We study a satellite in a circular equatorial orbit. See T. Kailath, Linear Systems, Prentice-Hall, 1980, p. 60 and p. 145, and H. Mounier, Propriétés structurelles des systèmes linéaires à retards: aspects théoriques et pratiques, PhD Thesis, University of Orsay, France, 1995, p. 6, p. 11 and p. 17.

```
> with(Ore_algebra):
> with(OreModules):
```

We define the Weyl algebra $A l g=A_{1}$, where $D t$ acts as differentiation w.r.t. time t. Note that we have to declare the parameters ω (angular velocity), m (mass of the satellite), r (radius component in the polar coordinates), a and b (parameters specifying the thrust) of the system in the definition of the Ore algebra:

```
> Alg := DefineOreAlgebra(diff=[Dt,t], polynom=[t], comm=[omega,m,r,a,b]):
```

The linearized ordinary differential equations for the satellite in a circular orbit are given by the following matrix R. These equations describe the motion of the satellite in the equatorial plane, where the fifth and the sixth column of R incorporate the controls $u 1$, $u 2$ which represent radial thrust resp. tangential thrust caused by rocket engines (see Kailath, 1980, p. 60 and p. 145).

$$
\begin{aligned}
& >\quad \text { Rab }:=\text { evalm }([[D t,-1,0,0,0,0], \quad[-3 * \text { omega^2,Dt, } 0,-2 * \text { omega } * r,-\mathrm{a} / \mathrm{m}, 0], \\
& >[0,0, \mathrm{Dt},-1,0,0],[0,2 * \text { omega/r, } 0, \mathrm{Dt}, 0,-\mathrm{b} /(\mathrm{m} * \mathrm{r})]]) ; \\
& \qquad R a b:=\left[\begin{array}{cccccc}
D t & -1 & 0 & 0 & 0 & 0 \\
-3 \omega^{2} & D t & 0 & -2 \omega r & -\frac{a}{m} & 0 \\
0 & 0 & D t & -1 & 0 & 0 \\
0 & \frac{2 \omega}{r} & 0 & D t & 0 & -\frac{b}{m r}
\end{array}\right]
\end{aligned}
$$

We define the formal adjoint $R_{-} a d j$ of R :

```
> Rab_adj := Involution(Rab, Alg);
```

$$
\text { Rab_adj }:=\left[\begin{array}{cccc}
-D t & -3 \omega^{2} & 0 & 0 \\
-1 & -D t & 0 & \frac{2 \omega}{r} \\
0 & 0 & -D t & 0 \\
0 & -2 \omega r & -1 & -D t \\
0 & -\frac{a}{m} & 0 & 0 \\
0 & 0 & 0 & -\frac{b}{m r}
\end{array}\right]
$$

Let us compute the first extension module ext^1 with values in $A l g$ of the $A l g$-module N associated with R_adj:

$$
\begin{aligned}
& >\text { Extab }:=\text { Exti (Rab_adj, Alg, 1); } \\
& \qquad \text { Extab }:=\left[\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccccc}
-3 m \omega^{2} & D t m & 0 & -2 \omega r m & -a \\
D t & 0 \\
0 & 2 m \omega & 0 & 0 & 0 \\
0 \\
0 & 0 & D t & -1 & 0 \\
b a & 0 \\
0 \\
b a D t & b a \\
0 & b a D t \\
0 & -2 D t b \omega r m \\
-3 b m \omega^{2}+D t^{2} b m & -1 \\
2 a D t m \omega & a D t^{2} m r
\end{array}\right],\right.
\end{aligned}
$$

Since Ext1[1] is the identity matrix, we conclude that ext ${ }^{\wedge} 1$ of N is the zero module. Hence, the module M which is associated with the system R is torsion-free. It follows that the system is controllable and, equivalently, parametrizable. A parametrization of R is given in Ext1 [3]. Of course, a necessary condition for $\operatorname{Ext1}$ [3] being a parametrization is that $(R \circ \operatorname{Ext1}[3])=0$:

```
> Mult(Rab, Extab[3], Alg);
```

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

Equivalently, a parametrization of the system can be computed by using the following command:

```
> Parametrization(Rab, Alg);
```

$$
\left[\begin{array}{c}
b a \xi_{1}(t) \\
b a\left(\frac{d}{d t} \xi_{1}(t)\right) \\
b a \xi_{2}(t) \\
b a\left(\frac{d}{d t} \xi_{2}(t)\right) \\
-b m\left(3 \omega^{2} \xi_{1}(t)-\left(\frac{d^{2}}{d t^{2}} \xi_{1}(t)\right)+2 \omega r\left(\frac{d}{d t} \xi_{2}(t)\right)\right) \\
a m\left(2 \omega\left(\frac{d}{d t} \xi_{1}(t)\right)+r\left(\frac{d^{2}}{d t^{2}} \xi_{2}(t)\right)\right)
\end{array}\right]
$$

The coefficients in the equations of the system lie in the polynomial ring with one variable $D t$ and with coefficients that are rational functions in ω, m, r, a, b with real coefficients. Since this polynomial ring is a principal ideal domain (namely, every ideal is generated by a single element), we know that torsionfreeness of the module M which is associated with the system R actually implies freeness, i.e., system R is flat. Hence, we can compute a left-inverse of the parametrization and get a flat output of the system:

```
> Sab := LeftInverse(Extab[3], Alg);
```

$$
S a b:=\left[\begin{array}{cccccc}
\frac{1}{b a} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{b a} & 0 & 0 & 0
\end{array}\right]
$$

Therefore, $(\xi 1: \xi 2)^{T}=\operatorname{Sab}(x 1: x 2: x 3: x 4: u 1: u 2)^{T}$ is a flat output of the system which satisfies $(x 1: x 2: x 3: x 4: u 1: u 2)^{T}=\operatorname{Extab}[3](\xi 1: \xi 2)^{T}$. Let us notice that this flat output exists only if $a b \neq 0$.

