
We study a satellite in a circular equatorial orbit. See T. Kailath, Linear Systems, Prentice-Hall,
1980, p. 60 and p. 145, and H. Mounier, Propriétés structurelles des systèmes linéaires à retards: aspects

théoriques et pratiques, PhD Thesis, University of Orsay, France, 1995, p. 6, p. 11 and p. 17.

> with(Ore_algebra):

> with(OreModules):

We define the Weyl algebra Alg = A1, where Dt acts as differentiation w.r.t. time t. Note that we have
to declare the parameters ω (angular velocity), m (mass of the satellite), r (radius component in the
polar coordinates), a and b (parameters specifying the thrust) of the system in the definition of the Ore
algebra:

> Alg := DefineOreAlgebra(diff=[Dt,t], polynom=[t], comm=[omega,m,r,a,b]):

The linearized ordinary differential equations for the satellite in a circular orbit are given by the following
matrix R. These equations describe the motion of the satellite in the equatorial plane, where the fifth
and the sixth column of R incorporate the controls u1 , u2 which represent radial thrust resp. tangential
thrust caused by rocket engines (see Kailath, 1980, p. 60 and p. 145).

> Rab := evalm([[Dt,-1,0,0,0,0], [-3*omega^2,Dt,0,-2*omega*r,-a/m,0],
> [0,0,Dt,-1,0,0], [0,2*omega/r,0,Dt,0,-b/(m*r)]]);

Rab :=















Dt −1 0 0 0 0

−3ω2 Dt 0 −2ω r −
a

m
0

0 0 Dt −1 0 0

0
2ω

r
0 Dt 0 −

b

m r















We define the formal adjoint R adj of R:

> Rab_adj := Involution(Rab, Alg);

Rab adj :=



























−Dt −3ω2 0 0

−1 −Dt 0
2ω

r

0 0 −Dt 0
0 −2ω r −1 −Dt

0 −
a

m
0 0

0 0 0 −
b

m r



























Let us compute the first extension module extˆ1 with values in Alg of the Alg-module N associated with
R adj :

> Extab := Exti(Rab_adj, Alg, 1);

Extab :=

















1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









,









−3mω2 Dt m 0 −2ω r m −a 0
Dt −1 0 0 0 0
0 2mω 0 mr Dt 0 −b

0 0 Dt −1 0 0









,

















b a 0
b aDt 0

0 b a

0 b aDt

−3 bmω2 + Dt2 bm −2Dt b ω r m

2 aDt mω aDt2 mr
























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Since Ext1 [1] is the identity matrix, we conclude that extˆ1 of N is the zero module. Hence, the module
M which is associated with the system R is torsion-free. It follows that the system is controllable and,
equivalently, parametrizable. A parametrization of R is given in Ext1 [3]. Of course, a necessary condition
for Ext1 [3] being a parametrization is that (R o Ext1 [3]) = 0:

> Mult(Rab, Extab[3], Alg);








0 0
0 0
0 0
0 0









Equivalently, a parametrization of the system can be computed by using the following command:

> Parametrization(Rab, Alg);
















b a ξ1(t)
b a ( d

dt
ξ1(t))

b a ξ2(t)
b a ( d

dt
ξ2(t))

−bm (3ω2 ξ1(t) − ( d
2

dt2
ξ1(t)) + 2ω r ( d

dt
ξ2(t)))

am (2ω ( d

dt
ξ1(t)) + r ( d

2

dt2
ξ2(t)))

















The coefficients in the equations of the system lie in the polynomial ring with one variable Dt and with
coefficients that are rational functions in ω, m, r, a, b with real coefficients. Since this polynomial ring
is a principal ideal domain (namely, every ideal is generated by a single element), we know that torsion-
freeness of the module M which is associated with the system R actually implies freeness, i.e., system R

is flat. Hence, we can compute a left-inverse of the parametrization and get a flat output of the system:

> Sab := LeftInverse(Extab[3], Alg);

Sab :=







1

b a
0 0 0 0 0

0 0
1

b a
0 0 0







Therefore, (ξ1 : ξ2)T = Sab (x1 : x2 : x3 : x4 : u1 : u2 )T is a flat output of the system which satisfies
(x1 : x2 : x3 : x4 : u1 : u2 )T = Extab[3] (ξ1 : ξ2)T . Let us notice that this flat output exists only if
ab 6= 0.

