We study a satellite in a circular equatorial orbit. See T. Kailath, Linear Systems, Prentice-Hall,
1980, p. 60 and p. 145, and H. Mounier, Propriétés structurelles des systémes linéaires a retards: aspects
théoriques et pratiques, PhD Thesis, University of Orsay, France, 1995, p. 6, p. 11 and p. 17.

> with(Ore_algebra):
> with(OreModules):

We define the Weyl algebra Alg = A1, where Dt acts as differentiation w.r.t. time ¢. Note that we have
to declare the parameters w (angular velocity), m (mass of the satellite), r (radius component in the
polar coordinates), a and b (parameters specifying the thrust) of the system in the definition of the Ore
algebra:

> Alg := DefineOreAlgebra(diff=[Dt,t], polynom=[t], comm=[omega,m,r,a,bl):

The linearized ordinary differential equations for the satellite in a circular orbit are given by the following
matrix R. These equations describe the motion of the satellite in the equatorial plane, where the fifth
and the sixth column of R incorporate the controls u!, 42 which represent radial thrust resp. tangential
thrust caused by rocket engines (see Kailath, 1980, p. 60 and p. 145).

> Rab := evalm([[Dt,-1,0,0,0,0], [-3*omega~2,Dt,0,-2*omega*r,-a/m,0],
> [0,0,Dt,-1,0,0], [0,2%omega/r,0,Dt,0,-b/(m*r)]1]1);
Dt -1 0 0 0 0
30 Dt 0 —2wr -2 0
m
Rab =

o
e

0 0 Dt -1

o X o0 om0 -2
T

mr
We define the formal adjoint R_adj of R:
> Rab_adj := Involution(Rab, Alg);
[ —Dt —3w? 0 0
2
-1 -Dt =
r
. 0 0 —Dt 0
Rabadj:=| o —2wr -1 —Dt
o = 0o 0
m
b
0 0 0o —-——
L mr -

Let us compute the first extension module ext”1 with values in Alg of the Alg-module N associated with
R_adj:

> Extab := Exti(Rab_adj, Alg, 1);

1 0 0 0 —3mw? Dtm 0 —2wrm —a 0
utab — 01 0 0 Dt -1 0 0 0 0
00 1 0]’ 0 2mw 0 mr Dt 0o -b |’
0 0 0 1 0 0 Dt -1 0 0
ba 0
ba Dt 0
0 ba
0 ba Dt
—3bmw?+ Dt>’bm —2Dtbwrm
2a Dtmw aDt*mr



Since Ext1[1] is the identity matrix, we conclude that ext”1 of N is the zero module. Hence, the module
M which is associated with the system R is torsion-free. It follows that the system is controllable and,
equivalently, parametrizable. A parametrization of R is given in Ezt![3]. Of course, a necessary condition
for Ext1[3] being a parametrization is that (R o Fzt1[3]) = 0:

> Mult(Rab, Extab[3], Alg);

o O oo
o O o o

Equivalently, a parametrization of the system can be computed by using the following command:

> Parametrization(Rab, Alg);

—bm (3w & (1) — (g &1(1) + 2w (3 &(1)))
am (2w (g & (1) + 7 (= &2(1)))

The coefficients in the equations of the system lie in the polynomial ring with one variable Dt and with
coeflicients that are rational functions in w, m, r, a, b with real coefficients. Since this polynomial ring
is a principal ideal domain (namely, every ideal is generated by a single element), we know that torsion-
freeness of the module M which is associated with the system R actually implies freeness, i.e., system R
is flat. Hence, we can compute a left-inverse of the parametrization and get a flat output of the system:

> Sab := LeftInverse(Extab[3], Alg);

1
v 0 000
Sab = a .
0 0 — 00 0
ba

Therefore, (€1 : €2)T = Sab (z1 : 22 : 23 : x4 : ul : u2)T is a flat output of the system which satisfies
(v1 : 22 : 28 : x4 : ul : u2)T = Extab[3] (€1 : £€2)T. Let us notice that this flat output exists only if
ab # 0.