Let us remember that the full row-rank matrix R admits a right-inverse if and only if the module which is associated with it is projective. By the theorem of Quillen-Suslin, for modules over commutative polynomial rings, projectiveness is the same as freeness. So, M is projective which we could have discovered by computing a right-inverse of R :
> RightInverse(Rab, Alg);

$$
\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
-\frac{D t m}{a} & -\frac{m}{a} & \frac{2 \omega r m}{a} & 0 \\
-\frac{2 \omega m}{b} & 0 & -\frac{D t m r}{b} & -\frac{m r}{b}
\end{array}\right]
$$

Let us compute a Brunovský canonical form for the system defined by R in the case where $a b \neq 0$.

$$
\begin{aligned}
& >B:=\text { Brunovsky (Rab, Alg) ; } \\
& \qquad B:=\left[\begin{array}{cccccc}
\frac{1}{b a} & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{b a} & 0 & 0 & 0 & 0 \\
\frac{3 \omega^{2}}{b a} & 0 & 0 & \frac{2 \omega r}{b a} & \frac{1}{b m} & 0 \\
0 & 0 & \frac{1}{b a} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{b a} & 0 & 0 \\
0 & -\frac{2 \omega}{b a r} & 0 & 0 & 0 & \frac{1}{m a r}
\end{array}\right]
\end{aligned}
$$

Therefore, using the following change of variables

```
> evalm([[z[1](t)],[z[2](t)],[v[1](t)],[z[3](t)],[z[4](t)],[v[2](t)]])=
> ApplyMatrix(B, [seq(x[i](t),i=1..4),u1(t),u2(t)], Alg);
```

$$
\left[\begin{array}{c}
z_{1}(t) \\
z_{2}(t) \\
v_{1}(t) \\
z_{3}(t) \\
z_{4}(t) \\
v_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{x_{1}(t)}{b a} \\
\frac{x_{2}(t)}{b a} \\
\frac{3 \omega^{2} x_{1}(t)}{b a}+\frac{2 \omega r x_{4}(t)}{b a}+\frac{\mathrm{u} 1(t)}{b m} \\
\frac{x_{3}(t)}{b a} \\
\frac{x_{4}(t)}{b a} \\
-\frac{2 \omega x_{2}(t)}{b a r}+\frac{\mathrm{u} 2(t)}{m a r}
\end{array}\right]
$$

we obtain the following Brunovský canonical form:

```
> E := Elimination(linalg[stackmatrix](B, Rab),
> [seq(x[i],i=1..4),u1,u2], [z[1],z[2],v[1],z[3],z[4],v[2],0,0,0,0], Alg):
> ApplyMatrix(E[1], [seq(x[i](t),i=1..4),u1(t),u2(t)], Alg)=
> ApplyMatrix(E[2], [[z[1](t)],[z[2](t)],[v[1](t)],[z[3](t)],[z[4](t)],[v[2](t)]],
> Alg);
```

$\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ \mathrm{u} 2(t) \\ \mathrm{u} 1(t) \\ x_{4}(t) \\ x_{3}(t) \\ x_{2}(t) \\ x_{1}(t)\end{array}\right]=\left[\begin{array}{c}-\left(\frac{d}{d t} z_{4}(t)\right)+v_{2}(t) \\ -\left(\frac{d}{d t} z_{3}(t)\right)+z_{4}(t) \\ -\left(\frac{d}{d t} z_{2}(t)\right)+v_{1}(t) \\ -\left(\frac{d}{d t} z_{1}(t)\right)+z_{2}(t) \\ 2 a \omega m z_{2}(t)+a m r v_{2}(t) \\ -3 b \omega^{2} m z_{1}(t)+b m v_{1}(t)-2 b \omega r m z_{4}(t) \\ b a z_{4}(t) \\ b a z_{3}(t) \\ b a z_{2}(t) \\ b a z_{1}(t)\end{array}\right]$

Let us consider the case where $a=0$ and $b=1$, i.e., the case where we only have a tangential thrust. Then, the system is defined by the following matrix:

```
> R01 := linalg[submatrix](subs(a=0,b=1,evalm(Rab)), 1..4, [1,2,3,4,6]);
```

$$
R 01:=\left[\begin{array}{ccccc}
D t & -1 & 0 & 0 & 0 \\
-3 \omega^{2} & D t & 0 & -2 \omega r & 0 \\
0 & 0 & D t & -1 & 0 \\
0 & \frac{2 \omega}{r} & 0 & D t & -\frac{1}{m r}
\end{array}\right]
$$

The formal adjoint R01_ adj of $R 01$ is defined by:

$$
\begin{aligned}
& >\text { R01_adj }:=\text { Involution(R01, Alg); } \\
& \qquad \text { R01_adj }:=\left[\begin{array}{cccc}
-D t & -3 \omega^{2} & 0 & 0 \\
-1 & -D t & 0 & \frac{2 \omega}{r} \\
0 & 0 & -D t & 0 \\
0 & -2 \omega r & -1 & -D t \\
0 & 0 & 0 & -\frac{1}{m r}
\end{array}\right]
\end{aligned}
$$

Let us check whether or not the new system is controllable.