Let us remember that the full row-rank matrix R admits a right-inverse if and only if the module
which is associated with it is projective. By the theorem of Quillen-Suslin, for modules over commuta-
tive polynomial rings, projectiveness is the same as freeness. So, M is projective which we could have
discovered by computing a right-inverse of R:

> RightInverse(Rab, Alg);






















0 0 0 0
−1 0 0 0
0 0 0 0
0 0 −1 0

−
Dt m

a
−

m

a

2ω r m

a
0

−
2ω m

b
0 −

Dt mr

b
−

mr

b























Let us compute a Brunovský canonical form for the system defined by R in the case where ab 6= 0.
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> B := Brunovsky(Rab, Alg);

B :=









































1

b a
0 0 0 0 0

0
1

b a
0 0 0 0

3ω2

b a
0 0

2ω r

b a

1

bm
0

0 0
1

b a
0 0 0

0 0 0
1

b a
0 0

0 −
2ω

b a r
0 0 0

1

mar









































Therefore, using the following change of variables

> evalm([[z[1](t)],[z[2](t)],[v[1](t)],[z[3](t)],[z[4](t)],[v[2](t)]])=
> ApplyMatrix(B, [seq(x[i](t),i=1..4),u1(t),u2(t)], Alg);

















z1(t)
z2(t)
v1(t)
z3(t)
z4(t)
v2(t)

















=











































x1(t)

b a

x2(t)

b a

3ω2 x1(t)

b a
+

2ω r x4(t)

b a
+

u1(t)

bm

x3(t)

b a

x4(t)

b a

−
2ω x2(t)

b a r
+

u2(t)

mar











































we obtain the following Brunovský canonical form:

> E := Elimination(linalg[stackmatrix](B, Rab),
> [seq(x[i],i=1..4),u1,u2], [z[1],z[2],v[1],z[3],z[4],v[2],0,0,0,0], Alg):
> ApplyMatrix(E[1], [seq(x[i](t),i=1..4),u1(t),u2(t)], Alg)=
> ApplyMatrix(E[2], [[z[1](t)],[z[2](t)],[v[1](t)],[z[3](t)],[z[4](t)],[v[2](t)]],
> Alg);

































0
0
0
0

u2(t)
u1(t)
x4(t)
x3(t)
x2(t)
x1(t)

































=

































−( d

dt
z4(t)) + v2(t)

−( d

dt
z3(t)) + z4(t)

−( d

dt
z2(t)) + v1(t)

−( d

dt
z1(t)) + z2(t)

2 aω mz2(t) + amr v2(t)
−3 b ω2 mz1(t) + bmv1(t) − 2 b ω r mz4(t)

b a z4(t)
b a z3(t)
b a z2(t)
b a z1(t)

































Let us consider the case where a = 0 and b = 1, i.e., the case where we only have a tangential thrust.
Then, the system is defined by the following matrix:

> R01 := linalg[submatrix](subs(a=0,b=1,evalm(Rab)), 1..4, [1,2,3,4,6]);
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R01 :=











Dt −1 0 0 0
−3ω2 Dt 0 −2ω r 0

0 0 Dt −1 0

0
2ω

r
0 Dt −

1

mr











The formal adjoint R01 adj of R01 is defined by:

> R01_adj := Involution(R01, Alg);

R01 adj :=



















−Dt −3ω2 0 0

−1 −Dt 0
2ω

r

0 0 −Dt 0
0 −2ω r −1 −Dt

0 0 0 −
1

mr



















Let us check whether or not the new system is controllable.

> Ext01 := Exti(R01_adj, Alg, 1);

Ext01 :=





















1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









,









−3ω2 Dt 0 −2ω r 0
Dt −1 0 0 0
0 2ω m 0 mr Dt −1
0 0 Dt −1 0









,













2Dt ω r

2ω Dt2 r

−3ω2 + Dt2

Dt3 − 3Dt ω2

Dt4 mr + Dt2 ω2 mr

























We obtain that the Alg-module associated with R01 is torsion-free, and thus, the system is controllable.
Moreover, a parametrization of the system is given by Ext01 [3] or, equivalently, by:

> Parametrization(R01, Alg);














2ω r ( d

dt
ξ1(t))

2ω r ( d
2

dt2
ξ1(t))

−3ω2 ξ1(t) + ( d
2

dt2
ξ1(t))

( d
3

dt3
ξ1(t)) − 3ω2 ( d

dt
ξ1(t))

mr (ω2 ( d
2

dt2
ξ1(t)) + ( d

4

dt4
ξ1(t)))















Using the fact that the system is time-invariant, we obtain that the Alg-module associated with R01 is
free, and thus, the system is flat. A flat output is obtain by computing a left-inverse of the parametrization
Ext01 [3].

