
We study a satellite in a circular equatorial orbit. See T. Kailath, Linear Systems, Prentice-Hall,
1980, p. 60 and p. 145, and H. Mounier, Propriétés structurelles des systèmes linéaires à retards: aspects

théoriques et pratiques, PhD Thesis, University of Orsay, France, 1995, p. 6, p. 11 and p. 17.

> with(Ore_algebra):

> with(OreModules):

We define the Weyl algebra Alg = A1, where Dt acts as differentiation w.r.t. time t. Note that we have
to declare the parameters ω (angular velocity), m (mass of the satellite), r (radius component in the
polar coordinates), a and b (parameters specifying the thrust) of the system in the definition of the Ore
algebra:

> Alg := DefineOreAlgebra(diff=[Dt,t], polynom=[t], comm=[omega,m,r,a,b]):

The linearized ordinary differential equations for the satellite in a circular orbit are given by the following
matrix R. These equations describe the motion of the satellite in the equatorial plane, where the fifth
and the sixth column of R incorporate the controls u1 , u2 which represent radial thrust resp. tangential
thrust caused by rocket engines (see Kailath, 1980, p. 60 and p. 145).

> Rab := evalm([[Dt,-1,0,0,0,0], [-3*omega^2,Dt,0,-2*omega*r,-a/m,0],
> [0,0,Dt,-1,0,0], [0,2*omega/r,0,Dt,0,-b/(m*r)]]);

Rab :=















Dt −1 0 0 0 0

−3ω2 Dt 0 −2ω r −
a

m
0

0 0 Dt −1 0 0

0
2ω

r
0 Dt 0 −

b

m r















We define the formal adjoint R adj of R:

> Rab_adj := Involution(Rab, Alg);

Rab adj :=



























−Dt −3ω2 0 0

−1 −Dt 0
2ω

r

0 0 −Dt 0
0 −2ω r −1 −Dt

0 −
a

m
0 0

0 0 0 −
b

m r



























Let us compute the first extension module extˆ1 with values in Alg of the Alg-module N associated with
R adj :

> Extab := Exti(Rab_adj, Alg, 1);

Extab :=

















1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









,









−3mω2 Dt m 0 −2ω r m −a 0
Dt −1 0 0 0 0
0 2mω 0 mr Dt 0 −b

0 0 Dt −1 0 0









,

















b a 0
b aDt 0

0 b a

0 b aDt

−3 bmω2 + Dt2 bm −2Dt b ω r m

2 aDt mω aDt2 mr
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Since Ext1 [1] is the identity matrix, we conclude that extˆ1 of N is the zero module. Hence, the module
M which is associated with the system R is torsion-free. It follows that the system is controllable and,
equivalently, parametrizable. A parametrization of R is given in Ext1 [3]. Of course, a necessary condition
for Ext1 [3] being a parametrization is that (R o Ext1 [3]) = 0:

> Mult(Rab, Extab[3], Alg);








0 0
0 0
0 0
0 0









Equivalently, a parametrization of the system can be computed by using the following command:

> Parametrization(Rab, Alg);
















b a ξ1(t)
b a ( d

dt
ξ1(t))

b a ξ2(t)
b a ( d

dt
ξ2(t))

−bm (3ω2 ξ1(t) − ( d
2

dt2
ξ1(t)) + 2ω r ( d

dt
ξ2(t)))

am (2ω ( d

dt
ξ1(t)) + r ( d

2

dt2
ξ2(t)))

















The coefficients in the equations of the system lie in the polynomial ring with one variable Dt and with
coefficients that are rational functions in ω, m, r, a, b with real coefficients. Since this polynomial ring
is a principal ideal domain (namely, every ideal is generated by a single element), we know that torsion-
freeness of the module M which is associated with the system R actually implies freeness, i.e., system R

is flat. Hence, we can compute a left-inverse of the parametrization and get a flat output of the system:

> Sab := LeftInverse(Extab[3], Alg);

Sab :=







1

b a
0 0 0 0 0

0 0
1

b a
0 0 0







Therefore, (ξ1 : ξ2)T = Sab (x1 : x2 : x3 : x4 : u1 : u2 )T is a flat output of the system which satisfies
(x1 : x2 : x3 : x4 : u1 : u2 )T = Extab[3] (ξ1 : ξ2)T . Let us notice that this flat output exists only if
ab 6= 0.