$$
\begin{aligned}
& >\text { Ext01 }:=\text { Exti(R01_adj, Alg, 1); } \\
& \operatorname{Ext01}:=\left[\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccccc}
-3 \omega^{2} & D t & 0 & -2 \omega r & 0 \\
D t & -1 & 0 & 0 & 0 \\
0 & 2 \omega m & 0 & m r D t & -1 \\
0 & 0 & D t & -1 & 0
\end{array}\right],\left[\begin{array}{c}
2 D t \omega r \\
2 \omega D t^{2} r \\
-3 \omega^{2}+D t^{2} \\
D t^{3}-3 D t \omega^{2} \\
D t^{4} m r+D t^{2} \omega^{2} m r
\end{array}\right]\right]
\end{aligned}
$$

We obtain that the Alg-module associated with $R 01$ is torsion-free, and thus, the system is controllable. Moreover, a parametrization of the system is given by Ext01[3] or, equivalently, by:

```
> Parametrization(R01, Alg);
```

$$
\left[\begin{array}{c}
2 \omega r\left(\frac{d}{d t} \xi_{1}(t)\right) \\
2 \omega r\left(\frac{d^{2}}{d t^{2}} \xi_{1}(t)\right) \\
-3 \omega^{2} \xi_{1}(t)+\left(\frac{d^{2}}{d t^{2}} \xi_{1}(t)\right) \\
\left(\frac{d^{3}}{d t^{3}} \xi_{1}(t)\right)-3 \omega^{2}\left(\frac{d}{d t} \xi_{1}(t)\right) \\
m r\left(\omega^{2}\left(\frac{d^{2}}{d t^{2}} \xi_{1}(t)\right)+\left(\frac{d^{4}}{d t^{4}} \xi_{1}(t)\right)\right)
\end{array}\right]
$$

Using the fact that the system is time-invariant, we obtain that the $A l g$-module associated with $R 01$ is free, and thus, the system is flat. A flat output is obtain by computing a left-inverse of the parametrization Ext01[3].

```
> S01 := LeftInverse(Ext01[3], Alg);
    S01:=[llllll}0
> simplify(Mult(S01, Ext01[3], Alg));
```

Therefore, $\xi=S 01(x 1: x 2: x 3: x 4: u 2)^{T}$ is a flat output of the system which satisfies

$$
(x 1: x 2: x 3: x 4: u 2)^{T}=\operatorname{Ext01}[3] \xi
$$

Now, let us turn to the case where $a=1$ and $b=0$, i.e., to the case where there is only a radial thrust. Then, the system is defined by the following matrix:

$$
\begin{aligned}
& >R 10:=\operatorname{linalg}[\text { submatrix }](\text { subs }(\mathrm{a}=1, \mathrm{~b}=0, \mathrm{evalm}(\operatorname{Rab})), 1 \ldots 4,1 . .5) ; \\
& R 10:=\left[\begin{array}{ccccc}
D t & -1 & 0 & 0 & 0 \\
-3 \omega^{2} & D t & 0 & -2 \omega r & -\frac{1}{m} \\
0 & 0 & D t & -1 & 0 \\
0 & \frac{2 \omega}{r} & 0 & D t & 0
\end{array}\right]
\end{aligned}
$$

Its formal adjoint R10_ adj is defined by:

$$
\begin{aligned}
& >\text { R10_adj := Involution(R10, Alg); } \\
& \qquad \text { R10_adj }:=\left[\begin{array}{cccc}
-D t & -3 \omega^{2} & 0 & 0 \\
-1 & -D t & 0 & \frac{2 \omega}{r} \\
0 & 0 & -D t & 0 \\
0 & -2 \omega r & -1 & -D t \\
0 & -\frac{1}{m} & 0 & 0
\end{array}\right]
\end{aligned}
$$

Let us check whether or not the system defined by R10 is controllable.

$$
\begin{aligned}
& >\text { Ext01 }:=\text { Exti(R10_adj, Alg, 1); } \\
& \operatorname{Ext01}:=\left[\left[\begin{array}{cccc}
D t & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & D t & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccccc}
2 \omega & 0 & 0 & r & 0 \\
0 & 2 \omega & 0 & D t r & 0 \\
0 & 2 m D t & 0 & -\omega r m & -2 \\
0 & 0 & D t & -1 & 0
\end{array}\right],\left[\begin{array}{c}
-D t r \\
-D t^{2} r \\
2 \omega \\
2 D t \omega \\
-D t \omega^{2} r m-D t^{3} r m
\end{array}\right]\right]
\end{aligned}
$$

The first matrix of Ext01 is not the identity matrix, and thus, there exist some torsion elements in the Alg-module associated with $R 01$. Let us compute them.

```
> TorsionElements(R10, [x1(t),x2(t),x3(t),x4(t),u1(t)], Alg);
```

$$
\left[\left[\begin{array}{c}
\frac{d}{d t} \theta_{1}(t)=0 \\
\frac{d}{d t} \theta_{3}(t)=0
\end{array}\right],\left[\begin{array}{c}
\theta_{1}(t)=2 \omega \mathrm{x} 1(t)+r \times 4(t) \\
\theta_{3}(t)=2 m\left(\frac{d}{d t} \mathrm{x} 2(t)\right)-\omega r m \mathrm{x} 4(t)-2 \mathrm{u} 1(t)
\end{array}\right]\right]
$$

Then, the autonomous elements of the system are defined by:

$$
\begin{aligned}
& >\text { AutonomousElements }(\mathrm{R} 10,[\mathrm{x} 1(\mathrm{t}), \mathrm{x} 2(\mathrm{t}), \mathrm{x} 3(\mathrm{t}), \mathrm{x} 4(\mathrm{t}), \mathrm{u} 1(\mathrm{t})], \mathrm{Alg}) ; \\
& {\left[\left[\begin{array}{c}
3 \omega m \theta_{1}(t)-\theta_{2}(t)=0 \\
\frac{d}{d t} \theta_{2}(t)=0
\end{array}\right],\left[\begin{array}{c}
\theta_{1}=\frac{-C 1}{3 \omega m} \\
\theta_{2}={ }_{-} C 1
\end{array}\right],\left[\begin{array}{c}
\theta_{1}=2 \omega \mathrm{x} 1(t)+r \mathrm{x} 4(t) \\
\theta_{2}=2 m\left(\frac{d}{d t} \mathrm{x} 2(t)\right)-\omega r m \mathrm{x} 4(t)-2 \mathrm{u} 1(t)
\end{array}\right]\right]}
\end{aligned}
$$