Let us remember that the full row-rank matrix R admits a right-inverse if and only if the module
which is associated with it is projective. By the theorem of Quillen-Suslin, for modules over commuta-
tive polynomial rings, projectiveness is the same as freeness. So, M is projective which we could have
discovered by computing a right-inverse of R:

> RightInverse(Rab, Alg);

i 0 0 0 0 T
-1 0 0 0
0 0 0 0
0 0 —1 0
_Dtm _m 2wrm 0

a a a
2wm Dtmr mr
L b b b -

Let us compute a Brunovsky canonical form for the system defined by R in the case where ab # 0.



>

B := Brunovsky(Rab, Alg);
o1
ba
0

2w
bar

0 0
0 0
2wr
0
ba
L 0
ba
1
0 =
ba
0 0

Therefore, using the following change of variables

>

0 0 |
0 0
1
— 0
bm
0 0
0 0
1
0
mar -

evalm([[z[1](t)], [z[2] ()], [v[11 ()], [z[3]1 (£)],[z[4] ()], [v[2] (£)11)=
> ApplyMatrix(B, [seq(x[i](t),i=1..4),ul(t),u2(t)], Alg);

3wz (t)

1 (t)
ba
fL‘g(t
ba

~—

2wrxy(t)

ul(t)

ba

ba
3(t)
ba
z4(1)
ba
2was(t)

n u2(t)

bm

bar

we obtain the following Brunovsky canonical form:

mar -

> E := Elimination(linalg[stackmatrix] (B, Rab),
>  [seq(x[il,i=1..4),ul,u2], [z[1],z[2],v[1],z[3],=z[4],v[2],0,0,0,0], Alg):
> ApplyMatrix(E[1], [seq(x[il(t),i=1..4),ul(t),u2(t)], Alg)=
> App]).yMatrix(E[Q] , [[z[11 ()], [z[2]1(v)], [vI[11(E)1, [z[3]1 (v)], [z[4]1 (&)1, [v[2] (£)]1],
> Alg);
o ] T *(% za(t)) + v2(t) 1
0 _<§ 23(t)) + z4(t)
0 *(g z2(t)) +v1(t)
0 — (57 z1(t)) + 22(t)
u2(t) | 2awmza(t) + amruva(t)
ul(t) | | =3bw?mz(t) +bmui(t) — 2bwrm z4(t)
x4(t) bazy(t)
x3(t) bazs(t)
x2(t) bazo(t)
| z1(t) | i baz(t) ]

Let us consider the case where a =0 and b =1, i.e., the case where we only have a tangential thrust.
Then, the system is defined by the following matrix:

> RO1 := linalg[submatrix] (subs(a=0,b=1,evalm(Rab)), 1..4, [1,2,3,4,6]);



Dt -1

o
o
o

RO1 := 0 0 Dt -1 0
2 1

o = 0o Dt ——

T mr

The formal adjoint R01_ adj of RO1 is defined by:

> RO1_adj := Involution(RO1, Alg);

T —Dt —3w? 0 0 7
1 -, o
T
ROI-adj == | ¢ 0 -Dt 0
0 —2wr -1 —Dt
1
0 0 0o ——
L mr 4

Let us check whether or not the new system is controllable.

> ExtO01 := Exti(RO1_adj, Alg, 1);

9 2Dtwr

1 0 0 O 3w Dt 0 —2wr 0 9w D2 r

Bot0] — 01 0 O ’ Dt -1 0 0 0 7 302 4 Di?
0 010 0 2wm 0 mrDt -1 D — 3 Dt w?

