We study the control system of a wind tunnel model. See A. Manitius, Feedback controllers for a
wind tunnel model involving a delay: analyical design and numerical simulations, IEEE Trans. Autom.
Contr. vol. 29 (1984), pp. 1058-1068.

> with(Ore_algebra):
> with(OreModules) :

We define the Ore algebra Alg where Dt acts as differentiation w.r.t. time t and 0 acts as a time-delay

operator of length h. Note that the constants a, w, (, k of the system have to be declared in the definition
of the algebra. (The syntax of DefineOreAlgebra is the same as the syntax of Ore_algebra[skew_algebra).)

> Alg := DefineOreAlgebra(diff=[Dt,t], diff=[delta,s], polynom=[t,s],
> comm=[a, omega, zeta, k], shift_action=[delta,t,h]):

Define the matrix which corresponds to the linear differential time-delay system:

> R := evalm([[Dt+a, -k*axdelta, O, 0], [0, Dt, -1, 0],
> [0, omega™2, Dt+2*zetaxomega, -omega~2]]);

Dt+a —kad 0 0
R:= 0 Dt -1 0
0 w? Dt+2¢w —w?

1 Computation of the first extension module ”by hand”

In this subsection we demonstrate how to compute the first extension module with values in Alg of the
module associated with the transposed matrix of R. Note that we are working with the transposed matrix
because the system has constant coefficients so that it can actually be defined over the commutative
polynomial ring with indeterminate Dt. We follow Section 5 of F. Chyzak, A. Quadrat, D. Robertz,
Effective algorithms for parametrizing linear control systems over Ore algebras, INRIA report 5181.

> R_adj := linalg[transpose] (R);

Dt+a 0 0
. —kad Dt w?
R-adj = 0 -1 Dt+2Cw
0 0 —w?

In order to find the syzygy module of the module N spanned by the rows of R_adj, we adjoint second
members ji1, ..., 14 to the equations given by the entries of R_adj (A : A2 : A\3)T and compute a Grobner
basis G w.r.t. an elimination ordering that eliminates the A;:

> G := Integrability(R_adj, Alg);

G = [W? Dt po +w?kad py +w?aps + w? Dt* ug + w? a Dt ps + Dt® py + 2 Dt Cw iy
+aDt? juiy + Dtw? ig +2a Dt Cw pig + aw? pg, A3 w? + i,

w? Ay 4 Dt g + w? pig + 2w g,

w? A kad + Dt? pg +w? Dt pg 4+ 2 Dt Cw prg + w? g 4+ w? g, M\ Dt + X\ a — piq]

Now, the syzygy module that we are interested in is generated by all elements in G which do not contain
any A;. This is only one element. Writing it in the form of a matrix, we find exactly the result of
SyzygyModule:

> S := SyzygyModule(R_adj, Alg);



S =
[aﬂkaé, Dtw? + aw?, w? Dt* + w?a Dt,

Dtw? +aw? + D3 +2Dt*Cw+aDt* +2a Dt Cw

Hence, we started a free resolution of the module N spanned by the rows of R_adj. By definition of
the extension module, we have to dualize the modules that we obtained so far, so that matrices are
transposed. We compute the syzygy module of the module which we get by dualizing S:

> Integrability(linalg[transpose] (S), Alg);

[—w? pg + Dt pz + w? po + 2 ¢ w pz, —ps + Dt g, Dt py —kad ps +apy, Mw?kad — p1,
A1 Dt w? + X aw? — )

Analogous to the computation above, the syzygy module is generated by all elements which do not involve
any \;. By means of SyzygyModule we obtain this generating set in one step:

> L := SyzygyModule(linalg[transpose] (S), Alg);

Dt+a —kad 0 0
L:= 0 w? Dt+2¢w —w?
0 Dt -1 0

Finally, to obtain the first extension module of N with values in Alg, we compute the quotient module
of the module generated by the rows of L modulo the module generated by the rows of R:

> Q := Quotient(L, R, Alg);
1 00
Q=010
0 0 1
The ¢th column in @ contains the elements of Alg by which the ith row of L is to be multiplied to obtain
an element in Alg-span of the rows of R. Since @ is the identity matrix, we see that actually all rows of L
lie in the Alg-span of the rows of R which means that the modules spanned by the rows of the respective

matrices are the same. Hence, the first extension module of N with values in Alg is zero.

We check controllability and parametrizability of the wind tunnel system. Using an involution of Alg, we
compute the formal adjoint of R:

> R_adj := Involution(R, Alg);

—Dt+a 0 0
. kad —Dt w?
R-adj = 0 ~1 -Dt+2Cw
0 0 —w?

We compute ext”1 with values in Alg of R_adj in one step:

> st := time(): Extl := Exti(R_adj, Alg, 1); time()-st;



1 00 Dt+a —-kad 0 0
Ertl = 01 0|, 0 w? Dt +2Cw —w? |,
0 0 1 0 Dt -1 0
—w?kaé

—Dtw? — aw?
—w?Dt?> —w?a Dt
—Dt* —2Dt*Cw—aDt* — Dtw? —2a Dt Cw — aw?
0.279

Since Ext1[1] is the identity matrix, we conclude that ext”1 with values in Alg of the module N defined by
R_adj is the zero module. Therefore, the module M which is associated with the system R is torsion-free.
It follows that the system is controllable and, equivalently, parametrizable. A parametrization of R is
given in Ezt1[3]. A necessary condition for Fzt![3] being a parametrization is that (R o Exzt1[3]) = 0:

> map(expand, Mult(R, Ext1[3], Alg));

0
0
0

We compute ext”2 with values in Alg of R_adj in order to check whether or not the system R is flat:

> Ext2 := Exti(R_adj, Alg, 2);

]

Ext2 = [{ Di +a

}, [ 1], SURJ(L)

Since the first matrix in Fzt[2] is not an identity matrix, ext"2 of R_adj is not the zero module, and we
conclude that the module M which is associated with the system R is torsion-free, but not free. Hence,
the system is not flat.