In particular, the system is not controllable. A first integral of motion of the system is defined by:

```
> FirstIntegral(R10, [x1(t),x2(t),x3(t),x4(t),u1(t)], Alg);
```

$$
\frac{1}{2} \frac{-C 1(2 \omega \times 1(t)+r \times 4(t))}{\omega}
$$

We let the reader check by himself that the time-derivative of the above first integral of motion is 0 modulo the system equations.

Finally, let us point out that the controllable part of the system is defined by the matrix Ext01 [2] and it is parametrized by Ext01[3].

Following (Mounier, 1995), we modify the description of the control of the satellite in the system. If the rocket engines are commanded from the earth, then, due to transmission time, a constant time-delay occurs in the system.

Hence, we enlarge the above Ore algebra by a shift operator δ :

```
> Alg2 := DefineOreAlgebra(diff=[Dt,t], dual_shift=[delta,s],
> polynom=[t,s], comm=[omega,m,r,a,b], shift_action=[delta,t]):
```

The system matrix is given as follows:

$$
\begin{aligned}
& >\text { R2 := evalm([[Dt, }-1,0,0,0,0],[-3 * \text { omega^2, Dt }, 0,-2 * \text { omega*r,-a*delta/m, } 0] \text {, } \\
& >\quad[0,0, \mathrm{Dt},-1,0,0],[0,2 * o m e g a / r, 0, \mathrm{Dt}, 0,-\mathrm{b} * \mathrm{delta} /(\mathrm{m} * \mathrm{r})]]) \text {; } \\
& \text { R2 }:=\left[\begin{array}{cccccc}
D t & -1 & 0 & 0 & 0 & 0 \\
-3 \omega^{2} & D t & 0 & -2 \omega r & -\frac{a \delta}{m} & 0 \\
0 & 0 & D t & -1 & 0 & 0 \\
0 & \frac{2 \omega}{r} & 0 & D t & 0 & -\frac{b \delta}{m r}
\end{array}\right]
\end{aligned}
$$

We define a formal adjoint R2_adj of R2 using an involution of Alg2:

```
> R2_adj := Involution(R2, Alg2);
```

$$
\text { R2_adj }:=\left[\begin{array}{cccc}
-D t & -3 \omega^{2} & 0 & 0 \\
-1 & -D t & 0 & \frac{2 \omega}{r} \\
0 & 0 & -D t & 0 \\
0 & -2 \omega r & -1 & -D t \\
0 & \frac{a \delta}{m} & 0 & 0 \\
0 & 0 & 0 & \frac{b \delta}{m r}
\end{array}\right]
$$

We check controllability and parametrizability of the system by applying Exti to R2_adj:

$$
\begin{aligned}
& >\text { Ext1 }:=\text { Exti(R2_adj, Alg2, 1); } \\
& \qquad \text { Ext1 }:=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccccc}
-3 m \omega^{2} & D t m & 0 & -2 \omega r m & -a \delta \\
D t & -1 & 0 & 0 & 0 \\
0 & 2 m \omega & 0 & m r D t & 0 \\
0 & 0 & D t & -1 & 0
\end{array}\right] \\
& {\left[\begin{array}{cc}
b a \delta & 0 \\
b a \delta D t & b a \delta \\
0 & b a \delta D t \\
0 & -2 D t b \omega r m \\
-3 b m \omega^{2}+D t^{2} b m & a D t^{2} m r \\
2 a D t m \omega &
\end{array}\right]}
\end{aligned}
$$

Since Ext1[1] is the identity matrix, we find that the first extension module with values in Alg2 of the Alg2-module N which is associated with R2_adj is generically the zero module. Equivalently, the system
is generically controllable and parametrizable. A parametrization of the system is given in Ext1[3]. Equivalently, we can directly obtain the parametrization of the system by using the following command:

$$
\begin{aligned}
& >\text { Parametrization(R2, Alg2); } \\
& \qquad\left[\begin{array}{c}
b a \xi_{1}(t-1) \\
b a \mathrm{D}\left(\xi_{1}\right)(t-1) \\
b a \xi_{2}(t-1) \\
b a \mathrm{D}\left(\xi_{2}\right)(t-1) \\
b m\left(\mathrm{D}^{(2)}\right)\left(\xi_{1}\right)(t)-3 b \omega^{2} m \xi_{1}(t)-2 b \omega r m \mathrm{D}\left(\xi_{2}\right)(t) \\
2 a \omega m \mathrm{D}\left(\xi_{1}\right)(t)+a m r\left(\mathrm{D}^{(2)}\right)\left(\xi_{2}\right)(t)
\end{array}\right]
\end{aligned}
$$

This parametrization is actually a minimal one (namely, it involves the minimal number of free functions) because we obtain the same parametrization using MinimalParametrization:
> MinimalParametrization(R2, Alg2);

$$
\left[\begin{array}{cc}
b a \delta & 0 \\
b a \delta D t & 0 \\
0 & b a \delta \delta \\
0 & b a \delta D t \\
-3 b m \omega^{2}+D t^{2} b m & -2 D t b \omega r m \\
2 a D t m \omega & a D t^{2} m r
\end{array}\right]
$$

