, Elimination, Integrability, Involution, ReduceMatrix.

OreModules[TorsionElements],

OreModules[TorsionElementsRat] - return generating set of torsion elements in terms of the system variables

Calling Sequence:
 TorsionElements(R,v,Alg)
 TorsionElementsRat(R,v,Alg)

Parameters:
 R - matrix with entries in Alg
 v - list or vector of functions
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• TorsionElements returns a generating set of torsion elements of the left module over Alg which is presented by R and a generating set
of autonomous equations that these torsion elements satisfy. The torsion elements are expressed in terms of the system variables given
by v.

• R is a matrix with entries in the Ore algebra Alg.

• v is a list or vector of functions which depend on the independent variable of the ODE system. These functions are interpreted as the
system variables.

• Alg is expected to be defined using DefineOreAlgebra.

• The result of TorsionElements is the empty list if no torsion elements exist in the left module over Alg which is presented by R, or a
list containing two vectors otherwise.

• If the result is a list of two vectors, then the first contains a generating set of autonomous equations that the torsion elements given by
the second vector satisfy. The second vector gives a generating set of torsion elements θi in terms of the system variables given by v.

• TorsionElementsRat performs the same computations as TorsionElements, but the domain of coefficients of the Ore algebra Alg is
replaced by its quotient field, i.e. rational functions.

• For linear systems of ODEs or PDEs, the command AutonomousElements returns the generating torsion elements as integrated
autonomous elements. This integration can also be achieved by using IntTorsion.

Examples:
> with(OreModules):

Example 1: Ordinary differential equations

System of linear ordinary differential equations describing a bipendulum (J.-F. Pommaret, Partial Differential Control Theory, 2001):
> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t], comm=[g,l1,l2]):
> R1 := evalm([[D^2+g/l1, 0, -g/l1], [0, D^2+g/l2, -g/l2]]);

 := R1

+D2
g

l1
0 −

g

l1

0 +D2
g

l2
−

g

l2
> TorsionElements(R1, [x1(t),x2(t),u(t)], Alg);

[]
There are no torsion elements, i.e. no autonomous elements of the systems, which means that, generically, the bipendulum is
controllable. However, if the lengths of the two pendula are equal, there are autonomous elements:
> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t], comm=[g,l]):

> R2 := evalm([[D^2+g/l, 0, -g/l], [0, D^2+g/l, -g/l]]);

 := R2

+D2
g

l
0 −

g

l

0 +D2
g

l
−

g

l
> TorsionElements(R2, [x1(t),x2(t),u(t)], Alg);

,

=+l

d

d2

t2 ()θ1 t g ()θ1 t 0 []=()θ1 t −()x1 t ()x2 t

Example 2: Differential time-delay systems

Linear differential time-delay system describing a flexible rod (see H. Mounier, Proprietes structurelles des systemes lineaires a
retards: aspects theoriques et pratiques, PhD thesis, University of Orsay, France, 1995):
> Alg := DefineOreAlgebra(diff=[Dt,t], dual_shift=[delta,s], polynom=[t,s],
shift_action=[delta,t,h]):

> R := evalm([[Dt, -Dt*delta, -1], [2*Dt*delta, -Dt-Dt*delta^2, 0]]);

 := R

Dt −Dt δ -1

2 Dt δ − −Dt Dt δ2 0
> TorsionElements(R, [y1(t),y2(t),u(t)], Alg);

[],[]=()()D θ1 t 0 []=()θ1 t − + +2 ()y1 −t h ()y2 t ()y2 −t 2 h

Example 3: Partial differential equations

Linear system of partial differential equations that appears in mathematical physics, namely in the study of Lie-Poisson structures.