> S01 := LeftInverse(Ext01[3], Alg);

S01 :=

[

0
1

6 r ω3
−

1

3ω2
0 0

]

> simplify(Mult(S01, Ext01[3], Alg));
[

1
]

Therefore, ξ = S01 (x1 : x2 : x3 : x4 : u2 )T is a flat output of the system which satisfies

(x1 : x2 : x3 : x4 : u2)T = Ext01[3] ξ.
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Now, let us turn to the case where a = 1 and b = 0, i.e., to the case where there is only a radial thrust.
Then, the system is defined by the following matrix:

> R10 := linalg[submatrix](subs(a=1,b=0,evalm(Rab)), 1..4, 1..5);

R10 :=















Dt −1 0 0 0

−3ω2 Dt 0 −2ω r −
1

m

0 0 Dt −1 0

0
2ω

r
0 Dt 0















Its formal adjoint R10 adj is defined by:

> R10_adj := Involution(R10, Alg);

R10 adj :=



















−Dt −3ω2 0 0

−1 −Dt 0
2ω

r

0 0 −Dt 0
0 −2ω r −1 −Dt

0 −
1

m
0 0



















Let us check whether or not the system defined by R10 is controllable.

> Ext01 := Exti(R10_adj, Alg, 1);

Ext01 :=





















Dt 0 0 0
0 1 0 0
0 0 Dt 0
0 0 0 1









,









2ω 0 0 r 0
0 2ω 0 Dt r 0
0 2mDt 0 −ω r m −2
0 0 Dt −1 0









,













−Dt r

−Dt2 r

2ω

2Dt ω

−Dt ω2 r m − Dt3 r m

























The first matrix of Ext01 is not the identity matrix, and thus, there exist some torsion elements in the
Alg-module associated with R01 . Let us compute them.

> TorsionElements(R10, [x1(t),x2(t),x3(t),x4(t),u1(t)], Alg);
[[

d

dt
θ1(t) = 0

d

dt
θ3(t) = 0

]

,

[

θ1(t) = 2ω x1(t) + r x4(t)
θ3(t) = 2m ( d

dt
x2(t)) − ω r m x4(t) − 2 u1(t)

]]

Then, the autonomous elements of the system are defined by:

> AutonomousElements(R10, [x1(t),x2(t),x3(t),x4(t),u1(t)], Alg);




[

3ω mθ1(t) − θ2(t) = 0
d

dt
θ2(t) = 0

]

,





θ1 =
C1

3ω m

θ2 = C1



 ,

[

θ1 = 2ω x1(t) + r x4(t)
θ2 = 2m ( d

dt
x2(t)) − ω r m x4(t) − 2 u1(t)

]





In particular, the system is not controllable. A first integral of motion of the system is defined by:

> FirstIntegral(R10, [x1(t),x2(t),x3(t),x4(t),u1(t)], Alg);

1

2

C1 (2ω x1(t) + r x4(t))

ω
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We let the reader check by himself that the time-derivative of the above first integral of motion is 0
modulo the system equations.

Finally, let us point out that the controllable part of the system is defined by the matrix Ext01 [2] and
it is parametrized by Ext01 [3].

Following (Mounier, 1995), we modify the description of the control of the satellite in the system. If
the rocket engines are commanded from the earth, then, due to transmission time, a constant time-delay
occurs in the system.