000 1 0 0 Dt -1 0 TP

Dt*mr+ D2 w?mr

We obtain that the Alg-module associated with R01 is torsion-free, and thus, the system is controllable.
Moreover, a parametrization of the system is given by Ezt01[3] or, equivalently, by:

> Parametrization(RO1, Alg);

2wr(d%§1(t))
2ur (4 4(1)
36 (t) + (8 (1)
(% 51(752)) —-3w? (%fl(t))
mr(w? (§=z &1(1) + (3= &1(1))

Using the fact that the system is time-invariant, we obtain that the Alg-module associated with R0OI is
free, and thus, the system is flat. A flat output is obtain by computing a left-inverse of the parametrization
Exzt01][3].

> 801 := LeftInverse(Ext01[3], Alg);

1 1
61 w? 3w?
>  simplify(Mult(SO01, Ext01[3]1, Alg));

[1]

Therefore, £ = S01 (21 : 22 : 18 : o4 : u2)T is a flat output of the system which satisfies

S01 :=1| 0 0 0

(z1:22:23:24:u2)T = Ext01[3] €.



Now, let us turn to the case where a = 1 and b = 0, i.e., to the case where there is only a radial thrust.
Then, the system is defined by the following matrix:

> R10 := linalg[submatrix] (subs(a=1,b=0,evalm(Rab)), 1..4, 1..5);
Dt -1 0 0 0
1
—-3w? Dt 0 —2wr ——
R10 = m
0 Dt -1 0
2
o = 0o Dt 0
r
Its formal adjoint R10_ adj is defined by:
> R10_adj := Involution(R10, Alg);
[ —Dt —3w? 0 0
1 -p o0 ¢
r
R10-adj:=| o 0 -Dt 0
0 —2wr -1 =Dt
1
0 - 0 0
L m .
Let us check whether or not the system defined by R10 is controllable.
> ExtO1 := Exti(R10_adj, Alg, 1);
-D
Dt 0 0 0 20 0 0 v 0 _Dt";r
o || 01 0 0 0 2w 0 Dtr 0 b
U0 0o pe o] 0 2mDt 0 —wrm =2 | o Dr
0 0 0 1 0 0 Dt -1 0

—Dtw?rm—Dt3rm

The first matrix of Fzt01 is not the identity matrix, and thus, there exist some torsion elements in the
Alg-module associated with R01. Let us compute them.

> TorsionElements(R10, [x1(t),x2(t),x3(t),x4(t),ul(t)], Alg);

L E86=0] Lo am g0 - 2o |

Then, the autonomous elements of the system are defined by:

> AutonomousElements(R10, [x1(t),x2(t),x3(t),x4(t),ul(t)], Alg);

[ 3wm21(t) —05(t)=0 } 7 61 = S_w% 7 [ 92:2wxl(t)+rx4(t) }
G 02(t) =0 6, = _Ci Oy =2m (3 x2(t)) —wrmx4(t) — 2ul(?)

In particular, the system is not controllable. A first integral of motion of the system is defined by:

> FirstIntegral(R10, [x1(t),x2(t),x3(t),x4(t),ul(t)], Alg);

1 _C1 (2wx1(t) +rx4(t))
2 w




We let the reader check by himself that the time-derivative of the above first integral of motion is 0
modulo the system equations.

Finally, let us point out that the controllable part of the system is defined by the matrix Ext01[2] and
it is parametrized by Ext013].

Following (Mounier, 1995), we modify the description of the control of the satellite in the system. If
the rocket engines are commanded from the earth, then, due to transmission time, a constant time-delay
occurs in the system.