(See C. M. Bender, G. V. Dunne, L. R. Mead, Underdetermined systems of partial differential equations, Journal of Mathematical
Physics, vol. 41, no. 9 (2000), 6388-6398 and

W. M. Seiler, Involution analysis of the partial differential equations characterising Hamiltonian vector fields, Journal of
Mathematical Physics, vol. 44 (2003), 1173-1182.)
> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], diff=[D3,x3], polynom=[x1,x2,x3]):
> R := evalm([[x1*D3, x2*D3, 0], [-x1*D2+x2*D1, -1, x2*D3], [-1, -x2*D1+x1*D2, x1*D3]]);

 := R

x1 D3 x2 D3 0

− +x1 D2 x2 D1 -1 x2 D3

-1 − +x2 D1 x1 D2 x1 D3
> TorsionElements(R, [F(x1,x2,x3), G(x1,x2,x3), H(x1,x2,x3)], Alg);

,

=
∂
∂
x3

()θ1 , ,x1 x2 x3 0

=−x1

∂

∂
x2

()θ1 , ,x1 x2 x3 x2

∂

∂
x1

()θ1 , ,x1 x2 x3 0

=x2

∂

∂
x3

()θ2 , ,x1 x2 x3 0

=x1

∂

∂
x3

()θ2 , ,x1 x2 x3 0

=−x1

∂

∂
x2

()θ2 , ,x1 x2 x3 x2

∂

∂
x1

()θ2 , ,x1 x2 x3 0

=()θ1 , ,x1 x2 x3 +x1 ()F , ,x1 x2 x3 x2 ()G , ,x1 x2 x3

=()θ2 , ,x1 x2 x3 + +

∂

∂
x1

()F , ,x1 x2 x3

∂

∂
x2

()G , ,x1 x2 x3

∂

∂
x3

()H , ,x1 x2 x3

> TorsionElementsRat(R, [F(x1,x2,x3), G(x1,x2,x3), H(x1,x2,x3)], Alg);

=
∂
∂
x3

()θ1 , ,x1 x2 x3 0

=− +x1

∂

∂
x2

()θ1 , ,x1 x2 x3 x2

∂

∂
x1

()θ1 , ,x1 x2 x3 0

=
∂
∂
x3

()θ2 , ,x1 x2 x3 0

=− +x1

∂

∂
x2

()θ2 , ,x1 x2 x3 x2

∂

∂
x1

()θ2 , ,x1 x2 x3 0

,

=()θ1 , ,x1 x2 x3 +x1 ()F , ,x1 x2 x3 x2 ()G , ,x1 x2 x3

=()θ2 , ,x1 x2 x3 − − + −x2 ()G , ,x1 x2 x3 x12

∂

∂
x2

()G , ,x1 x2 x3 x1 x2

∂

∂
x1

()G , ,x1 x2 x3 x12

∂

∂
x3

()H , ,x1 x2 x3

See Also:
DefineOreAlgebra, Parametrization, MinimalParametrization, AutonomousElements, IntTorsion, Exti, Extn, Torsion, PiPolynomial.

OreModules[Torsion],

OreModules[TorsionRat] - return generating set for torsion submodule and annihilators of torsion elements

Calling Sequence:
 Torsion(R,Alg)
 TorsionRat(R,Alg)

Parameters:
 R - matrix with entries in Alg or INJ(n) or SURJ(n), where n is a non-negative integer
 Alg - Ore algebra (given by DefineOreAlgebra)

Description:

• Torsion computes the first extension module with values in Alg of the left Alg-module presented by R. It returns the same result as

Exti applied to R for =i 1.

• R is a matrix with entries in the Ore algebra Alg.

• Alg is expected to be defined using DefineOreAlgebra.

• For a general description of the result of Torsion in terms of the computation of the first extension module, see Exti. If R is the result

of Involution applied to some matrix R1 with entries in Alg, then the second matrix of the result is a presentation of M / ()t M , where M

is the left Alg-module presented by R1 and ()t M is its torsion submodule. The first matrix of the result gives the annihilators of the

residue classes of the rows of the second matrix in M. Hence, non-zero torsion elements correspond to columns of the first matrix
which generate a proper left ideal of Alg.

• TorsionRat performs the same computations as Torsion, but the domain of coefficients of the Ore algebra Alg is replaced by its
quotient field, i.e. rational functions.

• The same information can be obtained using Exti, but Exti also computes higher extension modules (cf. also Extn).