Hence, we enlarge the above Ore algebra by a shift operator δ:

> Alg2 := DefineOreAlgebra(diff=[Dt,t], dual_shift=[delta,s],
> polynom=[t,s], comm=[omega,m,r,a,b], shift_action=[delta,t]):

The system matrix is given as follows:

> R2 := evalm([[Dt,-1,0,0,0,0], [-3*omega^2,Dt,0,-2*omega*r,-a*delta/m,0],
> [0,0,Dt,-1,0,0], [0,2*omega/r,0,Dt,0,-b*delta/(m*r)]]);

R2 :=















Dt −1 0 0 0 0

−3ω2 Dt 0 −2ω r −
a δ

m
0

0 0 Dt −1 0 0

0
2ω

r
0 Dt 0 −

b δ

m r















We define a formal adjoint R2 adj of R2 using an involution of Alg2 :

> R2_adj := Involution(R2, Alg2);

R2 adj :=





























−Dt −3ω2 0 0

−1 −Dt 0
2ω

r

0 0 −Dt 0
0 −2ω r −1 −Dt

0
a δ

m
0 0

0 0 0
b δ

m r





























We check controllability and parametrizability of the system by applying Exti to R2 adj :

> Ext1 := Exti(R2_adj, Alg2, 1);

Ext1 :=

















1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









,









−3mω2 Dt m 0 −2ω r m −a δ 0
Dt −1 0 0 0 0
0 2mω 0 mr Dt 0 −b δ

0 0 Dt −1 0 0









,

















b a δ 0
b a δ Dt 0

0 b a δ

0 b a δ Dt

−3 bmω2 + Dt2 bm −2Dt b ω r m

2 aDt mω aDt2 mr

























Since Ext1 [1] is the identity matrix, we find that the first extension module with values in Alg2 of the
Alg2 -module N which is associated with R2 adj is generically the zero module. Equivalently, the system
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is generically controllable and parametrizable. A parametrization of the system is given in Ext1 [3].
Equivalently, we can directly obtain the parametrization of the system by using the following command:

> Parametrization(R2, Alg2);
















b a ξ1(t − 1)
b aD(ξ1)(t − 1)

b a ξ2(t − 1)
b aD(ξ2)(t − 1)

bm (D(2))(ξ1)(t) − 3 b ω2 mξ1(t) − 2 b ω r mD(ξ2)(t)
2 aω mD(ξ1)(t) + amr (D(2))(ξ2)(t)

















This parametrization is actually a minimal one (namely, it involves the minimal number of free functions)
because we obtain the same parametrization using MinimalParametrization:

> MinimalParametrization(R2, Alg2);
















b a δ 0
b a δ Dt 0

0 b a δ

0 b a δ Dt

−3 bmω2 + Dt2 bm −2Dt b ω r m

2 aDt mω aDt2 mr

















We continue to study the structural properties of the system by examining the algebraic properties of the
Alg2 -module M which is associated with R2 . The next step is to compute the second extension module
with values in Alg2 of N :

> Ext2 := Exti(R2_adj, Alg2, 2);

Ext2 :=

















δ 0
Dt ω2 + Dt3 0

0 δ

0 Dt2 ω2 + Dt4









,

[

1 0
0 1

]

, SURJ(2)









Since Ext2 [1] is not an identity matrix, we see that extˆ2 of N is different from zero. Hence, M is
not projective which also implies that M is not free. So, the satellite is not a flat system. As already
mentioned above, M is a projective Alg2 -module if and only if the full row rank matrix R2 admits a
right-inverse. We conclude that a right-inverse of R2 does not exist:

> RightInverse(R2, Alg2);

[]

Since the torsion-free degree i(M) of M is equal to 1, we can find a polynomial π in the variable δ such
that the system is π-free:

> PiPolynomial(R2, Alg2, [delta]);

[δ]

By definition of the π-polynomial (Mounier, 1995), this means that if we introduce the time-advance
operator in the system of the satellite, then it becomes a flat system. Hence, the module M associated
with this system is a free module (over the Ore algebra which is obtained by adjoining the advance
operator δ−1 to Alg2 ), and we are going to find a basis for this module using LocalLeftInverse:
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> S := LocalLeftInverse(Ext1[3], [delta], Alg2);

S :=









0 0 −
r Dt (Dt2 + 4ω2)

6 δ a ω3 b
0 −

1

3ω2 bm

Dt

6 aω3 m

0 0
1

δ b a
0 0 0









We obtain a left-inverse S of the parametrization Ext1 [3] of the system, where we admit δ in the denom-
inators, i.e., we allow the time-advance operator.