Hence, we enlarge the above Ore algebra by a shift operator §:

> Alg2 := DefineOreAlgebra(diff=[Dt,t], dual_shift=[delta,s],
> polynom=[t,s], comm=[omega,m,r,a,b], shift_action=[delta,t]):

The system matrix is given as follows:

> R2 := evalm([[Dt,-1,0,0,0,0], [-3*omega”2,Dt,0,-2*omega*r,-a*delta/m,0],
> [0,0,Dt,-1,0,0], [0,2*omega/r,0,Dt,0,-b*delta/(m*r)]]);

Dt -1 0 0 0 0
-3w? Dt 0 —2wr _a_(S 0
R2 = m
0 0 Dt -1 0 0
2 bo
o = o bp o -2
r mr
We define a formal adjoint R2_adj of R2 using an involution of Alg2:
> R2_adj := Involution(R2, Alg2);
[ —Dt —3w? 0 0 ]
2
-1 -pt o ==
r
0 0 -Dt 0
R2_adj = 0 —2wr -1 =Dt
0
2200 0
m
0 0 0 bo
L mr

We check controllability and parametrizability of the system by applying Ezti to R2_adj:

> Extl := Exti(R2_adj, Alg2, 1);

1 0 0 O —3mw? Dtm 0 —2wrm —ad 0
ot] — 01 00 Dt -1 0 0 0 0
00 1 0]’ 0 2mw 0 mr Dt 0 —-bd |’
0 0 0 1 0 0 Dt -1 0 0
bad 0
bad Dt 0
0 bad
0 bad Dt
—3bmw?+ Dt?’bm —2Dtbwrm
2a Dt mw aDt*mr

Since Fxt1[1] is the identity matrix, we find that the first extension module with values in Alg2 of the
Alg2-module N which is associated with R2 _adj is generically the zero module. Equivalently, the system



is generically controllable and parametrizable. A parametrization of the system is given in Fuxtl[3].
Equivalently, we can directly obtain the parametrization of the system by using the following command:

> Parametrization(R2, Alg2);

bai(t—1)
baD(&)(t —1)
baga(t —1)

baD(&)(t—1)
bm (D@)(&1)(t) — 3bw?m&(t) — 2bwrmD(&)(1)
2awmD(E) (1) + amr (D)(€)(1)

This parametrization is actually a minimal one (namely, it involves the minimal number of free functions)
because we obtain the same parametrization using MinimalParametrization:

> MinimalParametrization(R2, Alg2);

bad 0
bad Dt 0
0 bad
0 bad Dt
—3bmw?+ Dt>’bm —2Dtbwrm
2a Dtmw aDt*mr

We continue to study the structural properties of the system by examining the algebraic properties of the
Alg2-module M which is associated with R2. The next step is to compute the second extension module
with values in Alg2 of N:

> Ext2 := Exti(R2_adj, Alg2, 2);

5 0
|| Dtw?+ D3 0 10
Ext2 = 0 5 o 1| SURIE®)
0 Dt* w? + Dt

Since Ext2[1] is not an identity matrix, we see that ext"2 of N is different from zero. Hence, M is
not projective which also implies that M is not free. So, the satellite is not a flat system. As already
mentioned above, M is a projective Alg2-module if and only if the full row rank matrix R2 admits a
right-inverse. We conclude that a right-inverse of R2 does not exist:

> RightInverse(R2, Alg2);

[

Since the torsion-free degree i(M) of M is equal to 1, we can find a polynomial 7 in the variable § such
that the system is m-free:

> PiPolynomial(R2, Alg2, [deltal);
[0]

By definition of the m-polynomial (Mounier, 1995), this means that if we introduce the time-advance
operator in the system of the satellite, then it becomes a flat system. Hence, the module M associated
with this system is a free module (over the Ore algebra which is obtained by adjoining the advance
operator §~! to Alg2), and we are going to find a basis for this module using LocalLeftInverse:



> S8 := LocallLeftInverse(Ext1[3], [deltal, Alg2);

0 0 _r Dt (D +4u?) 1 Dt
S .= 6daw3d 3w2bm  6aw3m
1
0 0 — 0 0 0
oba

We obtain a left-inverse S of the parametrization Ezt1[3] of the system, where we admit ¢ in the denom-
inators, i.e., we allow the time-advance operator.

