
In this worksheet we demonstrate the computation of complements of the torsion submodule of a
finitely presented module over an Ore algebra. There are different procedures for the case of constant
and non-constant coefficients. We also show how a complement of the torsion submodule can be used in
order to construct a parametrization of the given linear system.

> with(Ore_algebra):

> with(OreModules):

We demonstrate the computation of complements of the torsion submodule on a linear system of partial
differential equations. Therefore, we start by defining the Weyl algebra:

> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], diff=[D3,x3],
> polynom=[x1,x2,x3]):

The divergence operator is given by:

> div := evalm([[D1, D2, D3]]);

div :=
[

D1 D2 D3
]

We consider the linear system D1 div y = 0, where y = (y1, y2, y3)T . The Alg-module which is associated
with this linear system is denoted by M .

> D1div := Mult(D1, div, Alg);

D1div :=
[

D12 D1 D2 D1 D3
]

Let us first compute the torsion submodule of M :

> Ext := Exti(Involution(D1div, Alg), Alg, 1);

Ext :=

[
D1

]
,
[

D1 D2 D3
]
,

 D3 D2 0
0 −D1 D3
−D1 0 −D2


The computation of the first extension module with values in Alg of the module presented by the formal
adjoint of D1div is isomorphic to the torsion submodule of M . It is generated by the row in Ext [2].
Hence, Ext [2] yields a presentation of M / t(M). The same generating set of torsion elements can be
obtained using TorsionElements which expresses them in terms of the system variables y1 , y2 , y3 :

> ivar := x1,x2,x3:

> TorsionElements(D1div, [y1(ivar),y2(ivar),y3(ivar)], Alg);

[
[

∂
∂x1 θ1(x1 , x2 , x3 ) = 0

]
,[

θ1(x1 , x2 , x3 ) = ( ∂
∂x1 y1(x1 , x2 , x3 )) + ( ∂

∂x2 y2(x1 , x2 , x3 )) + ( ∂
∂x3 y3(x1 , x2 , x3 ))

]
]

Since M is not torsion-free, M is not parametrizable. Of course, M/t(M) is torsion-free. Let us check
whether M/t(M) is projective:

> RightInverse(Ext[2], Alg);

[]

Since Ext [2] has full row rank and does not admit a right-inverse, the torsion-free Alg-module M/t(M)
is not projective. If M/t(M) was projective, then the short exact sequence

0 −→ t(M) −→M −→M/t(M) −→ 0
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would split, i.e., there would exist an Alg-morphism M/t(M) → M which, composed by the canonical
projection M →M/t(M), would give the identity on M/t(M).

In any case, if the above short exact sequence splits, then the image of this morphism in M provides
a complement of t(M) in M . Let us check whether there exists such a morphism, even if M / t(M) is
not projective:

> ComplementConstCoeff(div, D1div, Alg);

[]

Since we consider a linear system with constant coefficients, we use ComplementConstCoeff to find a
complement of the Alg-module presented by div = Ext [2] in the Alg-module M presented by D1div .

In fact, the system of equations over Alg which ComplementConstCoeff tried to solve was R′−R′ S R′ =
V R, where R′ = Ext[2] and R were given and S and V were to be found. For more details, see A. Quadrat,
D. Robertz, Parametrizing all solutions of controllable multidimensional linear systems, to appear in the
Proceedings of the 16th IFAC World Congress, Prague, 2005. We see that there is no solution to the
above system, which means that there does not exist a complement of t(M) in M .

Note that the procedure ComplementConstCoeff tried to solve R′ − R′ S R′ = V R over the commu-
tative polynomial ring in the indeterminates D1, D2, D3. We now apply Complement to the same data
which tries to find a solution over the Weyl algebra Alg , i.e., we treat the given system as if it actually
were a non-constant coefficient one.

> C := Complement(div, D1div, Alg);

C :=

 −x1 D1 + 1 −x1 D2 −x1 D3
0 1 0
0 0 1

 ,
[
−x1

]
,

 x1
0
0


Now we have found a solution to R′ −R′ S R′ = V R:

> S := C[3]: V := C[2]:

> evalm(div - Mult(div, S, div, Alg) - Mult(V, D1div, Alg));[
0 0 0

]
In order to find a parametrization of M , even if t(M) is not the zero module, the parametrization of
M / t(M) (found, e.g., by Exti) is glued with the solutions of R’ η = τ , where R’ = Ext [2] and the
vector τ consists of the generating torsion elements. For this glueing a complement of t(M) in M is
needed. Up to now, the procedure Parametrization only checks whether a complement of t(M) in M
can be constructed using a right- or generalized inverse of Ext [2]. It does not take advantage yet of the
command Complement. However, in the present case Parametrization returns η + Ext [3] ξ and R’ η =
τ , where the integrated autonomous element θ1 is plugged into τ :

> Parametrization(D1div, Alg);

table([1 =

 η1(x1 , x2 , x3 ) + ( ∂
∂x3 ξ1(x1 , x2 , x3 )) + ( ∂

∂x2 ξ2(x1 , x2 , x3 ))
η2(x1 , x2 , x3 )− ( ∂

∂x1 ξ2(x1 , x2 , x3 )) + ( ∂
∂x3 ξ3(x1 , x2 , x3 ))

η3(x1 , x2 , x3 )− ( ∂
∂x1 ξ1(x1 , x2 , x3 ))− ( ∂

∂x2 ξ3(x1 , x2 , x3 ))