> Mult(S, Ext1[3], Alg2);
[

1 0
0 1

]

Hence, (z1 : z2)
T = S (x1 : x2 : x3 : x4 : u1 : u2)

T is a basis of the Alg2[δ−1]-module M2, and thus, a
flat output of the satellite when we introduce the time-advance operator. More precisely, a flat output
of the system over the ring Alg2[δ−1] is defined by:

> evalm([[xi1(t)],[xi2(t)]])=ApplyMatrix(S, [x1(t),x2(t),x3(t),x4(t),u1(t),u2(t)],
> Alg2);

[

ξ1(t)
ξ2(t)

]

=









−
1

6

r (D(3))(x3 )(t + 1)

aω3 b
−

2

3

r D(x3 )(t + 1)

ω a b
−

1

3

u1(t)

ω2 bm
+

1

6

D(u2 )(t)

aω3 m

x3(t + 1)

b a









Using the fact that

(x1 : x2 : x3 : x4 : u1 : u2)T = Ext1[3] (ξ1, ξ2)T

and (ξ1 : ξ2)T = S (x1 : x2 : x3 : x4 : u1 : u2)T ,

then we have (x1 : x2 : x3 : x4 : u1 : u2)T = Q (x1 : x2 : x3 : x4 : u1 : u2)T , where Q is the following
matrix:

> Q := simplify(Mult(Ext1[3], S, Alg2));

Q :=



































0 0 −
r Dt (Dt2 + 4ω2)

6ω3
0 −

a δ

3ω2 m

bDt δ

6ω3 m

0 0 −
Dt2 r (Dt2 + 4ω2)

6ω3
0 −

aDt δ

3ω2 m

bDt2 δ

6ω3 m

0 0 1 0 0 0
0 0 Dt 0 0 0

0 0 −
mr Dt3 (ω2 + Dt2)

6 δ a ω3
0 −

−3ω2 + Dt2

3ω2

b (−3ω2 + Dt2)Dt

6 aω3

0 0 −
Dt2 mr (ω2 + Dt2)

3ω2 δ b
0 −

2 aDt

3ω b

Dt2

3ω2



































Let us point out that by the form of the matrix S shows that (ξ1′ : ξ2′)T = S2 (x1 : x2 : x3 : x4 : u1 : u2)T

is also a flat output of the system, where S2 is defined by:

> S2 := evalm([[0,0,0,0,-2*omega/b,Dt/a], [0,0,1/(a*b*delta),0,0,0]]);

S2 :=







0 0 0 0 −
2ω

b

Dt

a

0 0
1

δ b a
0 0 0






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Let us check this by using OreModules.

> P2 := Factorize(simplify(evalm(delta*Q)),simplify(evalm(delta*S2)), Alg2);

P2 :=



































δ b a

6ω3 m
−

r b a δ Dt3

6ω3
−

2 r b a δ Dt

3ω

b a δ Dt

6ω3 m
−

r b a δ Dt4

6ω3
−

2 r b a δ Dt2

3ω

0 b a δ

0 b a δ Dt

bDt2

6ω3
−

b

2ω
−

mr bDt5

6ω3
−

mr bDt3

6ω

aDt

3ω2
−

mr aDt4

3ω2
−

aDt2 mr

3



































Therefore, we have δ Q= P2 δ S2 , and thus, Q = P2 S2 . Therefore, we obtain

(x1 : x2 : x3 : x4 : u1 : u2)T = Q (x1 : x2 : x3 : x4 : u1 : u2)T

= P2 (S2 (x1 : x2 : x3 : x4 : u1 : u2)T ) = P2 (ξ1′ : ξ2′)T .

Let us check now that P2 parametrizes all solutions of the system. If we eliminate the ξ1’ and ξ2’
from the inhomogeneous system (x1 : x2 : x3 : x4 : u1 : u2 )T = P2 (ξ1’ : ξ2’)T , then we obtain
R3 (x1 : x2 : x3 : x4 : u1 : u2)T = 0, where the matrix R3 is defined by:

> R3 := SyzygyModule(P2, Alg2);

R3 :=









−3mω2 Dt m 0 −2ω r m −a δ 0
Dt −1 0 0 0 0
0 2mω 0 mr Dt 0 −b δ

0 0 Dt −1 0 0









> Quotient(R2, R3, Alg2);








1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









Therefore, we obtain that the quotient Alg2 -module (Alg2ˆ4 R2 )/(Alg2ˆ4 R3 ) is zero.

