We study the deformation occuring in the system of a sphere rolling on a surface. This is an exam-
ple treated by J. Hadamard in J. Hadamard, Sur [’équilibre des plaques élastiques circulaires libres ou
appuyées et celui de la spheére isotrope, Annales scientifiques de 'E. N. S.; 3e série, 18 (1901), pp. 313-342.

“Lorsqu’un corps elastique est deforme par ’action de corps rigides qui doivent rester en contact avec
lui, le contact ayant lieu sans frottement, la deformation qu’il subit ne peut etre quelconque, quels que
soient les corps deformants, puisque la tension a la surface doit etre normale” (pp. 337).

> with(Ore_algebra):
> with(OreModules) :

Introducting the new variable p = y/x2 + y2 + 22, where z, y, z denote the coordinates of a point in the
space, J. Hadamard showed on page 336 how the system of partial differential equations corresponding
to his problem can be rewritten as a linear system of ordinary differential equations in p and D = d/d
p. Therefore, we first define the Weyl algebra Alg = A;, where D is the differential operator w.r.t. p. In
fact, apart from the constants appearing in the system matrix below, the system involves only the Euler
operator E = p D. Below we shall also study this system by viewing it over the Ore algebra containing
the Euler operator rather than D and p.

> Alg := DefineOreAlgebra(diff=[D,rho], polynom=[rho], comm=[lambda,mu]):
We enter the system matrix R.
> R := evalm([[rho*D+1/2, ((lambda+mu)/2)*(rho*D-1), 1/2, 0],

> [2*rho*D, -(3*lambda+2*mu), rho*D+3, 0], [-rho*D, lambda, -1, 2*mu*(rho*D+1)]1]);
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Then, the linear system of ordinary differential equations R z = 0, where 2z = (0,0, K, G)T, is defined by:

> ApplyMatrix(R, [theta(rho),sigma(rho),K(rho),G(rho)], Alg)=evalm([[0],[0],[0]1);
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Let us compute the formal adjoint of R:

> R_adj := Involution(R, Alg);
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In order to check the parametrizability of the system, we compute the first extension module with values
in Alg of the left Alg-module associated with R_adj:

> st := time(): Extl := Exti(R_adj, Alg, 1): time()-st; Ext1[1];

0.601
pD+1 0 0
0 1 0

0 0 pD+1

We find that the torsion submodule t(M) of the left Alg-module M which is associated with the system
is different from the zero module because Extl[1] is not an identity matrix. A generating set for the
torsion submodule t(M) is given by the rows of Extl[2]:

> Ext1[2];
1 A p -1 —2pu
0 —A—2pu pD+1 4pupD+4p
0 ApD+ppD—-2p 0 4pupD+6p

The ith entry in the diagonal of Exztl[1] corresponds to the ith row of Ext![2], which means that the
ith generator of the torsion submodule t(M) of M is annihilated by the ith element in the diagonal of
Ext1(1], i.e., we have (0D +1)r = 0 in M, where r is the first or the third row in ExtI[2] modulo R. Note
that the second row ro of Fxtl[2] is zero modulo the system equations, which is clear from the second
diagonal entry in Fzt![1], namely we find that 1 ry is zero in M.

Hence, the first and the third row in Ext![2] define autonomous elements of the system and the system
R z = 0 is not parametrizable.

However, the torsion-free module M / t(M) is parametrizable. A parametrization of M / t(M) is
given by Extl[3]:

> map(a->map(b->collect(b, D), a), map(factor, Ext1[3]));
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In other words, we have Fxtl[2] u =0 <= wu = Ext1[3] &, where u and &; are respectively a smooth
vector and a smooth function, i.e., we have:

> evalm([seq([ul[i] (rho)], i=1..4)])=Parametrization(Ext1[2], Alg);
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In order to find a parametrization of M (i.e., of the linear system of the rolling sphere), we have to
“integrate the torsion elements” of the system. We are going to explain what this means (see also A.
Quadrat, D. Robertz, Parametrizing all solutions of uncontrollable multidimensional linear systems, to
appear in the Proceedings of the 16th IFAC World Congress, Prague, 2005). The previous computation
of the first extension module with values in Alg of the module associated with R_adj gives a way to split



R into R” and R’ such that the system R z = 0 is equivalent to R” 7 = 0 and 7 = R’ 2z, where R’ is
defined by Ext![2] and we can compute R” as follows:

> Factorize(R, Ext1[2], Alg);

1 -1
Dy- 1 —
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The idea is now to solve the homogeneous system R” 7 = 0 first and afterwards find a particular solution
of the inhomogeneous system R’ z = 7 (which is always possible for linear systems of ODEs).
Instead of R” 7 = 0, we consider the equivalent system FEzt1[1] 7 = 0, which is in diagonal form:

> Ext1[1];

pD+1 0 0
0 1 0
0 0 pD+1

As noted above, the second row of Ezt1[1] corresponds to a zero row modulo the system equations given
by R, so that we have to integrate two torsion elements. Taking the system equations into account once
more, we check that these two torsion elements are in fact, up to the sign, equal modulo the rows of R:

> SyzygyModule(linalg[stackmatrix] (Ext1[2], R), Alg);

10 1 —2 0 —2
0 1 0 0 -1 —2
0 0 pD+1 -2pD -1 —-2pD-3

The rows of the preceding result generate all linear relations that hold for the union of the rows of
Ext1[2] and R. So for each linear relation, the ith column gives the coefficient of the ith row of Ext1[2],
if 1 <4 <3 and the (3 + ¢)th column gives the coefficient of the ith row of R, i = 1, 2, 3. Hence, we see
from the first row of the preceding result, that the two torsion elements given by the first and the third
row of Fztl[2] are equal up to the sign modulo the rows of R.