We continue to study the structural properties of the system by examining the algebraic properties of the Alg2-module M which is associated with R2. The next step is to compute the second extension module with values in $A l g 2$ of N :

$$
\begin{aligned}
& >\text { Ext2 }:=\text { Exti (R2_adj, Alg2, 2); } \\
& \qquad \text { Ext2 }:=\left[\left[\begin{array}{cc}
\delta & 0 \\
D t \omega^{2}+D t^{3} & 0 \\
0 & \delta \\
0 & D t^{2} \omega^{2}+D t^{4}
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \operatorname{SURJ}(2)\right]
\end{aligned}
$$

Since Ext2[1] is not an identity matrix, we see that ext ${ }^{\wedge} 2$ of N is different from zero. Hence, M is not projective which also implies that M is not free. So, the satellite is not a flat system. As already mentioned above, M is a projective Alg2-module if and only if the full row rank matrix $R 2$ admits a right-inverse. We conclude that a right-inverse of $R 2$ does not exist:

```
> RightInverse(R2, Alg2);
```

Since the torsion-free degree $\mathrm{i}(M)$ of M is equal to 1 , we can find a polynomial π in the variable δ such that the system is π-free:

```
> PiPolynomial(R2, Alg2, [delta]);
```

By definition of the π-polynomial (Mounier, 1995), this means that if we introduce the time-advance operator in the system of the satellite, then it becomes a flat system. Hence, the module M associated with this system is a free module (over the Ore algebra which is obtained by adjoining the advance operator δ^{-1} to Alg2), and we are going to find a basis for this module using LocalLeftInverse:

$$
S:=\left[\begin{array}{cccccc}
0 & 0 & -\frac{r D t\left(D t^{2}+4 \omega^{2}\right)}{6 \delta a \omega^{3} b} & 0 & -\frac{1}{3 \omega^{2} b m} & \frac{D t}{6 a \omega^{3} m} \\
0 & 0 & \frac{1}{\delta b a} & 0 & 0 & 0
\end{array}\right]
$$

We obtain a left-inverse S of the parametrization $\operatorname{Ext1}[3]$ of the system, where we admit δ in the denominators, i.e., we allow the time-advance operator.

```
> Mult(S, Ext1[3], Alg2);
```

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Hence, $\left(z_{1}: z_{2}\right)^{T}=S\left(x_{1}: x_{2}: x_{3}: x_{4}: u_{1}: u_{2}\right)^{T}$ is a basis of the $\operatorname{Alg} 2\left[\delta^{-1}\right]$-module M_{2}, and thus, a flat output of the satellite when we introduce the time-advance operator. More precisely, a flat output of the system over the ring $\operatorname{Alg} 2\left[\delta^{-1}\right]$ is defined by:

```
> evalm([[xi1(t)],[xi2(t)]])=ApplyMatrix(S, [x1(t),x2(t),x3(t),x4(t),u1(t),u2(t)],
> Alg2);
```

$$
\left[\begin{array}{l}
\xi 1(t) \\
\xi 2(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{6} \frac{r\left(\mathrm{D}^{(3)}\right)(x 3)(t+1)}{a \omega^{3} b}-\frac{2}{3} \frac{r \mathrm{D}(x 3)(t+1)}{\omega a b}-\frac{1}{3} \frac{\mathrm{u} 1(t)}{\omega^{2} b m}+\frac{1}{6} \frac{\mathrm{D}(u 2)(t)}{a \omega^{3} m} \\
\frac{\mathrm{x} 3(t+1)}{b a}
\end{array}\right]
$$

Using the fact that

$$
\begin{aligned}
& \quad(x 1: x 2: x 3: x 4: u 1: u 2)^{T}=E x t 1[3](\xi 1, \xi 2)^{T} \\
& \text { and } \quad(\xi 1: \xi 2)^{T}=S(x 1: x 2: x 3: x 4: u 1: u 2)^{T}
\end{aligned}
$$

then we have $(x 1: x 2: x 3: x 4: u 1: u 2)^{T}=Q(x 1: x 2: x 3: x 4: u 1: u 2)^{T}$, where Q is the following matrix:

$$
\begin{aligned}
& >Q:=\operatorname{simplify}(\text { Mult }(\operatorname{Ext} 1[3], \mathrm{S}, \mathrm{Alg2})) ; \\
& \\
& Q:=\left[\begin{array}{cccccc}
0 & 0 & -\frac{r D t\left(D t^{2}+4 \omega^{2}\right)}{6 \omega^{3}} & 0 & -\frac{a \delta}{3 \omega^{2} m} & \frac{b D t \delta}{6 \omega^{3} m} \\
0 & 0 & -\frac{D t^{2} r\left(D t^{2}+4 \omega^{2}\right)}{6 \omega^{3}} & 0 & -\frac{a D t \delta}{3 \omega^{2} m} & \frac{b D t^{2} \delta}{6 \omega^{3} m} \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & D t & 0 & 0 & 0 \\
0 & 0 & -\frac{m r D t^{3}\left(\omega^{2}+D t^{2}\right)}{6 \delta a \omega^{3}} & 0 & -\frac{-3 \omega^{2}+D t^{2}}{3 \omega^{2}} & \frac{b\left(-3 \omega^{2}+D t^{2}\right) D t}{6 a \omega^{3}} \\
0 & 0 & -\frac{D t^{2} m r\left(\omega^{2}+D t^{2}\right)}{3 \omega^{2} \delta b} & 0 & -\frac{2 a D t}{3 \omega b} & \frac{D t^{2}}{3 \omega^{2}}
\end{array}\right]
\end{aligned}
$$