> Mult(S, Ext1[3], Alg2);

Hence, (21 : 20)T = S (w1 : @2 : 23 : 24 : up : uz)? is a basis of the Alg2[6~1]-module M>, and thus, a
flat output of the satellite when we introduce the time-advance operator. More precisely, a flat output
of the system over the ring Alg2[§~!] is defined by:

> evalm([[xil1(t)], [xi2(t)]])=ApplyMatrix(S, [x1(t),x2(t),x3(t),x4(t),ul(t),u2(t)],
> Alg2);

1rD®)(@3)(t+1) 2rD@3)(E+1) 1 ul(h) N 1 D(u2)(t)

{ £1(t) } _ 6 aw3b 3 wab C3wlbm 6 awdm
£2(t) x3(t +1)
ba

Using the fact that

(21 :22: 2324 :ul :u2)T = BExt1[3] (€1,£2)7
and (£1:€2)T =S (x1:22: 23 : 24 :ul :u2)7,

then we have (z1 : 22 : 23 : 24 :ul : u2)T = Q (21 : 22 : 23 : 24 : ul : u2)T, where Q is the following
matrix:

> Q := simplify (Mult(Ext1[3], S, Alg2));

(0 o _r Dt (Dt +4w?) 0 _ad bDt§ 1
6w3 3w?m 6w3m
0 0 _ Dt*r (Dt +4uw?) 0 _aDts bDt*§
6w3 3w?m 6w3m
Q=0 0 1 0 0 0
0 0 Dt 0 0 0
0 _mr Dt (w? 4 Dt?) 0 3w+ Dt* b(=3w?+ Dt*) Dt
6dawsd 3w? 6aw?
00 _Dt2mr(w2+Dt2) _2aDt Dit2
L 3w2db 3wb 3w? -

Let us point out that by the form of the matrix S shows that (€1’ : €2)7 = S2 (21 : 22 : 23 : 24 : ul : u2)T
is also a flat output of the system, where S2 is defined by:

> 82 := evalm([[0,0,0,0,-2*omega/b,Dt/al, [0,0,1/(axbxdelta),0,0,0]1]1);

0000—27“’ﬁ

S2 = 1 a

00 — 0 0 0
dba

oo



Let us check this by using OreModules.

> P2 := Factorize(simplify(evalm(delta*Q)),simplify(evalm(delta*xS2)), Alg2);

[ Sba rbad Dt®  2rbad Dt
6wdm 6w 3w
bad Dt rbad Dt*  2rbad Dt
6w3m 6w 3w

P2 .= 0 bad
0 bad Dt

b Dt? b mrbDt®  mrbDt3
6w 2w  6wd 6w
a Dt mraDt*  aDt*mr

L 3w? 3w 3 .

Therefore, we have 6 Q= P2 § 52, and thus, Q@ = P2 52. Therefore, we obtain

(1 :22: 23 24 :ul :u2)” = Q(x1:22:23:24:ul:u2)”
= P2(S2(xl:x2:x3: x4 :ul :u2)T) = P2(c1: ¢2)T.
Let us check now that P2 parametrizes all solutions of the system. If we eliminate the £1’ and £2’

from the inhomogeneous system (z1 : 22 : 28 : xf : ul : u2)T = P2 (£1' : £€2)T, then we obtain
R3(x1:22:23: 24 :ul:u2)” =0, where the matrix R3 is defined by:

> R3 := SyzygyModule(P2, Alg2);

—3mw? Dtm 0 —2wrm —aé 0
R3 — Dt -1 0 0 0 0
’ 0 2mw 0 mr Dt 0 —bo
0 0 Dt -1 0 0
> Quotient(R2, R3, Alg2);
1 0 0 O
01 00
0 010
0 0 0 1

Therefore, we obtain that the quotient Alg2-module (Alg2°4 R2)/(Alg2"4 R3) is zero.