The command that takes all this into account and performs the integration of the torsion elements is
IntTorsion:

> T := IntTorsion(R, Alg);
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If we denote the two torsion elements defined by the first and third row of Fxt![2] by 6; and 6, we
interpret the result of IntTorsion as follows: T'[1] gives the relations satisfied by 6; and 65 in M, namely,
01 = —05 and (pD + 1) 63 = 0. These equations are solved to obtain the function in T'[2]. Finally, T'[3]
gives the definitions of #; and 65 in terms of the system variable z.

The command AutonomousElements gives the same information as IntTorsion, but expresses the
equations and torsion elements in terms of the system variables 6(p), o(p), K(p), G(p):

> AutonomousElements(R, [theta(rho),sigma(rho),K(rho),G(rho)], Alg);
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Now, we need to find a particular solution of the inhomogeneous system R z = 7, namely, Ext![2] z = 7.
As M/ t(M) is a torsion-free left A;-module, it is also a stably free left A;-module (A; is a hereditary

ring). This result can be easily checked by noticing that Fzt1[2] has a full row rank and admits a
right-inverse S:

> SyzygyModule(Ext1[2], Alg);

INJ(3)
> S := RightInverse(Ext1[2], Alg);
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We can easily check that S is a right-inverse of Fzt1[2], i.e., Ext1[2] S = I3, by computing:

> Mult(Ext1[2],S,Alg);

o O =
o = O
_ o O

Then, we obtain that a particular solution y of the inhomogeneous system Ext![2] y = 7 is defined by
y = S 7, where 7 is the following vector:

> tau := vector([T[2]1[1,1], 0, T[2]1[2,111);

T .= {—, 0,
P P

Therefore, we obtain that a particular solution y of Ext1[2] y = 7 defined by:

> ApplyMatrix(S, tau, Alg);
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In fact, the previous particular solution can be directly obtained by using ParticularSolution:

> ParticularSolution(R, Alg);
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We note that the second matrix is exactly the solution y obtained previously.
Finally, we can glue the parametrization of the torsion-free part M / t(M) of M with the integration
of the torsion elements in order to obtain a parametrization of M. Indeed, we have

Rz=0 <= R't=0 and Eztl[2]z=7 < z=S7+ Extl[3]&.

This parametrization can be directly obtained by using Parametrization:

> P := Parametrization(R, Alg);
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We can check that P is a parametrization of the system:

> simplify(ApplyMatrix(R, P, Alg));

0
0
0

Therefore, we obtain the following parametrization of the system Rz =0 which contains some au-
tonomous elements:

> evalm([[theta(rho)], [sigma(rho)], [K(rho)], [G(rho)]]) = evalm(P);
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If we only consider smooth functions 6; and 65 at the origin, i.e., at p = 0, we then obtain C; = 0. This
is the case considered by J. Hadamard in his paper. In that case, we obtain ; = 6, = 0, and thus, the
parametrization of the system becomes z = Ext1[3] &, i.e., it is the parametrization of the torsion-free
left Aj-module M/ t(M).

Now, instead of using the Weyl algebra, we represent the linear system of the rolling sphere by means
of a matrix over the Ore algebra containing the Euler operator £ = p D.

We note that J. Hadamard exactly follows this approach.

> Alg2 := DefineOreAlgebra(euler=[E,rho], polynom=[rho], comm=[lambda,mu]):

The system matrix is now:

> R2 := evalm([[E+1/2, ((lambda+mu)/2)*(E-1), 1/2, 0],
> [2xE, -(3*lambda+2#*mu), E+3, 0], [-E, lambda, -1, 2*mux(E+1)]1]);
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The corresponding linear system of equations is written as follows:

> ApplyMatrix(R2, [theta(rho),sigma(rho),K(rho),G(rho)], Alg2)=
> evalm([[0],[0],[0]11);
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We apply an involution of the Ore algebra Alg2 to the matrix R2:

> R_adj2 := Involution(R2, Alg2);
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Let us check again whether or not the system is parametrizable.
> Ext2 := Exti(R_adj2, Alg2, 1);
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We find the same generators for the torsion submodule t(M) of M as previously. Using TorsionElements,
we can find the following equivalent system for the torsion elements:

> TorsionElements(R2, [theta(rho),sigma(rho),K(rho),G(rho)], Alg2);
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The previous torsion elements can be integrated by using AutonomousFElements.

> AutonomousElements(R2, [theta(rho),sigma(rho),K(rho),G(rho)], Alg2);
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It is known that the torsion elements are in one-to-one correspondence with the first integrals of the
system. We can compute the corresponding first integral by using FirstIntegral:

> V := FirstIntegral(R2, [theta(rho),sigma(rho),K(rho),G(rho)], Alg2);
Vi=—_C1pb(p)—-Clpo(p)A—_-Clpo(p)p+-C1pK(p)+2u-C1pG(p)



We note that the parametrization Ezt2[3] of the torsion-free left Aj-module M/ t(M) is exactly the one
obtained by J. Hadamard in (38) of his paper up to the multiplication by the factor of —1/(2 ).

> Q := map(a—->a/(-2*mu), map(a->map(b->collect(b, E), a), map(factor, Ext2[3])));
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Finally, we can directly compute the parametrization of the whole system R z = 0 by using Parametriza-
tion.
> P2 := Parametrization(R2, Alg2);
P2 .=
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+ 2002 p2 %2 XN + 14 13 p® %2 + 6 p® %2 N2 + 54 12 p? %l X + 28 u® p? %l
+ 181107 BN /(BN +Tw) p)]
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>  simplify(evalm(P-P2));
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Therefore, we obtain the same parametrization of the system independently of whether it is defined over
the Weyl algebra A; or over the Ore algebra Alg2 generated by the Euler operator £ = pD.