 ,

2 = (
[

( ∂
∂x1 η1(x1 , x2 , x3 )) + ( ∂

∂x2 η2(x1 , x2 , x3 )) + ( ∂
∂x3 η3(x1 , x2 , x3 ))

]
=

(θ1(x1 , x2 , x3 ) = F1(x2 , x3 ))&where [ ( F1(x2 , x3 ), are arbitrary functions.)])
])

Using the result of Complement, we are now in position to complete the glueing of the parametrization
of M :
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> P := evalm(ApplyMatrix(S, [_F1(x2,x3)], Alg) + ApplyMatrix(Ext[3],
> [xi[1](ivar),xi[2](ivar),xi[3](ivar)], Alg));

P :=

 x1 F1(x2 , x3 ) + ( ∂
∂x3 ξ1(x1 , x2 , x3 )) + ( ∂

∂x2 ξ2(x1 , x2 , x3 ))
−( ∂

∂x1 ξ2(x1 , x2 , x3 )) + ( ∂
∂x3 ξ3(x1 , x2 , x3 ))

−( ∂
∂x1 ξ1(x1 , x2 , x3 ))− ( ∂

∂x2 ξ3(x1 , x2 , x3 ))


We check that P is a parametrization of the given linear system D1 div y = 0:

> ApplyMatrix(D1div, P, Alg); [
0

]
We can prove that P parametrizes all the smooth solutions of D1 div y = 0. For more details, see
A. Quadrat, D. Robertz, Parametrizing all solutions of controllable multidimensional linear systems, to
appear in the Proceedings of the 16th IFAC World Congress, Prague, 2005.

Now, we treat a linear system of PDEs having polynomial coefficients:

> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], polynom=[x1,x2]):

We enter the system matrix:

> R := evalm([[x1*D1, 1, D2],[1, x1*D1, D2]]);

R :=
[

x1 D1 1 D2
1 x1 D1 D2

]
The left Alg-module associated with R y = 0 is again denoted by M . We compute the first extension
module with values in Alg of the left Alg-module presented by the formal adjoint of R:

> Ext2 := Exti(Involution(R, Alg), Alg, 1);

Ext2 :=

[
−1 + x1 D1 0

0 −1 + x1 D1

]
,

[
1 −1 0
0 x1 D1 + 1 D2

]
,

 D2
D2

−1− x1 D1


The torsion submodule t(M) of M is generated by the rows of Ext2 [2]. This information can also be
obtained using TorsionElements:

> ivar := x1,x2:

> TorsionElements(R, [y1(ivar),y2(ivar),y3(ivar)], Alg);[
−θ1(x1 , x2 ) + x1 ( ∂

∂x1 θ1(x1 , x2 )) = 0
−θ2(x1 , x2 ) + x1 ( ∂

∂x1 θ2(x1 , x2 )) = 0

]
,

[
θ1(x1 , x2 ) = y1(x1 , x2 )− y2(x1 , x2 )

θ2(x1 , x2 ) = y2(x1 , x2 ) + x1 ( ∂
∂x1 y2(x1 , x2 )) + ( ∂

∂x2 y3(x1 , x2 ))

]
Since M is not torsion-free, M is not parametrizable. In order to find a parametrization by “integration
of torsion elements”, we first check whether M/t(M) is projective:

> RightInverse(Ext2[2], Alg);

[]
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Since Ext2 [2] has full row rank and does not admit a right-inverse, M / t(M) is not projective. Never-
theless, let us check whether there exists a complement of t(M) in M :

> C := Complement(Ext2[2], R, Alg);

C :=




1
2

1
2

0

1
2

1
2

0

0 0 1

 ,

[
0 0
1
2

1
2

]
,


1
2

0

−1
2

0

0 0




Again, Complement found a solution to the system of equations R′−R′ S R′ = V R, where R’ = Ext2 [2]:

> S := C[3]: V := C[2]:

> evalm(Ext2[2] - Mult(Ext2[2], S, Ext2[2], Alg) - Mult(V, R, Alg));[
0 0 0
0 0 0

]
As in the previous case, Parametrization yields η + Ext2 [3] ξ and the system R’ η = τ , where τ consists
of the integrated autonomous elements:

> Parametrization(R, Alg);

table([1 =

 η1(x1 , x2 ) + ( ∂
∂x2 ξ1(x1 , x2 ))

η2(x1 , x2 ) + ( ∂
∂x2 ξ1(x1 , x2 ))

η3(x1 , x2 )− ξ1(x1 , x2 )− x1 ( ∂
∂x1 ξ1(x1 , x2 ))

 ,

2 =
([

η1(x1 , x2 )− η2(x1 , x2 )
η2(x1 , x2 ) + x1 ( ∂

∂x1 η2(x1 , x2 )) + ( ∂
∂x2 η3(x1 , x2 ))

]
=

[
− F1(x2 ) x1

F1(x2 ) x1

])
])

Using the result of Complement, we can glue the parametrization Ext2 [3] of M / t(M) with the integration
of the torsion elements:

> P := evalm(ApplyMatrix(S, evalm([[-_F1(x2)*x1],[_F1(x2)*x1]]), Alg) +
> ApplyMatrix(Ext2[3], [xi[1](ivar)], Alg));

P :=


−1

2
F1(x2 ) x1 + ( ∂

∂x2 ξ1(x1 , x2 ))

1
2

F1(x2 ) x1 + ( ∂
∂x2 ξ1(x1 , x2 ))

−ξ1(x1 , x2 )− x1 ( ∂
∂x1 ξ1(x1 , x2 ))


We can check that P is a parametrization of R y = 0:

> ApplyMatrix(R, P, Alg); [
0
0

]
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