
In this worksheet, we study the motions of a fluid in a tank which is moved horizontally. These
motions are described by the linearized Saint-Venant equations. See F. Dubois, N. Petit, P. Rouchon,
Motion planning and nonlinear simulations for a tank containing a fluid, Proceedings of the European
Control Conference, Karlsruhe, 1999 and N. Petit, P. Rouchon, Motion Dynamics and Solutions to Some
Control Problems for Water-Tank Systems, IEEE Trans. Autom. Contr., vol. 47, no. 4, 2002, pp.
594-609.

> with(Ore_algebra):

> with(OreModules):

In order to write down the system matrix of the Saint-Venant equations, we define the Ore algebra Alg
which contains the differential operator D w.r.t. time t and the operator δ which acts as a shift on the
variable t. Without loss of generality, the length of the shift is taken to be 1.

> Alg := DefineOreAlgebra(diff=[D,t], dual_shift=[delta,s], polynom=[t,s],
> shift_action=[delta,t]):

We enter the system matrix of the Saint-Venant equations (which are shifted by 1 here):

> R := evalm([[delta^2, 1, -2*D*delta],[1, delta^2, -2*D*delta]]);

R :=
[

δ2 1 −2 D δ
1 δ2 −2 D δ

]
The corresponding linear differential time-delay system is:

> ApplyMatrix(R, [phi1(t),phi2(t),phi3(t)], Alg)=evalm([[0],[0]]);[
φ1(t− 2) + φ2(t)− 2 D(φ3)(t− 1)
φ1(t) + φ2(t− 2)− 2 D(φ3)(t− 1)

]
=

[
0
0

]
We denote the Alg-module which is associated with this linear system by M . In order to check control-
lability and parametrizability of the system, we compute the first extension module with values in Alg of
the transposed module of M (note that, since the system is time-invariant, we actually deal with matrices
over a commutative polynomial ring, so we choose transposition of matrices as a trivial involution here).

> Ext1 := Exti(Involution(R, Alg), Alg, 1);

Ext1 :=

[
δ2 − 1 0

0 δ2 − 1

]
,

[
1 −1 0
0 −δ2 − 1 2 D δ

]
,

 2 D δ
2 D δ
1 + δ2


Since Ext1 [1] is not an identity matrix, we find a generating set of torsion elements of M in Ext1 [2].
Both rows r1 and r2 of Ext1 [2] are annihilated in M by δ2 − 1, i.e. (δ2 − 1) ri is zero modulo the rows of
R, i = 1, 2. Hence, the torsion submodule t(M) of M is non-trivial which means that the linear system
described by the Saint-Venant equations is not controllable and not parametrizable. Ext1 [3] gives a
parametrization of the torsion-free part M / t(M) of M . The generating set of torsion elements can also
be obtained by TorsionElements which expresses the torsion elements in terms of the system variables
φ1, φ2, φ3:

> TorsionElements(R, [phi1(t),phi2(t),phi3(t)], Alg);

[
[

θ1(t− 2)− θ1(t) = 0
θ2(t− 2)− θ2(t) = 0

]
,

[
θ1(t) = φ1(t)− φ2(t)

θ2(t) = −φ2(t− 2)− φ2(t) + 2 D(φ3)(t− 1)

]
]
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Since M is not torsion-free, it is not projective and not free either. In what follows, we investigate whether
the torsion submodule t(M) has a complement in M , i.e. whether there exists a submodule C of M such
that M is the direct sum of t(M) and C. In the affirmative case, the complement C allows to construct
a parametrization of M , although M corresponds to a linear system which has autonomous elements. A
sufficient condition for this direct sum decomposition of M is that the torsion-free Alg-module M / t(M)
is projective. Let us check whether this simplest of all cases applies here:

> RightInverse(Ext1[2], Alg);

[]

The matrix Ext1 [2] which presents the torsion-free part of M has full row rank, but does not admit a
right-inverse. Hence, M / t(M) is not projective. Note that the existence of a complement of t(M)
in M is equivalent to the fact that the short exact sequence 0 −→ t(M) −→ M −→ M/t(M) −→ 0
splits, i.e., there exists an Alg-morphism M/t(M) → M which, composed by the canonical projection
M → M/t(M), gives the identity on M / t(M). The image of this morphism in M provides a complement
of t(M) in M . Let us check whether such a morphism exists:

> C := ComplementConstCoeff(Ext1[2], R, Alg);

C :=




1
2

1
2

0

1
2

1
2

0

0 0 1

 ,

[
0 0
−1
2

−1
2

]
,


1
2

0

−1
2

0

0 0




We find one complement of t(M) in M . It is generated by the residue classes of the rows of C[1] in M .