Let us remember that the full row-rank matrix R admits a right-inverse if and only if the module
which is associated with it is projective. By the theorem of Quillen-Suslin, for modules over commuta-
tive polynomial rings, projectiveness is the same as freeness. So, M is projective which we could have
discovered by computing a right-inverse of R:

> RightInverse(Rab, Alg);






















0 0 0 0
−1 0 0 0
0 0 0 0
0 0 −1 0

−
Dt m

a
−

m

a

2ω r m

a
0

−
2ω m

b
0 −

Dt mr

b
−

mr

b























Let us compute a Brunovský canonical form for the system defined by R in the case where ab 6= 0.
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> B := Brunovsky(Rab, Alg);

B :=









































1

b a
0 0 0 0 0

0
1

b a
0 0 0 0

3ω2

b a
0 0

2ω r

b a

1

bm
0

0 0
1

b a
0 0 0

0 0 0
1

b a
0 0

0 −
2ω

b a r
0 0 0

1

mar









































Therefore, using the following change of variables

> evalm([[z[1](t)],[z[2](t)],[v[1](t)],[z[3](t)],[z[4](t)],[v[2](t)]])=
> ApplyMatrix(B, [seq(x[i](t),i=1..4),u1(t),u2(t)], Alg);

















z1(t)
z2(t)
v1(t)
z3(t)
z4(t)
v2(t)

















=











































x1(t)

b a

x2(t)

b a

3ω2 x1(t)

b a
+

2ω r x4(t)

b a
+

u1(t)

bm

x3(t)

b a

x4(t)

b a

−
2ω x2(t)

b a r
+

u2(t)

mar











































we obtain the following Brunovský canonical form:

> E := Elimination(linalg[stackmatrix](B, Rab),
> [seq(x[i],i=1..4),u1,u2], [z[1],z[2],v[1],z[3],z[4],v[2],0,0,0,0], Alg):
> ApplyMatrix(E[1], [seq(x[i](t),i=1..4),u1(t),u2(t)], Alg)=
> ApplyMatrix(E[2], [[z[1](t)],[z[2](t)],[v[1](t)],[z[3](t)],[z[4](t)],[v[2](t)]],
> Alg);

































0
0
0
0

u2(t)
u1(t)
x4(t)
x3(t)
x2(t)
x1(t)

































=

































−( d

dt
z4(t)) + v2(t)

−( d

dt
z3(t)) + z4(t)

−( d

dt
z2(t)) + v1(t)

−( d

dt
z1(t)) + z2(t)

2 aω mz2(t) + amr v2(t)
−3 b ω2 mz1(t) + bmv1(t) − 2 b ω r mz4(t)

b a z4(t)
b a z3(t)
b a z2(t)
b a z1(t)

































Let us consider the case where a = 0 and b = 1, i.e., the case where we only have a tangential thrust.
Then, the system is defined by the following matrix:

> R01 := linalg[submatrix](subs(a=0,b=1,evalm(Rab)), 1..4, [1,2,3,4,6]);

3



R01 :=











Dt −1 0 0 0
−3ω2 Dt 0 −2ω r 0

0 0 Dt −1 0

0
2ω

r
0 Dt −

1

mr











The formal adjoint R01 adj of R01 is defined by:

> R01_adj := Involution(R01, Alg);

R01 adj :=



















−Dt −3ω2 0 0

−1 −Dt 0
2ω

r

0 0 −Dt 0
0 −2ω r −1 −Dt

0 0 0 −
1

mr



















Let us check whether or not the new system is controllable.

> Ext01 := Exti(R01_adj, Alg, 1);

Ext01 :=





















1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









,









−3ω2 Dt 0 −2ω r 0
Dt −1 0 0 0
0 2ω m 0 mr Dt −1
0 0 Dt −1 0









,













2Dt ω r

2ω Dt2 r

−3ω2 + Dt2

Dt3 − 3Dt ω2

Dt4 mr + Dt2 ω2 mr

























We obtain that the Alg-module associated with R01 is torsion-free, and thus, the system is controllable.
Moreover, a parametrization of the system is given by Ext01 [3] or, equivalently, by:

> Parametrization(R01, Alg);














2ω r ( d

dt
ξ1(t))

2ω r ( d
2

dt2
ξ1(t))

−3ω2 ξ1(t) + ( d
2

dt2
ξ1(t))

( d
3

dt3
ξ1(t)) − 3ω2 ( d

dt
ξ1(t))

mr (ω2 ( d
2

dt2
ξ1(t)) + ( d

4

dt4
ξ1(t)))















Using the fact that the system is time-invariant, we obtain that the Alg-module associated with R01 is
free, and thus, the system is flat. A flat output is obtain by computing a left-inverse of the parametrization
Ext01 [3].