Examples:
> with(OreModules):

Example 1: Ordinary differential equations

System of linear ordinary differential equations describing a bipendulum (J.-F. Pommaret, Partial Differential Control Theory, 2001):
> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t], comm=[g,l1,l2]):
> R1 := evalm([[D^2+g/l1, 0, -g/l1], [0, D^2+g/l2, -g/l2]]);

 := R1

+D2
g

l1
0 −

g

l1

0 +D2
g

l2
−

g

l2
> Torsion(Involution(R1, Alg), Alg);

, ,

1 0

0 1

+D2 l1 g 0 −g

0 +D2 l2 g −g

+D2 l2 g g2

+D2 l1 g g2

+ + +D4 l2 l1 D2 l2 g D2 l1 g g2

Since the first matrix is an identity matrix, there are no torsion elements, i.e., there are no autonomous elements of the systems, which
means that, generically, the bipendulum is controllable. However, if the lengths of the two pendula are equal, there are autonomous
elements:
> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t], comm=[g,l]):

> R2 := evalm([[D^2+g/l, 0, -g/l], [0, D^2+g/l, -g/l]]);

 := R2

+D2
g

l
0 −

g

l

0 +D2
g

l
−

g

l
> Torsion(Involution(R2, Alg), Alg);

, ,

+D2 l g 0

0 1

1 -1 0

0 +D2 l g −g

g

g

+D2 l g
The residue class r of the first row of the second matrix generates the torsion submodule of the Alg-module M presented by R2. This

residue class r satisfies (+l D2 g) r = 0 in M.

Example 2: Differential time-delay systems

Linear differential time-delay system describing a flexible rod (see H. Mounier, Proprietes structurelles des systemes lineaires a
retards: aspects theoriques et pratiques, PhD thesis, University of Orsay, France, 1995):
> Alg := DefineOreAlgebra(diff=[Dt,t], dual_shift=[delta,s], polynom=[t,s],
shift_action=[delta,t,h]):

> R := evalm([[Dt, -Dt*delta, -1], [2*Dt*delta, -Dt-Dt*delta^2, 0]]);

 := R

Dt −Dt δ -1

2 Dt δ − −Dt Dt δ2 0
> Torsion(Involution(R, Alg), Alg);

, ,

Dt 0 0

0 1 0

0 0 1

−2 δ +1 δ2 0

−Dt Dt δ 1

Dt δ −Dt δ

+1 δ2

2 δ

−Dt Dt δ2

The torsion submodule of the Alg-module M presented by R is generated by the residue class r of the first row of the second matrix.

We have Dt r = 0 in M.

Example 3: Partial differential equations

Linear system of partial differential equations that appears in mathematical physics, namely in the study of Lie-Poisson structures.

(See C. M. Bender, G. V. Dunne, L. R. Mead, Underdetermined systems of partial differential equations, Journal of Mathematical
Physics, vol. 41, no. 9 (2000), 6388-6398 and

W. M. Seiler, Involution analysis of the partial differential equations characterising Hamiltonian vector fields, Journal of
Mathematical Physics, vol. 44 (2003), 1173-1182.)
> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], diff=[D3,x3], polynom=[x1,x2,x3]):
> R := evalm([[x1*D3, x2*D3, 0], [-x1*D2+x2*D1, -1, x2*D3], [-1, -x2*D1+x1*D2, x1*D3]]);

 := R

x1 D3 x2 D3 0

− +x1 D2 x2 D1 -1 x2 D3

-1 − +x2 D1 x1 D2 x1 D3
> Torsion(Involution(R, Alg), Alg);

, ,

D3 0 0

− +x2 D1 x1 D2 0 0

0 x2 D3 0

0 x1 D3 0

0 − +x2 D1 x1 D2 0

0 0 1

x1 x2 0

D1 D2 D3

-1 − +x2 D1 x1 D2 x1 D3

−x2 D3

x1 D3

− +x1 D2 x2 D1

Computation of the torsion submodule over the Weyl algebra with rational coefficients:
> TorsionRat(Involution(R, Alg), Alg);

, ,

D3 0

− +x1 D2 x2 D1 0

0 D3

0 − +x1 D2 x2 D1

x1 x2 0

0 − −x1 x2 D1 x12 D2 x2 −x12 D3

x2 D3

−x1 D3

− +x2 D1 x1 D2

See Also:
DefineOreAlgebra, Involution, SyzygyModule, Resolution, FreeResolution, ShorterFreeResolution, ShortestFreeResolution,
ProjectiveDimension, Exti, Extn, Parametrization, MinimalParametrization, AutonomousElements, PiPolynomial, TorsionElements.