> S := C[3]: V := C[2]:

In fact, the system of equations over Alg which ComplementConstCoeff has solved is R′−R′ S R′ = V R,
where R′ = Ext1[2] and R were given and S and V were to be found. For more details see A. Quadrat,
D. Robertz, Parametrizing all solutions of controllable multidimensional linear systems, Proceedings of
the 16th IFAC World Congress, Prague, 2005.

> evalm(Ext1[2] - Mult(Ext1[2], S, Ext1[2], Alg) - Mult(V, R, Alg));[
0 0 0
0 0 0

]
In order to construct a parametrization of M , we use the data just computed to glue the parametrization
of the torsion-free part M / t(M) with the “integration of the torsion elements” which follows first. We
need to find the Alg-linear relations satisfied by the generating set of torsion elements Ext1 [2] in M (i.e.,
modulo the rows of R):

> SyzygyModule(linalg[stackmatrix](Ext1[2], R), Alg);[
1 −1 0 −1
0 δ2 − 1 −1 δ2

]
The rows of the preceding result generate all linear relations that hold for the union of the rows of
Ext1 [2] and R. So for each linear relation, the ith column gives the coefficient of the ith row of Ext1 [2],
if 1 ≤ i ≤ 2 and the (2 + i)th column gives the coefficient of the ith row of R, i = 1, 2. Hence, we see
from the first row of the preceding result, that the two torsion elements given by the rows of Ext1 [2] are
equal modulo the rows of R. Hence, we have to solve θ1(t− 2)− θ1(t) = 0, θ2 = θ1. We find that θ1 is
any 2-periodic function of t and θ2 = θ1. A parametrization of M is then given by (see A. Quadrat, D.
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Robertz, Parametrizing all solutions of controllable multidimensional linear systems, Proceedings of the
16th IFAC World Congress, Prague, 2005): (φ1(t), φ2(t), φ3(t))T = S (θ1(t), θ2(t))T + Ext1[3] ξ1.

> P := evalm(ApplyMatrix(S, [theta[1](t),theta[2](t)], Alg) +
> ApplyMatrix(Ext1[3], [xi[1](t)], Alg));

P :=


1
2

θ1(t) + 2 D(ξ1)(t− 1)

−1
2

θ1(t) + 2 D(ξ1)(t− 1)

ξ1(t) + ξ1(t− 2)


We check that P is a parametrization of the system:

> ApplyMatrix(R, P, Alg); 
1
2

θ1(t− 2)− 1
2

θ1(t)

1
2

θ1(t)−
1
2

θ1(t− 2)


Since θ1 is an arbitrary function of t which is 2-periodic, we see that the previous result is the zero vector,
which proves that P is a parametrization of the Saint-Venant equations.

Now, we consider the linear system of the Saint-Venant equations over the Ore algebra Alg2 which
contains the differential operator D w.r.t. time t, the shift operator δ and the operator τ which acts as
an advance on the variable t:

> Alg2 := DefineOreAlgebra(diff=[D,t], ‘shift+dual_shift‘=[tau,delta,s],
> shift_action=[delta,t], shift_action=[tau,t], polynom=[s,t]):

The system matrix is then entered as follows:

> R2 := evalm([[delta, tau, -2*D], [tau, delta, -2*D]]);

R2 :=
[

δ τ −2 D
τ δ −2 D

]
The corresponding linear differential time-delay system is:

> ApplyMatrix(R2, [phi1(t),phi2(t),phi3(t)], Alg2)=evalm([[0],[0]]);[
φ1(t− 1) + φ2(t + 1)− 2 D(φ3)(t)
φ1(t + 1) + φ2(t− 1)− 2 D(φ3)(t)

]
=

[
0
0

]
We denote the Alg 2-module which is associated with this linear system by M2 . In order to compute the
torsion submodule of M2 , we compute the first extension module with values in Alg2 of the transposed
module of M2 (note that we deal again with matrices over a commutative polynomial ring):

> Ext2 := Exti(Involution(R2, Alg2), Alg2, 1);

Ext2 :=

[
τ − δ 0

0 τ − δ

]
,

[
1 −1 0
0 −τ − δ 2 D

]
,

 2 D
2 D

τ + δ


Hence, we find a generating set of torsion elements of M2 in Ext2 [2]. When we compare Ext2 [2] and
Ext1 [2], we see that the generators of t(M2 ) are obtained from the generators of t(M2 ) by shifting by 1.
Of course, we obtain the rows of R by shifting the rows of R2 by 1 which explains the relationship. The
generating torsion elements are expressed in terms of the system variables φ1, φ2, φ3 now as follows:
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> TorsionElements(R2, [phi1(t), phi2(t), phi3(t)], Alg2);