> S01 := LeftInverse(Ext01[3], Alg);

S01 :=

[

0
1

6 r ω3
−

1

3ω2
0 0

]

> simplify(Mult(S01, Ext01[3], Alg));
[

1
]

Therefore, ξ = S01 (x1 : x2 : x3 : x4 : u2 )T is a flat output of the system which satisfies

(x1 : x2 : x3 : x4 : u2)T = Ext01[3] ξ.

4



Now, let us turn to the case where a = 1 and b = 0, i.e., to the case where there is only a radial thrust.
Then, the system is defined by the following matrix:

> R10 := linalg[submatrix](subs(a=1,b=0,evalm(Rab)), 1..4, 1..5);

R10 :=















Dt −1 0 0 0

−3ω2 Dt 0 −2ω r −
1

m

0 0 Dt −1 0

0
2ω

r
0 Dt 0















Its formal adjoint R10 adj is defined by:

> R10_adj := Involution(R10, Alg);

R10 adj :=



















−Dt −3ω2 0 0

−1 −Dt 0
2ω

r

0 0 −Dt 0
0 −2ω r −1 −Dt

0 −
1

m
0 0



















Let us check whether or not the system defined by R10 is controllable.

> Ext01 := Exti(R10_adj, Alg, 1);

Ext01 :=





















Dt 0 0 0
0 1 0 0
0 0 Dt 0
0 0 0 1









,









2ω 0 0 r 0
0 2ω 0 Dt r 0
0 2mDt 0 −ω r m −2
0 0 Dt −1 0









,













−Dt r

−Dt2 r

2ω

2Dt ω

−Dt ω2 r m − Dt3 r m

























The first matrix of Ext01 is not the identity matrix, and thus, there exist some torsion elements in the
Alg-module associated with R01 . Let us compute them.

> TorsionElements(R10, [x1(t),x2(t),x3(t),x4(t),u1(t)], Alg);
[[

d

dt
θ1(t) = 0

d

dt
θ3(t) = 0

]

,

[

θ1(t) = 2ω x1(t) + r x4(t)
θ3(t) = 2m ( d

dt
x2(t)) − ω r m x4(t) − 2 u1(t)

]]

Then, the autonomous elements of the system are defined by:

> AutonomousElements(R10, [x1(t),x2(t),x3(t),x4(t),u1(t)], Alg);




[

3ω mθ1(t) − θ2(t) = 0
d

dt
θ2(t) = 0

]

,





θ1 =
C1

3ω m

θ2 = C1



 ,

[

θ1 = 2ω x1(t) + r x4(t)
θ2 = 2m ( d

dt
x2(t)) − ω r m x4(t) − 2 u1(t)

]





In particular, the system is not controllable. A first integral of motion of the system is defined by:

> FirstIntegral(R10, [x1(t),x2(t),x3(t),x4(t),u1(t)], Alg);

1

2

C1 (2ω x1(t) + r x4(t))

ω

5



We let the reader check by himself that the time-derivative of the above first integral of motion is 0
modulo the system equations.

Finally, let us point out that the controllable part of the system is defined by the matrix Ext01 [2] and
it is parametrized by Ext01 [3].

Following (Mounier, 1995), we modify the description of the control of the satellite in the system. If
the rocket engines are commanded from the earth, then, due to transmission time, a constant time-delay
occurs in the system.