Let us point out that by the form of the matrix S shows that $\left(\xi 1^{\prime}: \xi 2^{\prime}\right)^{T}=S 2(x 1: x 2: x 3: x 4: u 1: u 2)^{T}$ is also a flat output of the system, where $S 2$ is defined by:

$$
\begin{aligned}
& >S 2:=\operatorname{evalm}([[0,0,0,0,-2 * o m e g a / b, D t / a],[0,0,1 /(\mathrm{a} * \mathrm{~b} * \operatorname{delta}), 0,0,0]]) ; \\
& \qquad S 2:=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & -\frac{2 \omega}{b} & \frac{D t}{a} \\
0 & 0 & \frac{1}{\delta b a} & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Let us check this by using OreModules.

$$
\begin{aligned}
& >P 2:=\text { Factorize(simplify }(\text { evalm }(\text { delta*Q) }) \text {,simplify }(\text { evalm (delta*S2)), Alg2) ; } \\
& \qquad P 2:=\left[\begin{array}{cc}
\frac{\delta b a}{6 \omega^{3} m} & -\frac{r b a \delta D t^{3}}{6 \omega^{3}}-\frac{2 r b a \delta D t}{3 \omega} \\
\frac{b a \delta D t}{6 \omega^{3} m} & -\frac{r b a \delta D t^{4}}{6 \omega^{3}}-\frac{2 r b a \delta D t^{2}}{3 \omega} \\
0 & b a \delta \\
0 & b a \delta D t \\
\frac{b D t^{2}}{6 \omega^{3}}-\frac{b}{2 \omega} & -\frac{m r b D t^{5}}{6 \omega^{3}}-\frac{m r b D t^{3}}{6 \omega} \\
\frac{a D t}{3 \omega^{2}} & -\frac{m r a D t^{4}}{3 \omega^{2}}-\frac{a D t^{2} m r}{3}
\end{array}\right]
\end{aligned}
$$

Therefore, we have $\delta Q=P 2 \delta S 2$, and thus, $Q=$ P2 S2. Therefore, we obtain

$$
\begin{aligned}
(x 1: x 2: x 3: x 4: u 1: u 2)^{T} & =Q(x 1: x 2: x 3: x 4: u 1: u 2)^{T} \\
& =P 2\left(S 2(x 1: x 2: x 3: x 4: u 1: u 2)^{T}\right)=P 2\left(\xi 1^{\prime}: \xi 2^{\prime}\right)^{T}
\end{aligned}
$$

Let us check now that P2 parametrizes all solutions of the system. If we eliminate the $\xi 1$ ' and $\xi 2$ ' from the inhomogeneous system $(x 1: x 2: x 3: x 4: u 1: u 2)^{T}=P 2\left(\xi 1^{\prime}: \xi 2^{\prime}\right)^{T}$, then we obtain $R 3(x 1: x 2: x 3: x 4: u 1: u 2)^{T}=0$, where the matrix $R 3$ is defined by:

$$
\begin{aligned}
& >\text { R3 :=SyzygyModule(P2, Alg2); } \\
& \qquad R 3:=\left[\begin{array}{cccccc}
-3 m \omega^{2} & D t m & 0 & -2 \omega r m & -a \delta & 0 \\
D t & -1 & 0 & 0 & 0 & 0 \\
0 & 2 m \omega & 0 & m r D t & 0 & -b \delta \\
0 & 0 & D t & -1 & 0 & 0
\end{array}\right]
\end{aligned}
$$

> Quotient(R2, R3, Alg2);

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Therefore, we obtain that the quotient $A \lg 2$-module $(A l g 2 \wedge 4 R 2) /\left(A l g 2^{\wedge} 4 R 3\right)$ is zero.
> Quotient(R3, R2, Alg2);

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Moreover, we obtain that the quotient $A \lg 2$-module $(A \lg 2 \wedge 4 R 3) /(A \lg 2 \wedge 4 R 2)$ is zero, which proves that the $A \lg 2$-module associated with $R 2$ is equal to the $A l g 2$-module associated with $R 3$. Therefore, $\left(\xi 1^{\prime}: \xi 2^{\prime}\right)^{T}=S 2(x 1: x 2: x 3: x 4: u 1: u 2)^{T}$ is also a flat output of the system which satisfies $(x 1: x 2: x 3: x 4: u 1: u 2)^{T}=P 2\left(\xi 1^{\prime}: \xi 2^{\prime}\right)^{T}$. Let us notice that the two previous flat outputs only exist for $a b \neq 0$.

Let us study the case where $a=0$ and $b=1$, i.e., the case where there is only a tangential thrust.

```
> R201 := linalg[submatrix](subs(a=0,b=1,evalm(R2)), 1..4, [1,2,3,4,6]);
```

$$
\text { R201 }:=\left[\begin{array}{ccccc}
D t & -1 & 0 & 0 & 0 \\
-3 \omega^{2} & D t & 0 & -2 \omega r & 0 \\
0 & 0 & D t & -1 & 0 \\
0 & \frac{2 \omega}{r} & 0 & D t & -\frac{\delta}{m r}
\end{array}\right]
$$

Let us define a formal adjoint R201_ adj of R201 by using an involution of Alg2.

```
> R201_adj := Involution(R201, Alg2):
```

Let us check whether or not the Alg2-module associated with R201 is torsion-free.

$$
\begin{aligned}
& >\text { Ext101 }:=\text { Exti(R201_adj, Alg2, 1); } \\
& \text { Ext101 }:=\left[\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccccc}
-3 \omega^{2} & D t & 0 & -2 \omega r & 0 \\
D t & -1 & 0 & 0 & 0 \\
0 & 2 m \omega & 0 & m r D t & -\delta \\
0 & 0 & D t & -1 & 0
\end{array}\right],\left[\begin{array}{c}
2 \delta D t \omega r \\
2 \delta \omega D t^{2} r \\
-3 \delta \omega^{2}+D t^{2} \delta \\
\delta D t^{3}-3 \delta D t \omega^{2} \\
D t^{4} m r+D t^{2} \omega^{2} m r
\end{array}\right]\right]
\end{aligned}
$$