> Quotient(R3, R2, Alg2);








1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









Moreover, we obtain that the quotient Alg2 -module (Alg2ˆ4 R3 )/(Alg2ˆ4 R2 ) is zero, which proves
that the Alg2 -module associated with R2 is equal to the Alg2 -module associated with R3 . Therefore,
(ξ1′ : ξ2′)T = S2 (x1 : x2 : x3 : x4 : u1 : u2)T is also a flat output of the system which satisfies
(x1 : x2 : x3 : x4 : u1 : u2)T = P2 (ξ1′ : ξ2′)T . Let us notice that the two previous flat outputs only exist
for a b 6= 0.

Let us study the case where a = 0 and b = 1, i.e., the case where there is only a tangential thrust.

> R201 := linalg[submatrix](subs(a=0,b=1,evalm(R2)), 1..4, [1,2,3,4,6]);
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R201 :=











Dt −1 0 0 0
−3ω2 Dt 0 −2ω r 0

0 0 Dt −1 0

0
2ω

r
0 Dt −

δ

mr











Let us define a formal adjoint R201 adj of R201 by using an involution of Alg2 .

> R201_adj := Involution(R201, Alg2):

Let us check whether or not the Alg2 -module associated with R201 is torsion-free.

> Ext101 := Exti(R201_adj, Alg2, 1);

Ext101 :=





















1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









,









−3ω2 Dt 0 −2ω r 0
Dt −1 0 0 0
0 2mω 0 mr Dt −δ

0 0 Dt −1 0









,













2 δ Dt ω r

2 δ ω Dt2 r

−3 δ ω2 + Dt2 δ

δ Dt3 − 3 δ Dt ω2

Dt4 mr + Dt2 ω2 mr

























Therefore, we obtain that Alg2 -module associated with R201 is torsion-free, and thus, the system asso-
ciated with R201 is controllable and parametrizable. In particular, a parametrization of the system is
given by Ext101 [3] or, in other words, we have:

> Parametrization(R201, Alg2);












2ω r D(ξ1)(t − 1)
2ω r (D(2))(ξ1)(t − 1)

−3ω2 ξ1(t − 1) + (D(2))(ξ1)(t − 1)
(D(3))(ξ1)(t − 1) − 3ω2 D(ξ1)(t − 1)

mr (D(4))(ξ1)(t) + mω2 r (D(2))(ξ1)(t)













Let us check whether or not the Alg2 -module associated with R201 is free, i.e., whether or not the system
associated with R201 is flat.

> Ext201 := Exti(R201_adj, Alg2, 2);

Ext201 := [

[

δ

Dt2 ω2 + Dt4

]

,
[

1
]

, SURJ(1)]

The first matrix is not the identity matrix, and thus, we obtain that the Alg2 -module associated with
R201 is not a projective, and thus, a free Alg2 -module by the Quillen-Suslin theorem. The fact that the
system is controllable implies that there exists a π-polynomial in δ. Let us compute the minimal one.

> PiPolynomial(R201, Alg2, [delta]);

[δ]

Therefore, if we use the operator δ−1, i.e., an advance operator, then the system becomes flat. Let us
compute a flat output of the system which involves the advance operator δ−1. if we use advance operators.

> S201 := LocalLeftInverse(Ext101[3], [delta], Alg2);

S201 :=

[

0
1

6 δ ω3 r
−

1

3 δ ω2
0 0

]
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Therefore, ξ = S201 (x1 : x2 : x3 : x4 : u2 )T is a flat output of the system which satisfies

(x1 : x2 : x3 : x4 : u2)T = Ext101[3] ξ.

Let us also point out that the flat output of the system is defined by means of an advance operator
whereas the parametrization Ext101 [3] of the system only contains time-delay operators. Let us find a
flat output of the system which only use Dt and δ and a parametrization wich depends on Dt , δ and δ−1.
In particular, let us prove that ξ’ = T201 (x1 : x2 : x3 : x4 : u2 )T , where T201 is the matrix defined
below, is a flat output of the system.