Hence, we enlarge the above Ore algebra by a shift operator δ:

> Alg2 := DefineOreAlgebra(diff=[Dt,t], dual_shift=[delta,s],
> polynom=[t,s], comm=[omega,m,r,a,b], shift_action=[delta,t]):

The system matrix is given as follows:

> R2 := evalm([[Dt,-1,0,0,0,0], [-3*omega^2,Dt,0,-2*omega*r,-a*delta/m,0],
> [0,0,Dt,-1,0,0], [0,2*omega/r,0,Dt,0,-b*delta/(m*r)]]);

R2 :=















Dt −1 0 0 0 0

−3ω2 Dt 0 −2ω r −
a δ

m
0

0 0 Dt −1 0 0

0
2ω

r
0 Dt 0 −

b δ

m r















We define a formal adjoint R2 adj of R2 using an involution of Alg2 :

> R2_adj := Involution(R2, Alg2);

R2 adj :=





























−Dt −3ω2 0 0

−1 −Dt 0
2ω

r

0 0 −Dt 0
0 −2ω r −1 −Dt

0
a δ

m
0 0

0 0 0
b δ

m r





























We check controllability and parametrizability of the system by applying Exti to R2 adj :

> Ext1 := Exti(R2_adj, Alg2, 1);

Ext1 :=

















1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









,









−3mω2 Dt m 0 −2ω r m −a δ 0
Dt −1 0 0 0 0
0 2mω 0 mr Dt 0 −b δ

0 0 Dt −1 0 0









,

















b a δ 0
b a δ Dt 0

0 b a δ

0 b a δ Dt

−3 bmω2 + Dt2 bm −2Dt b ω r m

2 aDt mω aDt2 mr

























Since Ext1 [1] is the identity matrix, we find that the first extension module with values in Alg2 of the
Alg2 -module N which is associated with R2 adj is generically the zero module. Equivalently, the system
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is generically controllable and parametrizable. A parametrization of the system is given in Ext1 [3].
Equivalently, we can directly obtain the parametrization of the system by using the following command:

> Parametrization(R2, Alg2);
















b a ξ1(t − 1)
b aD(ξ1)(t − 1)

b a ξ2(t − 1)
b aD(ξ2)(t − 1)

bm (D(2))(ξ1)(t) − 3 b ω2 mξ1(t) − 2 b ω r mD(ξ2)(t)
2 aω mD(ξ1)(t) + amr (D(2))(ξ2)(t)

















This parametrization is actually a minimal one (namely, it involves the minimal number of free functions)
because we obtain the same parametrization using MinimalParametrization:

> MinimalParametrization(R2, Alg2);
















b a δ 0
b a δ Dt 0

0 b a δ

0 b a δ Dt

−3 bmω2 + Dt2 bm −2Dt b ω r m

2 aDt mω aDt2 mr

















We continue to study the structural properties of the system by examining the algebraic properties of the
Alg2 -module M which is associated with R2 . The next step is to compute the second extension module
with values in Alg2 of N :

> Ext2 := Exti(R2_adj, Alg2, 2);

Ext2 :=

















δ 0
Dt ω2 + Dt3 0

0 δ

0 Dt2 ω2 + Dt4









,

[

1 0
0 1

]

, SURJ(2)









Since Ext2 [1] is not an identity matrix, we see that extˆ2 of N is different from zero. Hence, M is
not projective which also implies that M is not free. So, the satellite is not a flat system. As already
mentioned above, M is a projective Alg2 -module if and only if the full row rank matrix R2 admits a
right-inverse. We conclude that a right-inverse of R2 does not exist:

> RightInverse(R2, Alg2);

[]

Since the torsion-free degree i(M) of M is equal to 1, we can find a polynomial π in the variable δ such
that the system is π-free:

> PiPolynomial(R2, Alg2, [delta]);

[δ]

By definition of the π-polynomial (Mounier, 1995), this means that if we introduce the time-advance
operator in the system of the satellite, then it becomes a flat system. Hence, the module M associated
with this system is a free module (over the Ore algebra which is obtained by adjoining the advance
operator δ−1 to Alg2 ), and we are going to find a basis for this module using LocalLeftInverse:
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> S := LocalLeftInverse(Ext1[3], [delta], Alg2);

S :=









0 0 −
r Dt (Dt2 + 4ω2)

6 δ a ω3 b
0 −

1

3ω2 bm

Dt

6 aω3 m

0 0
1

δ b a
0 0 0









We obtain a left-inverse S of the parametrization Ext1 [3] of the system, where we admit δ in the denom-
inators, i.e., we allow the time-advance operator.