Therefore, we obtain that Alg2-module associated with R201 is torsion-free, and thus, the system associated with R201 is controllable and parametrizable. In particular, a parametrization of the system is given by Ext101 [3] or, in other words, we have:
> Parametrization(R201, Alg2);

$$
\left[\begin{array}{c}
2 \omega r \mathrm{D}\left(\xi_{1}\right)(t-1) \\
2 \omega r\left(\mathrm{D}^{(2)}\right)\left(\xi_{1}\right)(t-1) \\
-3 \omega^{2} \xi_{1}(t-1)+\left(\mathrm{D}^{(2)}\right)\left(\xi_{1}\right)(t-1) \\
\left(\mathrm{D}^{(3)}\right)\left(\xi_{1}\right)(t-1)-3 \omega^{2} \mathrm{D}\left(\xi_{1}\right)(t-1) \\
m r\left(\mathrm{D}^{(4)}\right)\left(\xi_{1}\right)(t)+m \omega^{2} r\left(\mathrm{D}^{(2)}\right)\left(\xi_{1}\right)(t)
\end{array}\right]
$$

Let us check whether or not the Alg2-module associated with R201 is free, i.e., whether or not the system associated with R201 is flat.

$$
\begin{aligned}
& >\text { Ext201 }:=\text { Exti(R201_adj, Alg2, 2); } \\
& \qquad \operatorname{Ext201}:=\left[\left[\begin{array}{c}
\delta \\
D t^{2} \omega^{2}+D t^{4}
\end{array}\right],[1], \operatorname{SURJ}(1)\right]
\end{aligned}
$$

The first matrix is not the identity matrix, and thus, we obtain that the Alg2-module associated with R201 is not a projective, and thus, a free Alg2-module by the Quillen-Suslin theorem. The fact that the system is controllable implies that there exists a π-polynomial in δ. Let us compute the minimal one.

```
> PiPolynomial(R201, Alg2, [delta]);
```

Therefore, if we use the operator δ^{-1}, i.e., an advance operator, then the system becomes flat. Let us compute a flat output of the system which involves the advance operator δ^{-1}. if we use advance operators.

$$
\begin{aligned}
& >\text { S201 }:=\text { LocalLeftInverse(Ext101[3], [delta], Alg2); } \\
& \qquad \text { S201 }:=\left[\begin{array}{lllll}
0 & \frac{1}{6 \delta \omega^{3} r} & -\frac{1}{3 \delta \omega^{2}} & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore, $\xi=$ S201 $(x 1: x 2: x 3: x 4: u 2)^{T}$ is a flat output of the system which satisfies

$$
(x 1: x 2: x 3: x 4: u 2)^{T}=E x t 101[3] \xi
$$

Let us also point out that the flat output of the system is defined by means of an advance operator whereas the parametrization Ext101[3] of the system only contains time-delay operators. Let us find a flat output of the system which only use $D t$ and δ and a parametrization wich depends on $D t, \delta$ and δ^{-1}. In particular, let us prove that $\xi^{\prime}=$ T201 ($\left.x 1: x 2: x 3: x 4: u 2\right)^{T}$, where T201 is the matrix defined below, is a flat output of the system.

```
> T201 := evalm([[0,1,-2*r*omega,0,0]]);
    T201:=[[\begin{array}{lllll}{0}&{1}&{-2\omegar}&{0}&{0}\end{array}]
```

Let us check it. First of all, we have

$$
\begin{aligned}
(x 1: x 2: x 3: x 4: u 2)^{T} & =\operatorname{Ext} 101[3] \xi=(E x t 101[3] \circ S 201)(x 1: x 2: x 3: x 4: u 2)^{T} \\
& =Q 201(x 1: x 2: x 3: x 4: u 2)^{T}
\end{aligned}
$$

where $Q 201$ is defined by:

$$
\begin{aligned}
& >\text { Q201 }:=\text { simplify (Mult (Ext101[3], S201, Alg2)); } \\
& \qquad Q 201:=\left[\begin{array}{ccccc}
0 & \frac{D t}{3 \omega^{2}} & -\frac{2 D t r}{3 \omega} & 0 & 0 \\
0 & \frac{D t^{2}}{3 \omega^{2}} & -\frac{2 D t^{2} r}{3 \omega} & 0 & 0 \\
0 & -\frac{\% 1}{6 \omega^{3} r} & \frac{\% 1}{3 \omega^{2}} & 0 & 0 \\
0 & -\frac{D t \% 1}{6 \omega^{3} r} & \frac{D t \% 1}{3 \omega^{2}} & 0 & 0 \\
0 & \frac{D t^{2} m\left(D t^{2}+\omega^{2}\right)}{6 \omega^{3} \delta} & -\frac{D t^{2} m r\left(D t^{2}+\omega^{2}\right)}{3 \delta \omega^{2}} & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\% 1:=3 \omega^{2}-D t^{2}
$$

Let us point out that $Q 201$ is an idempotent of $A l g 2^{5 \times 5}$. This fact can be easily checked:

$$
\begin{aligned}
& >\text { simplify (evalm(Q201~2 - Q201)); } \\
& \qquad\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \left.>\text { P201 : }=\text { Factorize(evalm(delta*Q201), } \begin{array}{l}
\text { T201, Alg2) }
\end{array}\right] \\
& \qquad P 201:=\left[\begin{array}{c}
\frac{\delta D t}{3 \omega^{2}} \\
\frac{\delta D t^{2}}{3 \omega^{2}} \\
-\frac{\delta}{2 \omega r}+\frac{\delta D t^{2}}{6 \omega^{3} r} \\
-\frac{\delta D t}{2 \omega r}+\frac{\delta D t^{3}}{6 \omega^{3} r} \\
\frac{D t^{4} m}{6 \omega^{3}}+\frac{D t^{2} m}{6 \omega}
\end{array}\right]
\end{aligned}
$$