> Quotient(R3, R2, Alg2);

SO O
o O = O
o= OO
_— o o o

Moreover, we obtain that the quotient Alg2-module (Alg2°4 R3)/(Alg2"4 R2) is zero, which proves
that the Alg2-module associated with R2 is equal to the Alg2-module associated with R3. Therefore,
(€1 : &) = S2(x1 : 22 : 3 : 24 : ul : u2)T is also a flat output of the system which satisfies
(w1 :22:23: 24 :ul :u2)T = P2(£17: €2")T. Let us notice that the two previous flat outputs only exist
for ab # 0.

Let us study the case where a = 0 and b = 1, i.e., the case where there is only a tangential thrust.

> R201 := linalg[submatrix] (subs(a=0,b=1,evalm(R2)), 1..4, [1,2,3,4,6]);



Dt -1 0 0 0
—3w? Dt 0 —2wr 0

R201 = 0 0 Dt -1 0
2 5

o 2 o o -2

T mr

Let us define a formal adjoint R201 _ adj of R201 by using an involution of Alg2.
> R201_adj := Involution(R201, Alg2):
Let us check whether or not the Alg2-module associated with R201 is torsion-free.

> Ext101 := Exti(R201_adj, Alg2, 1);

26 Dt
1 0 0 0 -3w?> Dt 0 2wr 0 25wD;u27;"
matror = || 0L 00 , Dt -1 0 0 0 , —30w?+ D26
0 0 1 0 0 2mw 0 mrDt -6 5DE — 35 Dt w?
000 1 0 0 Dt -1 0 - w

Dt*mr+ D2 w?mr

Therefore, we obtain that Alg2-module associated with R201 is torsion-free, and thus, the system asso-
ciated with R201 is controllable and parametrizable. In particular, a parametrization of the system is
given by Erxt101[3] or, in other words, we have:

> Parametrization(R201, Alg2);
2wrD(&)(t—1)
2wr (D@)(&)(t - 1)
—3w?&(t—1) + (D@)(&)(t —1)
(D@)(&)(t - 1) = 3w D(&)(t - 1)
mr (DW)(&)(t) + mw?r (D®)(&)(1)

Let us check whether or not the Alg2-module associated with R201 is free, i.e., whether or not the system
associated with R201 is flat.

> Ext201 := Exti(R201_adj, Alg2, 2);

)

Ext201 = [|: Dt2w2+Dt4

}, (1], SURJ(L)

The first matrix is not the identity matrix, and thus, we obtain that the Alg2-module associated with
R201 is not a projective, and thus, a free Alg2-module by the Quillen-Suslin theorem. The fact that the
system is controllable implies that there exists a m-polynomial in d. Let us compute the minimal one.

> PiPolynomial (R201, Alg2, [deltal);
(4]

Therefore, if we use the operator § 1, i.e., an advance operator, then the system becomes flat. Let us
compute a flat output of the system which involves the advance operator 6 ~!. if we use advance operators.

> S201 := LocallLeftInverse(Ext101[3], [deltal, Alg2);

1 1
60wdr 3ow?

5201 =10 0 0

10



Therefore, £ = 5201 (z1 : 22 : 28 : x/ : u2)7 is a flat output of the system which satisfies
(x1:22:23: 24 :u2)T = Bxt101[3]¢.

Let us also point out that the flat output of the system is defined by means of an advance operator
whereas the parametrization Frt101[3] of the system only contains time-delay operators. Let us find a
flat output of the system which only use Dt and § and a parametrization wich depends on D¢, 6 and § 1.
In particular, let us prove that & = T201 (z1 : 22 : 23 : x4 : u2)T, where T201 is the matrix defined
below, is a flat output of the system.