> Mult(S, Ext1[3], Alg2);
[

1 0
0 1

]

Hence, (z1 : z2)
T = S (x1 : x2 : x3 : x4 : u1 : u2)

T is a basis of the Alg2[δ−1]-module M2, and thus, a
flat output of the satellite when we introduce the time-advance operator. More precisely, a flat output
of the system over the ring Alg2[δ−1] is defined by:

> evalm([[xi1(t)],[xi2(t)]])=ApplyMatrix(S, [x1(t),x2(t),x3(t),x4(t),u1(t),u2(t)],
> Alg2);

[

ξ1(t)
ξ2(t)

]

=









−
1

6

r (D(3))(x3 )(t + 1)

aω3 b
−

2

3

r D(x3 )(t + 1)

ω a b
−

1

3

u1(t)

ω2 bm
+

1

6

D(u2 )(t)

aω3 m

x3(t + 1)

b a









Using the fact that

(x1 : x2 : x3 : x4 : u1 : u2)T = Ext1[3] (ξ1, ξ2)T

and (ξ1 : ξ2)T = S (x1 : x2 : x3 : x4 : u1 : u2)T ,

then we have (x1 : x2 : x3 : x4 : u1 : u2)T = Q (x1 : x2 : x3 : x4 : u1 : u2)T , where Q is the following
matrix:

> Q := simplify(Mult(Ext1[3], S, Alg2));

Q :=



































0 0 −
r Dt (Dt2 + 4ω2)

6ω3
0 −

a δ

3ω2 m

bDt δ

6ω3 m

0 0 −
Dt2 r (Dt2 + 4ω2)

6ω3
0 −

aDt δ

3ω2 m

bDt2 δ

6ω3 m

0 0 1 0 0 0
0 0 Dt 0 0 0

0 0 −
mr Dt3 (ω2 + Dt2)

6 δ a ω3
0 −

−3ω2 + Dt2

3ω2

b (−3ω2 + Dt2)Dt

6 aω3

0 0 −
Dt2 mr (ω2 + Dt2)

3ω2 δ b
0 −

2 aDt

3ω b

Dt2

3ω2



































Let us point out that by the form of the matrix S shows that (ξ1′ : ξ2′)T = S2 (x1 : x2 : x3 : x4 : u1 : u2)T

is also a flat output of the system, where S2 is defined by:

> S2 := evalm([[0,0,0,0,-2*omega/b,Dt/a], [0,0,1/(a*b*delta),0,0,0]]);

S2 :=







0 0 0 0 −
2ω

b

Dt

a

0 0
1

δ b a
0 0 0
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Let us check this by using OreModules.

> P2 := Factorize(simplify(evalm(delta*Q)),simplify(evalm(delta*S2)), Alg2);

P2 :=



































δ b a

6ω3 m
−

r b a δ Dt3

6ω3
−

2 r b a δ Dt

3ω

b a δ Dt

6ω3 m
−

r b a δ Dt4

6ω3
−

2 r b a δ Dt2

3ω

0 b a δ

0 b a δ Dt

bDt2

6ω3
−

b

2ω
−

mr bDt5

6ω3
−

mr bDt3

6ω

aDt

3ω2
−

mr aDt4

3ω2
−

aDt2 mr

3



































Therefore, we have δ Q= P2 δ S2 , and thus, Q = P2 S2 . Therefore, we obtain

(x1 : x2 : x3 : x4 : u1 : u2)T = Q (x1 : x2 : x3 : x4 : u1 : u2)T

= P2 (S2 (x1 : x2 : x3 : x4 : u1 : u2)T ) = P2 (ξ1′ : ξ2′)T .

Let us check now that P2 parametrizes all solutions of the system. If we eliminate the ξ1’ and ξ2’
from the inhomogeneous system (x1 : x2 : x3 : x4 : u1 : u2 )T = P2 (ξ1’ : ξ2’)T , then we obtain
R3 (x1 : x2 : x3 : x4 : u1 : u2)T = 0, where the matrix R3 is defined by:

> R3 := SyzygyModule(P2, Alg2);

R3 :=









−3mω2 Dt m 0 −2ω r m −a δ 0
Dt −1 0 0 0 0
0 2mω 0 mr Dt 0 −b δ

0 0 Dt −1 0 0









> Quotient(R2, R3, Alg2);








1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









Therefore, we obtain that the quotient Alg2 -module (Alg2ˆ4 R2 )/(Alg2ˆ4 R3 ) is zero.