Therefore, we have δ Q201 $=$ P201 o T201, and thus, Q201 $=\delta^{-1}$ P201 o T201. Let us denote by Param the matrix $\delta^{-1} P 201$, namely:

```
> Param := simplify(evalm(delta^(-1)*P201));
```

$$
\text { Param }:=\left[\begin{array}{c}
\frac{D t}{3 \omega^{2}} \\
\frac{D t^{2}}{3 \omega^{2}} \\
-\frac{3 \omega^{2}-D t^{2}}{6 \omega^{3} r} \\
-\frac{D t\left(3 \omega^{2}-D t^{2}\right)}{6 \omega^{3} r} \\
\frac{D t^{2} m\left(D t^{2}+\omega^{2}\right)}{6 \omega^{3} \delta}
\end{array}\right]
$$

Hence, if we define $\xi^{\prime}=T 201(x 1: x 2: x 3: x 4: u 2)^{T}$, then for every element $(x 1: x 2: x 3: x 4: u 2)^{T}$ of the system, we have

$$
\begin{aligned}
(x 1: x 2: x 3: x 4: u 2)^{T} & =\operatorname{Q201}(x 1: x 2: x 3: x 4: u 2)^{T}=\operatorname{Param}\left(T 201(x 1: x 2: x 3: x 4: u 2)^{T}\right) \\
& =\operatorname{Param}^{\prime} .
\end{aligned}
$$

Let us study the case where $a=1$ and $b=0$, i.e., the case where there is only a radial thrust.
> R210 := linalg[submatrix] (subs(a=1,b=0,evalm(R2)), 1..4, 1..5);

$$
\text { R210 }:=\left[\begin{array}{ccccc}
D t & -1 & 0 & 0 & 0 \\
-3 \omega^{2} & D t & 0 & -2 \omega r & -\frac{\delta}{m} \\
0 & 0 & D t & -1 & 0 \\
0 & \frac{2 \omega}{r} & 0 & D t & 0
\end{array}\right]
$$

We first define a formal adjoint R210_adj of R201 using an involution of Alg2.
> R210_adj := Involution(R210, Alg2);

$$
\text { R210_adj }:=\left[\begin{array}{cccc}
-D t & -3 \omega^{2} & 0 & 0 \\
-1 & -D t & 0 & \frac{2 \omega}{r} \\
0 & 0 & -D t & 0 \\
0 & -2 \omega r & -1 & -D t \\
0 & \frac{\delta}{m} & 0 & 0
\end{array}\right]
$$

Let us check whether or not the system defined by the matrix R210 is controllable and parametrizable.

$$
\begin{aligned}
&>\text { Ext101 }:=\text { Exti(R210_adj, Alg2, 1); } \\
& \text { Ext101 }:=\left[\left[\begin{array}{cccc}
D t & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & D t & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccccc}
2 \omega & 0 & 0 & r & 0 \\
0 & 2 \omega & 0 & D t r & 0 \\
0 & 2 m D t & 0 & -\omega r m & -2 \delta \\
0 & 0 & D t & -1 & 0
\end{array}\right],\left[\begin{array}{c}
-D t \delta r \\
-\delta D t^{2} r \\
2 \omega \delta \\
2 \delta D t \omega \\
-D t \omega^{2} r m-D t^{3} r m
\end{array}\right]\right.
\end{aligned}
$$

The first matrix of Ext101 is not the identity matrix, and thus, the Alg2-module associated with R201 is not torsion-free. The torsion elements of this module are defined by:

$$
\begin{aligned}
& >\text { TorsionElements }(\mathrm{R} 210,[\mathrm{x} 1(\mathrm{t}), \mathrm{x} 2(\mathrm{t}), \mathrm{x} 3(\mathrm{t}), \mathrm{x} 4(\mathrm{t}), \mathrm{u} 1(\mathrm{t})], \text { Alg2); } \\
& \left.\qquad\left[\begin{array}{c}
\mathrm{D}\left(\theta_{1}\right)(t)=0 \\
\mathrm{D}\left(\theta_{3}\right)(t)=0
\end{array}\right],\left[\begin{array}{c}
\theta_{1}(t)=2 \omega \mathrm{x} 1(t)+r \mathrm{x} 4(t) \\
\theta_{3}(t)=2 m \mathrm{D}(x 2)(t)-\omega r m \mathrm{x} 4(t)-2 \mathrm{u} 1(t-1)
\end{array}\right]\right]
\end{aligned}
$$

To finish, the controllable part of the system is defined by Ext101 [2] and it is parametrized by Ext101[3], namely, we have:

```
> ApplyMatrix(Ext101[3], [xi(t)], Alg2);
```

$$
\left[\begin{array}{c}
2 \omega r \mathrm{D}(\xi)(t-1) \\
2 \omega r\left(\mathrm{D}^{(2)}\right)(\xi)(t-1) \\
-3 \omega^{2} \xi(t-1)+\left(\mathrm{D}^{(2)}\right)(\xi)(t-1) \\
\left(\mathrm{D}^{(3)}\right)(\xi)(t-1)-3 \omega^{2} \mathrm{D}(\xi)(t-1) \\
r m\left(\mathrm{D}^{(4)}\right)(\xi)(t)+\omega^{2} r m\left(\mathrm{D}^{(2)}\right)(\xi)(t)
\end{array}\right]
$$