[
[

θ1(t + 1)− θ1(t− 1) = 0
θ2(t + 1)− θ2(t− 1) = 0

]
,

[
θ1(t) = φ1(t)− φ2(t)

θ2(t) = −φ2(t + 1)− φ2(t− 1) + 2 D(φ3)(t)

]
]

We investigate again whether or not t(M2 ) has a complement in M2 . First of all, we check whether
M2/t(M2) is projective:

> RightInverse(Ext2[2], Alg2);

[]

Since Ext2 [2] has full row rank and does not admit a right-inverse, the torsion-free Alg2 -module M2/t(M2)
is not projective. Let us try to find S and V which satisfy R′ −R′ S R′ = V R2, where R′ = Ext2[2]:

> C := ComplementConstCoeff(Ext2[2], R2, Alg2);

C :=




1
2

1
2

0

1
2

1
2

0

0 0 1

 ,

[
0 0
−1
2

−1
2

]
,


1
2

0

−1
2

0

0 0




We find the same result as above.

> S := C[3]:

In order to construct a parametrization of M2 , we compute the linear relations satisfied by the torsion
elements given by Ext2 [2]:

> SyzygyModule(linalg[stackmatrix](Ext2[2], R2), Alg2); δ −1 −1 0
τ −1 0 −1
0 τ − δ τ −δ


Let us denote the torsion element given by the ith row of Ext2 [2] by θi, i = 1, 2. We find that θ2 equals θ1

advanced by 1. Hence, we have to solve (see the output of TorsionElements): θ1(t + 1)− θ1(t− 1) = 0,
θ2(t) = θ1(t− 1). We find that θ1 is any 2-periodic function of t and θ2 equals θ1 advanced by 1.
Therefore, a parametrization of M2 is given by (see A. Quadrat, D. Robertz, Parametrizing all solutions
of controllable multidimensional linear systems, Proceedings of the 16th IFAC World Congress, Prague,
2005): (φ1(t), φ2(t), φ3(t))T = S (θ1(t), θ2(t))T + Ext2[3] ξ1.

> P2 := evalm(ApplyMatrix(S, [theta[1](t),theta[2](t)], Alg2) +
> ApplyMatrix(Ext2[3], [xi[1](t)], Alg2));

P2 :=


1
2

θ1(t) + 2 D(ξ1)(t)

−1
2

θ1(t) + 2 D(ξ1)(t)

ξ1(t + 1) + ξ1(t− 1)


Let us check that P is a parametrization of the system:

> ApplyMatrix(R2, P2, Alg2);
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
1
2

θ1(t− 1)− 1
2

θ1(t + 1)

1
2

θ1(t + 1)− 1
2

θ1(t− 1)


Since θ1 is a 2-periodic function of t, we see that P is a parametrization of the linearized Saint-Venant
equations.

If we define π = θ1/2 and v = 2 ξ1, then the previous parametrization P of the system becomes the one
obtained in (9) and (10) in F. Dubois, N. Petit, P. Rouchon, Motion planning and nonlinear simulations
for a tank containing a fluid, Proceedings of the European Control Conference, Karlsruhe, 1999.

In N. Petit, P. Rouchon, Motion Dynamics and Solutions to Some Control Problems for Water-Tank
Systems, IEEE Trans. Autom. Contr., vol. 47, no. 4, 2002, pp. 594-609, another model of a 1-D tank
with a straight bottom and moving in translation is considered.

> Alg3 := DefineOreAlgebra(diff=[D,t], ‘shift+dual_shift‘=[tau,delta,s],
> shift_action=[delta,t], shift_action=[tau,t], polynom=[s,t], comm=[c,g]):

The system is defined by the following system matrix:

> R3 := evalm([[D*tau, -D*delta, (c/g)*D^2], [D*delta, -D*tau, (c/g)*D^2]]);

R3 :=

 D τ −D δ
cD2

g

D δ −D τ
cD2

g


The corresponding linear differential time-delay system is:

> ApplyMatrix(R3, [phi1(t),phi2(t),phi3(t)], Alg3)=evalm([[0],[0]]);
D(φ1)(t + 1) g −D(φ2)(t− 1) g + c (D(2))(φ3)(t)

g

D(φ1)(t− 1) g −D(φ2)(t + 1) g + c (D(2))(φ3)(t)
g

 =
[

0
0

]