> Quotient(R3, R2, Alg2);








1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









Moreover, we obtain that the quotient Alg2 -module (Alg2ˆ4 R3 )/(Alg2ˆ4 R2 ) is zero, which proves
that the Alg2 -module associated with R2 is equal to the Alg2 -module associated with R3 . Therefore,
(ξ1′ : ξ2′)T = S2 (x1 : x2 : x3 : x4 : u1 : u2)T is also a flat output of the system which satisfies
(x1 : x2 : x3 : x4 : u1 : u2)T = P2 (ξ1′ : ξ2′)T . Let us notice that the two previous flat outputs only exist
for a b 6= 0.

Let us study the case where a = 0 and b = 1, i.e., the case where there is only a tangential thrust.

> R201 := linalg[submatrix](subs(a=0,b=1,evalm(R2)), 1..4, [1,2,3,4,6]);
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R201 :=











Dt −1 0 0 0
−3ω2 Dt 0 −2ω r 0

0 0 Dt −1 0

0
2ω

r
0 Dt −

δ

mr











Let us define a formal adjoint R201 adj of R201 by using an involution of Alg2 .

> R201_adj := Involution(R201, Alg2):

Let us check whether or not the Alg2 -module associated with R201 is torsion-free.

> Ext101 := Exti(R201_adj, Alg2, 1);

Ext101 :=





















1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









,









−3ω2 Dt 0 −2ω r 0
Dt −1 0 0 0
0 2mω 0 mr Dt −δ

0 0 Dt −1 0









,













2 δ Dt ω r

2 δ ω Dt2 r

−3 δ ω2 + Dt2 δ

δ Dt3 − 3 δ Dt ω2

Dt4 mr + Dt2 ω2 mr

























Therefore, we obtain that Alg2 -module associated with R201 is torsion-free, and thus, the system asso-
ciated with R201 is controllable and parametrizable. In particular, a parametrization of the system is
given by Ext101 [3] or, in other words, we have:

> Parametrization(R201, Alg2);












2ω r D(ξ1)(t − 1)
2ω r (D(2))(ξ1)(t − 1)

−3ω2 ξ1(t − 1) + (D(2))(ξ1)(t − 1)
(D(3))(ξ1)(t − 1) − 3ω2 D(ξ1)(t − 1)

mr (D(4))(ξ1)(t) + mω2 r (D(2))(ξ1)(t)













Let us check whether or not the Alg2 -module associated with R201 is free, i.e., whether or not the system
associated with R201 is flat.

> Ext201 := Exti(R201_adj, Alg2, 2);

Ext201 := [

[

δ

Dt2 ω2 + Dt4

]

,
[

1
]

, SURJ(1)]

The first matrix is not the identity matrix, and thus, we obtain that the Alg2 -module associated with
R201 is not a projective, and thus, a free Alg2 -module by the Quillen-Suslin theorem. The fact that the
system is controllable implies that there exists a π-polynomial in δ. Let us compute the minimal one.

> PiPolynomial(R201, Alg2, [delta]);

[δ]

Therefore, if we use the operator δ−1, i.e., an advance operator, then the system becomes flat. Let us
compute a flat output of the system which involves the advance operator δ−1. if we use advance operators.

> S201 := LocalLeftInverse(Ext101[3], [delta], Alg2);

S201 :=

[

0
1

6 δ ω3 r
−

1

3 δ ω2
0 0

]

10



Therefore, ξ = S201 (x1 : x2 : x3 : x4 : u2 )T is a flat output of the system which satisfies

(x1 : x2 : x3 : x4 : u2)T = Ext101[3] ξ.

Let us also point out that the flat output of the system is defined by means of an advance operator
whereas the parametrization Ext101 [3] of the system only contains time-delay operators. Let us find a
flat output of the system which only use Dt and δ and a parametrization wich depends on Dt , δ and δ−1.
In particular, let us prove that ξ’ = T201 (x1 : x2 : x3 : x4 : u2 )T , where T201 is the matrix defined
below, is a flat output of the system.