> T201 := evalm([[0,1,-2*r*omega,0,0]]);

7201 :=[0 1 —2wr 0 0]

Let us check it. First of all, we have

(x1:22:23:24:u2)T = FExt101[3]¢ = (Ext101[3] 0 S201) (x1: 22 : 23 : x4 : u2)”
= Q201 (x1:22:23:24:u2)T,

where Q201 is defined by:

> Q201 := simplify(Mult(Ext101[3], S201, Alg2));

M Dt _2Dtr b

0 — 0 0
3w? 3w
0 Dt? 2 Dt*r 0 0
3w? 3w
%1 %1
201 = 0 — — 0 0
@ 6wdr 3w?
Dt %1 Dt %1
0 — 0 0
6w3r 3w?
0 Dt* m (Dt? + w?) _Dt2mr(Dt2+w2) 0 0
L 6w3 o 30w? J

%1 := 3w? — Dt?
Let us point out that Q201 is an idempotent of Alg2°*®. This fact can be easily checked:

> simplify(evalm(Q201°2 - Q201));

O O OO
OO O OO
O O OO
O O OO
OO O OO

0 0 0
> P201 := Factorize(evalm(delta*Q201), T201, Alg2);
[ 6 Dt T

3w?
6 Dt?
Bw?

§ oD
2wr | 6wir
sDt  §Dt?
C2wr | 6wir
Dt*m  Dt*m
60r | bw

P201 :=| —

11



Therefore, we have § Q201= P201 o T201, and thus, Q201 = 6! P201 o T201. Let us denote by Param
the matrix §—! P201, namely:

> Param := simplify(evalm(delta”(-1)*P201));
i Dt
3w
Dt?
3w
3w? — Dt?
6wl
Dt (3w? — Dt?)
6w3r
Dt*m (Dt* + w?)
L 6w3d J

Param :=

Hence, if we define & = 7201 (z1 : 22 : 23 : x4 : u2)T, then for every element (z1: 22 : 23 : 24 : u2)T of
the system, we have

(z1:22:23:24:u2)” Q201 (x1: 22 : 23 : 24 : u2)” = Param (T201 (1 : 22 : 23 : 4 : u2)7)

= Paramé'.

Let us study the case where a =1 and b = 0, i.e., the case where there is only a radial thrust.

> R210 := linalg[submatrix] (subs(a=1,b=0,evalm(R2)), 1..4, 1..5);
Dt -1 0 0 0

1)
—3w? Dt 0 —2wr ——
m

R210 =
0 Dt -1 0

2
o = 0o D0
T

We first define a formal adjoint R210_adj of R201 using an involution of Alg2.

> R210_adj := Involution(R210, Alg2);

[ —Dt —3w? 0 0 7
N -
r
R210_adj := 0 0 -Dt 0
0 —2wr -1 =Dt
1)
0 — 0 0
L m -

Let us check whether or not the system defined by the matrix R210 is controllable and parametrizable.

> Ext101 := Exti(R210_adj, Alg2, 1);

Dt 0 0 0 20 0 0 ¢ 0 —_6Dl§f2:=

bettor— || 01 00 0 20 0 Dir 0 s
0 0 Dt 0|’ 0 2mDt 0 —wrm —2§ |’ 98 Diw
0 0 0 1 o 0 Dt -1 0

—Dtw?rm—Dt3rm



The first matrix of Ext101 is not the identity matrix, and thus, the Alg2-module associated with R201
is not torsion-free. The torsion elements of this module are defined by:

> TorsionElements(R210, [x1(t),x2(t),x3(t),x4(t),ul(t)], Alg2);

[[ D(61)(t) =0 ] [ 61 (t) = 2wx1(t) + rx4(t) }
D(0s)(t) =0 |’ | 03(t) =2mD(22)(t) —wrmx4(t) —2ul(t — 1)

To finish, the controllable part of the system is defined by Ext101[2] and it is parametrized by Fxt101][3],
namely, we have:

> ApplyMatrix(Ext101[3], [xi(t)], Alg2);

2w7‘D(§)(t—1)
2wr (D@)(&)(t—1)
—3wE(t— 1)+ (D@)(E)(t - 1)
(D) (E)(t — 1) =3w?D(E)(t — 1)
rm (D) (E)(t) + w? rm (DP)(€)(t)
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