The formal obstructions of flatness are defined by the m-polynomial

> PiPolynomial (R, Alg);
[0, Dt + al

Finally, we can find a polynomial 7 in the variable § such that the system is 7-free.

> pi := PiPolynomial(R, Alg, [deltal);
= [0]

By definition of the m-polynomial (see H. Mounier, Propriétés structurelles des systémes linéaires a
retards: aspects théoriques et pratiques, PhD Thesis, University of Orsay, France, 1995), this means that
if we introduce the time-advance operator in the system of the wind tunnel, then it becomes a flat system.
Hence, the module associated with this system is a free module (over the Ore algebra which is obtained
by adjoining the advance operator ! to Alg, and we are going to find a basis for this module below.

Let us remark that the fact that the wind tunnel is not a flat system (without advance operator) is
coherent with the fact that the full row-rank matrix R does not admit a right-inverse. We remember
that a full row-rank matrix R admits a right-inverse if and only if the module which is associated with
it is projective. By the theorem of Quillen-Suslin, for modules over commutative polynomial rings,
projectiveness is the same as freeness. This remark applies to our situation.

> RightInverse(R, Alg);



[

The fact that the system is not flat is also coherent with the fact that its parametrization Ext![3] does
not admit a left-inverse. Indeed, a linear system is flat if and only if it is parametrizable and one of its
parametrization admits a left-inverse.

> LeftInverse(Ext1[3], Alg);

[

We finish by computing a basis of the free module M, which is associated to the wind tunnel system, when
introducing the time-advance operator. In the terminology of control, such a basis is called a flat output.
We apply LocalLeftInverse to the parametrization Fzt1[3] of the system and we allow the algorithm to
invert 4:

> S := LocalLeftInverse(Ext1[3], [deltal, Alg);

1

S=| ———
ow?ka

0 0 0

By construction, the matrix S is a left-inverse of Ext![3]:

> simplify(evalm(S &* Ext1([3]));
[1]

Hence, we obtain a basis z = S (21 : 29 : o3 : 4)7 of the Alg[§~1]-module M, associated with R because
we have (21 : oo : 23 : )T = Ext1[3] zand 2 = —0"'2; / (w2 k a) is an element of the module.

Let us finally point out that we can also substitute 2 = —6~'x; / (w"2 k a) into the parametrization
Ext1[3] of the system in order to express the system variables in terms of x:

> F := map(factor, simplify(evalm(Ext1[3] * S[1,1]1)));

1
Dt +a

kad
F = Dt (Dt + a)
kad
(w? 4 Dt* + 2Cw Dt) (Dt + a)
L w?kad .

We obtain (z1 : @3 : x3 : u)T = F zy, and thus, 7, is also a basis of the Alg[6~!]-module My, and thus,
a flat output of the wind tunnel system over Alg[6~!]. From the last component of F', we obtain that
the input u(t — h) of the system is defined by:

> v := ApplyMatrix(delta*F[4,1], [x1(t)], Alg)[1];

_xl(t)+(w2+2an)(%X1(t)) Lox1(t)  (2¢w+a) (L x1(t)
Tk w?ka w?ka w?ka

By shifting the time, we obtain that the input u(¢) is defined by:

> w := ApplyMatrix(F[4,1], [x1(%)], Alg)[1];



x1(t+h) (DO (z1)(t+h) (2¢w+a) (D) (z1)(t + h)
k + w?ka + w?ka
(W? +2Cwa)D(z1)(t+ h)
+ w?ka

Finally, the input u : ¢ — w(t) is defined by:

> u =t -> w;
u:=t—w

Hence, by imposing a certain desired trajectory z1 _ ref , we finally obtain an open-loop control w : ¢ — u(t)
which follows the desired trajectory zI_ ref. Let us consider the numerical values of the parameters
given in A. Manitius, Feedback controllers for a wind tunnel model involving a delay: analyical design
and numerical simulations, IEEE Trans. Autom. Contr. vol. 29 (1984), pp. 1058-1068.

> a :=1/1.964: k := -0.0117: h := 0.32: =zeta := 0.8: omega := 6:
> eval(u(t));

—85.47008547 x1(t 4 0.32) — 4.662867997 (D) (1) (t + 0.32)
— 4713770181 (D®)(z1)(t 4 0.32) — 190.6552706 D(x1 ) (t + 0.32)

As in the paper (A. Manitius, Feedback controllers for a wind tunnel model involving a delay: analyical
design and numerical simulations, IEEE Trans. Autom. Contr. vol. 29 (1984), pp. 1058-1068), let us try
to go from the initial condition z1(0) = -0.1 to z1(6) = 0.

> f :=t -> tanh(1.32%(t-1.25));

f:=t— tanh(1.32¢ — 1.6500)
> x1 =t => -0.1x(1-£(£))/(1-£(0)):
> plot(x1(t), t=0..6);
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> simplify(evalf(u(t)));

—7.504233378 + 4.085080047 %1 + 8.599358396 %1° + 3.335999628 %1*

— 8.516204693 %1°
%1 := tanh(1.320000000 ¢ — 1.227600000)
> plot(u(t), t=0..6);
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—a -

Compare with the simulation obtained in A. Manitius, Feedback controllers for a wind tunnel model
involving a delay: analyical design and numerical simulations, IEEE Trans. Autom. Contr. vol. 29
(1984), pp. 1058-1068.