> T201 := evalm([[0,1,-2*r*omega,0,0]]);

T201 :=
[

0 1 −2ω r 0 0
]

Let us check it. First of all, we have

(x1 : x2 : x3 : x4 : u2)T = Ext101[3] ξ = (Ext101[3] ◦ S201) (x1 : x2 : x3 : x4 : u2)T

= Q201 (x1 : x2 : x3 : x4 : u2)T ,

where Q201 is defined by:

> Q201 := simplify(Mult(Ext101[3], S201, Alg2));

Q201 :=



































0
Dt

3ω2
−

2Dt r

3ω
0 0

0
Dt2

3ω2
−

2Dt2 r

3ω
0 0

0 −
%1

6ω3 r

%1

3ω2
0 0

0 −
Dt %1

6ω3 r

Dt %1

3ω2
0 0

0
Dt2 m (Dt2 + ω2)

6ω3 δ
−

Dt2 mr (Dt2 + ω2)

3 δ ω2
0 0



































%1 := 3ω2 − Dt2

Let us point out that Q201 is an idempotent of Alg25×5. This fact can be easily checked:

> simplify(evalm(Q201^2 - Q201));












0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













> P201 := Factorize(evalm(delta*Q201), T201, Alg2);

P201 :=





































δ Dt

3ω2

δ Dt2

3ω2

−
δ

2ω r
+

δ Dt2

6ω3 r

−
δ Dt

2ω r
+

δ Dt3

6ω3 r

Dt4 m

6ω3
+

Dt2 m

6ω
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Therefore, we have δ Q201= P201 oT201 , and thus, Q201 = δ−1 P201 oT201 . Let us denote by Param

the matrix δ−1 P201, namely:

> Param := simplify(evalm(delta^(-1)*P201));

Param :=





































Dt

3ω2

Dt2

3ω2

−
3ω2 − Dt2

6ω3 r

−
Dt (3ω2 − Dt2)

6ω3 r

Dt2 m (Dt2 + ω2)

6ω3 δ





































Hence, if we define ξ′ = T201 (x1 : x2 : x3 : x4 : u2)T , then for every element (x1 : x2 : x3 : x4 : u2)T of
the system, we have

(x1 : x2 : x3 : x4 : u2)T = Q201 (x1 : x2 : x3 : x4 : u2)T = Param (T201 (x1 : x2 : x3 : x4 : u2)T )

= Paramξ′.

Let us study the case where a = 1 and b = 0, i.e., the case where there is only a radial thrust.

> R210 := linalg[submatrix](subs(a=1,b=0,evalm(R2)), 1..4, 1..5);

R210 :=















Dt −1 0 0 0

−3ω2 Dt 0 −2ω r −
δ

m

0 0 Dt −1 0

0
2ω

r
0 Dt 0















We first define a formal adjoint R210 adj of R201 using an involution of Alg2 .

> R210_adj := Involution(R210, Alg2);

R210 adj :=



















−Dt −3ω2 0 0

−1 −Dt 0
2ω

r

0 0 −Dt 0
0 −2ω r −1 −Dt

0
δ

m
0 0



















Let us check whether or not the system defined by the matrix R210 is controllable and parametrizable.

> Ext101 := Exti(R210_adj, Alg2, 1);

Ext101 :=





















Dt 0 0 0
0 1 0 0
0 0 Dt 0
0 0 0 1









,









2ω 0 0 r 0
0 2ω 0 Dt r 0
0 2mDt 0 −ω r m −2 δ

0 0 Dt −1 0









,













−Dt δ r

−δ Dt2 r

2ω δ

2 δ Dt ω

−Dt ω2 r m − Dt3 r m
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The first matrix of Ext101 is not the identity matrix, and thus, the Alg2 -module associated with R201

is not torsion-free. The torsion elements of this module are defined by:

> TorsionElements(R210, [x1(t),x2(t),x3(t),x4(t),u1(t)], Alg2);

[

[

D(θ1)(t) = 0
D(θ3)(t) = 0

]

,

[

θ1(t) = 2ω x1(t) + r x4(t)
θ3(t) = 2mD(x2 )(t) − ω r m x4(t) − 2 u1(t − 1)

]

]

To finish, the controllable part of the system is defined by Ext101 [2] and it is parametrized by Ext101 [3],
namely, we have:

> ApplyMatrix(Ext101[3], [xi(t)], Alg2);












2ω r D(ξ)(t − 1)
2ω r (D(2))(ξ)(t − 1)

−3ω2 ξ(t − 1) + (D(2))(ξ)(t − 1)
(D(3))(ξ)(t − 1) − 3ω2 D(ξ)(t − 1)

r m (D(4))(ξ)(t) + ω2 r m (D(2))(ξ)(t)
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