We denote the Alg3 -module which is associated with this linear system by M3 . In order to compute the
torsion submodule of M3 , we compute the first extension module with values in Alg3 of the transposed
module of M3 (note that we deal again with matrices over a commutative polynomial ring):

> Ext3 := Exti(Involution(R3, Alg3), Alg3, 1);

Ext3 :=

[
D τ −D δ 0

0 D τ −D δ

]
,

[
1 1 0
0 −τ g − δ g cD

]
,

 cD
−cD

−τ g − δ g


Hence, we find that M3 is not a torsion-free Alg3 -module. The generating torsion elements are expressed
in terms of the system variables φ1, φ2, φ3 as follows:

> TorsionElements(R3, [phi1(t), phi2(t), phi3(t)], Alg3);

[
[

D(θ1)(t + 1)−D(θ1)(t− 1) = 0
D(θ2)(t + 1)−D(θ2)(t− 1) = 0

]
,

[
θ1(t) = φ1(t) + φ2(t)

θ2(t) = −g φ2(t + 1)− g φ2(t− 1) + cD(φ3)(t)

]
]

Let us investigate again whether or not t(M3 ) has a complement in M3 . First of all, we check whether
M3 / t(M3 ) is projective:
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> RightInverse(Ext3[2], Alg3);

[]

Since Ext3 [2] has full row rank and does not admit a right-inverse, the torsion-free Alg3 -module M3/t(M3)
is not projective. Let us try to find S and V which satisfy R′ −R′ S R′ = V R3, where R′ = Ext3[2]:

> C3 := ComplementConstCoeff(Ext3[2], R3, Alg3);

C3 := []

We obtain that t(M3 ) has no complement in M3 . Therefore, we cannot glue the autonomous elements
θ1 and θ2 of the system to the parametrization Ext3 [3] of the torsion-free Alg3 -module M3 / t(M3 ) only
by means of differential, delay and advance operators in order to parametrize the solutions of the system
R3 (η1, η2, η3)T = 0. Hence, a direct consequence of the lack of a splitting of M3 into a direct sum of
t(M3 ) and M3 / t(M3 ) is that we cannot easily compute a parametrization of the system. Let us try to
explain the obstruction.

We first factorize R3 by Ext3 [2]:

> F := Factorize(R3, Ext3[2], Alg3);

F :=

 D τ
D
g

D δ
D
g


Therefore, we have R3 = F Ext3 [2], and thus, R3 η = 0 is equivalent to the inhomogeneous system
Ext3 [2] η = θ & F θ = 0. Hence, we need to solve the following system:

> ApplyMatrix(F, [theta[1](t),theta[2](t)], Alg3)=evalm([[0],[0]]);
D(θ1)(t + 1) g + D(θ2)(t)

g

D(θ1)(t− 1) g + D(θ2)(t)
g

 =
[

0
0

]

which, after one integration, leads to the system

> ApplyMatrix(evalm(1/D*F),[theta[1](t),theta[2](t)],Alg3)=evalm([[c[1]],[c[2]]]);
θ1(t + 1) g + θ2(t)

g

θ1(t− 1) g + θ2(t)
g

 =
[

c1

c2

]

where c1 and c2 are two arbitrary real constants. Subtracting the two equations, we can eliminate θ2 and
obtain the following equation in θ1:

> ApplyMatrix(evalm(linalg[submatrix](1/D*F, 1..1, 1..2)-
> linalg[submatrix](1/D*F, 2..2, 1..2)), [theta[1](t),theta[2](t)],
> Alg3)[1,1]=c[1]-c[2];

θ1(t + 1)− θ1(t− 1) = c1 − c2

Therefore, we need to solve the previous equation. A general solution of the homogeneous part is a
2-periodic function π. Moreover, we easily check that a particular solution of the inhomogeneous system
is given by α(t) = (c1 − c2) t

2 . Hence, a general solution of the previous equation is of the form θ1(t) =
π(t) + α(t).
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Then, from the previous system, we can obtain θ2 explicitly in terms of θ1 as we have:

> Sol := solve(ApplyMatrix(evalm(1/D*F), [theta[1](t),theta[2](t)],
> Alg3)[2,1]=c[2], theta[2](t)): theta[2](t)=Sol;

θ2(t) = −θ1(t− 1) g + c2 g

We finally obtain that θ2(t) = (c2 − π(t− 1)− α(t− 1)) g, namely

> theta[2](t) := collect(collect(simplify(subs(
> theta[1](t-1)=pi(t-1)+(c[1]-c[2])*(t-1)/2, Sol)), t), g);

θ2(t) := ((−1
2

c1 +
1
2

c2) t− π(t− 1) +
1
2

c1 +
1
2

c2) g

and θ1:

> theta[1](t) := pi(t)+(c[1]-c[2])*t/2;

θ1(t) := π(t) +
1
2

(c1 − c2) t

We now need to solve the inhomogeneous system Ext3[2] η = θ, where θ = (θ1, θ2)T .