> T201 := evalm([[0,1,-2*r*omega,0,0]]);

T201 :=
[

0 1 −2ω r 0 0
]

Let us check it. First of all, we have

(x1 : x2 : x3 : x4 : u2)T = Ext101[3] ξ = (Ext101[3] ◦ S201) (x1 : x2 : x3 : x4 : u2)T

= Q201 (x1 : x2 : x3 : x4 : u2)T ,

where Q201 is defined by:

> Q201 := simplify(Mult(Ext101[3], S201, Alg2));

Q201 :=



































0
Dt

3ω2
−

2Dt r

3ω
0 0

0
Dt2

3ω2
−

2Dt2 r

3ω
0 0

0 −
%1

6ω3 r

%1

3ω2
0 0

0 −
Dt %1

6ω3 r

Dt %1

3ω2
0 0

0
Dt2 m (Dt2 + ω2)

6ω3 δ
−

Dt2 mr (Dt2 + ω2)

3 δ ω2
0 0



































%1 := 3ω2 − Dt2

Let us point out that Q201 is an idempotent of Alg25×5. This fact can be easily checked:

> simplify(evalm(Q201^2 - Q201));












0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













> P201 := Factorize(evalm(delta*Q201), T201, Alg2);

P201 :=





































δ Dt

3ω2

δ Dt2

3ω2

−
δ

2ω r
+

δ Dt2

6ω3 r

−
δ Dt

2ω r
+

δ Dt3

6ω3 r

Dt4 m

6ω3
+

Dt2 m

6ω




































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Therefore, we have δ Q201= P201 oT201 , and thus, Q201 = δ−1 P201 oT201 . Let us denote by Param

the matrix δ−1 P201, namely:

> Param := simplify(evalm(delta^(-1)*P201));

Param :=





































Dt

3ω2

Dt2

3ω2

−
3ω2 − Dt2

6ω3 r

−
Dt (3ω2 − Dt2)

6ω3 r

Dt2 m (Dt2 + ω2)

6ω3 δ





































Hence, if we define ξ′ = T201 (x1 : x2 : x3 : x4 : u2)T , then for every element (x1 : x2 : x3 : x4 : u2)T of
the system, we have

(x1 : x2 : x3 : x4 : u2)T = Q201 (x1 : x2 : x3 : x4 : u2)T = Param (T201 (x1 : x2 : x3 : x4 : u2)T )

= Paramξ′.

Let us study the case where a = 1 and b = 0, i.e., the case where there is only a radial thrust.

> R210 := linalg[submatrix](subs(a=1,b=0,evalm(R2)), 1..4, 1..5);

R210 :=















Dt −1 0 0 0

−3ω2 Dt 0 −2ω r −
δ

m

0 0 Dt −1 0

0
2ω

r
0 Dt 0















We first define a formal adjoint R210 adj of R201 using an involution of Alg2 .

> R210_adj := Involution(R210, Alg2);

R210 adj :=



















−Dt −3ω2 0 0

−1 −Dt 0
2ω

r

0 0 −Dt 0
0 −2ω r −1 −Dt

0
δ

m
0 0



















Let us check whether or not the system defined by the matrix R210 is controllable and parametrizable.

> Ext101 := Exti(R210_adj, Alg2, 1);

Ext101 :=





















Dt 0 0 0
0 1 0 0
0 0 Dt 0
0 0 0 1









,









2ω 0 0 r 0
0 2ω 0 Dt r 0
0 2mDt 0 −ω r m −2 δ

0 0 Dt −1 0









,













−Dt δ r

−δ Dt2 r

2ω δ

2 δ Dt ω

−Dt ω2 r m − Dt3 r m
























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The first matrix of Ext101 is not the identity matrix, and thus, the Alg2 -module associated with R201

is not torsion-free. The torsion elements of this module are defined by:

> TorsionElements(R210, [x1(t),x2(t),x3(t),x4(t),u1(t)], Alg2);

[

[

D(θ1)(t) = 0
D(θ3)(t) = 0

]

,

[

θ1(t) = 2ω x1(t) + r x4(t)
θ3(t) = 2mD(x2 )(t) − ω r m x4(t) − 2 u1(t − 1)

]

]

To finish, the controllable part of the system is defined by Ext101 [2] and it is parametrized by Ext101 [3],
namely, we have:

> ApplyMatrix(Ext101[3], [xi(t)], Alg2);












2ω r D(ξ)(t − 1)
2ω r (D(2))(ξ)(t − 1)

−3ω2 ξ(t − 1) + (D(2))(ξ)(t − 1)
(D(3))(ξ)(t − 1) − 3ω2 D(ξ)(t − 1)

r m (D(4))(ξ)(t) + ω2 r m (D(2))(ξ)(t)












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