> ApplyMatrix(Ext3[2],[eta[1](t),eta[2](t),eta[3](t)],Alg3)
> =evalm([[theta[1](t)], [theta[2](t)]]);[

η1(t) + η2(t)
−g η2(t + 1)− g η2(t− 1) + cD(η3)(t)

]
=

 π(t) +
1
2

(c1 − c2) t

((−1
2

c1 +
1
2

c2) t− π(t− 1) +
1
2

c1 +
1
2

c2) g


> Ext3[2]=evalm([[theta[1](t)], [theta[2](t)]]);

The general solution of this system is then the sum of a particular solution of the inhomogeneous system
and the general solution of the homogeneous system Ext3 [2] η = 0.

The general solution of the homogeneous system Ext3 [2] η = 0 is given by the parametrization Ext3 [3]
or equivalently by:

> P3 := ApplyMatrix(Ext3[3], [xi[1](t)], Alg3);

P3 :=

 cD(ξ1)(t)
−cD(ξ1)(t)

−g ξ1(t + 1)− g ξ1(t− 1)


The fact that no splitting of M3 into a direct sum of t(M3 ) and M3 / t(M3 ) exists implies that there
is no general algebraic way to obtain a particular solution of Ext3 [2] η = θ using only θ and differential,
delay and advance operators. However, we can check that a particular solution ζ of the inhomogeneous
system Ext3 [2] ζ= θ is defined by:

> evalm([[zeta[1](t)],[zeta[2](t)],[zeta[3](t)]])=evalm([[pi(t)/2
> +(c[1]-c[2])*t/4+(c[1]+c[2])/4],[pi(t)/2+(c[1]-c[2])*t/4-(c[1]+c[2])/4],[0]]);

 ζ1(t)
ζ2(t)
ζ3(t)

 =


1
2

π(t) +
1
4

(c1 − c2) t +
1
4

c1 +
1
4

c2

1
2

π(t) +
1
4

(c1 − c2) t− 1
4

c1 −
1
4

c2

0


Indeed, if we we compute Ext3 [2] ζ, we then get
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> map(collect,ApplyMatrix(Ext3[2],[pi(t)/2+(c[1]-c[2])*t/4+(c[1]+c[2])/4,
> pi(t)/2+(c[1]-c[2])*t/4-(c[1]+c[2])/4,0],Alg3),{g,t,pi}, distributed); π(t) + (

1
2

c1 −
1
2

c2) t

(
1
2

c1 +
1
2

c2) g − 1
2

g π(t− 1)− 1
2

g π(t + 1) + (−1
2

c1 +
1
2

c2) t g


and using the fact that π is 2-periodic, we find θ. Hence, we finally have the following parametrization
of all the smooth solutions of the system R3 ( η1, η2, η3)ˆT = 0

> evalm([[eta[1](t)],[eta[2](t)],[eta[3](t)]])=evalm(P3+evalm([[pi(t)/2
> +(c[1]-c[2])*t/4+(c[1]+c[2])/4],[pi(t)/2+(c[1]-c[2])*t/4-(c[1]+c[2])/4],[0]]));

 η1(t)
η2(t)
η3(t)

 =


cD(ξ1)(t) +

1
2

π(t) +
1
4

(c1 − c2) t +
1
4

c1 +
1
4

c2

−cD(ξ1)(t) +
1
2

π(t) +
1
4

(c1 − c2) t− 1
4

c1 −
1
4

c2

−g ξ1(t + 1)− g ξ1(t− 1)


where ξ1 is an arbitrary smooth function, π a 2-periodic function and c1 and c2 two constants. We find
again the parametrization of R3 ( η1, η2, η3)ˆT = 0 obtained in the paper N. Petit, P. Rouchon, Motion
Dynamics and Solutions to Some Control Problems for Water-Tank Systems, IEEE Trans. Autom.
Contr., vol. 47, no. 4, 2002, pp. 594-609. See page 599 for more details.
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