In this worksheet, we study the motions of a fluid in a tank which is moved horizontally. These motions are described by the linearized Saint-Venant equations. See F. Dubois, N. Petit, P. Rouchon, Motion planning and nonlinear simulations for a tank containing a fluid, Proceedings of the European Control Conference, Karlsruhe, 1999 and N. Petit, P. Rouchon, Motion Dynamics and Solutions to Some Control Problems for Water-Tank Systems, IEEE Trans. Autom. Contr., vol. 47, no. 4, 2002, pp. 594-609.

```
> with(Ore_algebra):
> with(OreModules):
```

In order to write down the system matrix of the Saint-Venant equations, we define the Ore algebra Alg which contains the differential operator D w.r.t. time t and the operator δ which acts as a shift on the variable t. Without loss of generality, the length of the shift is taken to be 1 .

```
> Alg := DefineOreAlgebra(diff=[D,t], dual_shift=[delta,s], polynom=[t,s],
> shift_action=[delta,t]):
```

We enter the system matrix of the Saint-Venant equations (which are shifted by 1 here):

$$
\begin{gathered}
>\mathrm{R}:=\operatorname{evalm}\left(\left[\left[\mathrm{delta}^{\wedge} 2,1,-2 * \mathrm{D} * \mathrm{delta}\right],[1, \text { delta^2, }-2 * \mathrm{D} * \mathrm{delta}]\right]\right) ; \\
R:=\left[\begin{array}{ccc}
\delta^{2} & 1 & -2 \mathrm{D} \delta \\
1 & \delta^{2} & -2 \mathrm{D} \delta
\end{array}\right]
\end{gathered}
$$

The corresponding linear differential time-delay system is:

$$
\begin{aligned}
>\quad \text { ApplyMatrix }(\mathrm{R}, & {[\operatorname{phi1}(\mathrm{t}), \operatorname{phi} 2(\mathrm{t}), \operatorname{phi} 3(\mathrm{t})], \text { Alg })=\mathrm{evalm}([[0],[0]]) ; } \\
& {\left[\begin{array}{c}
\phi 1(t-2)+\phi 2(t)-2 \mathrm{D}(\phi 3)(t-1) \\
\phi 1(t)+\phi 2(t-2)-2 \mathrm{D}(\phi 3)(t-1)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

We denote the Alg-module which is associated with this linear system by M. In order to check controllability and parametrizability of the system, we compute the first extension module with values in $A l g$ of the transposed module of M (note that, since the system is time-invariant, we actually deal with matrices over a commutative polynomial ring, so we choose transposition of matrices as a trivial involution here).

$$
\begin{aligned}
>\text { Ext } 1:= & \operatorname{Exti}(\text { Involution }(\mathrm{R}, \mathrm{Alg}), \text { Alg, } 1) ; \\
& \text { Ext1 }:=\left[\left[\begin{array}{cc}
\delta^{2}-1 & 0 \\
0 & \delta^{2}-1
\end{array}\right],\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & -\delta^{2}-1 & 2 \mathrm{D} \delta
\end{array}\right],\left[\begin{array}{c}
2 \mathrm{D} \delta \\
2 \mathrm{D} \delta \\
1+\delta^{2}
\end{array}\right]\right]
\end{aligned}
$$

Since Ext1[1] is not an identity matrix, we find a generating set of torsion elements of M in Ext1[2]. Both rows r_{1} and r_{2} of $\operatorname{Ext1}[2]$ are annihilated in M by $\delta^{2}-1$, i.e. $\left(\delta^{2}-1\right) r_{i}$ is zero modulo the rows of $R, i=1,2$. Hence, the torsion submodule $\mathrm{t}(M)$ of M is non-trivial which means that the linear system described by the Saint-Venant equations is not controllable and not parametrizable. Ext1[3] gives a parametrization of the torsion-free part $M / \mathrm{t}(M)$ of M. The generating set of torsion elements can also be obtained by TorsionElements which expresses the torsion elements in terms of the system variables $\phi 1, \phi 2, \phi 3$:

$$
\begin{aligned}
& >\text { TorsionElements }(\mathrm{R}, \quad[\mathrm{phi1}(\mathrm{t}), \mathrm{phi2}(\mathrm{t}), \mathrm{phi} 3(\mathrm{t})], \mathrm{Alg}) \text {; } \\
& \qquad\left[\left[\begin{array}{c}
\theta_{1}(t-2)-\theta_{1}(t)=0 \\
\theta_{2}(t-2)-\theta_{2}(t)=0
\end{array}\right],\left[\begin{array}{c}
\theta_{1}(t)=\phi 1(t)-\phi 2(t) \\
\theta_{2}(t)=-\phi 2(t-2)-\phi 2(t)+2 \mathrm{D}(\phi 3)(t-1)
\end{array}\right]\right]
\end{aligned}
$$

Since M is not torsion-free, it is not projective and not free either. In what follows, we investigate whether the torsion submodule $\mathrm{t}(M)$ has a complement in M, i.e. whether there exists a submodule C of M such that M is the direct sum of $\mathrm{t}(M)$ and C. In the affirmative case, the complement C allows to construct a parametrization of M, although M corresponds to a linear system which has autonomous elements. A sufficient condition for this direct sum decomposition of M is that the torsion-free $A l g$-module $M / \mathrm{t}(M)$ is projective. Let us check whether this simplest of all cases applies here:

```
> RightInverse(Ext1[2], Alg);
```

The matrix Ext1[2] which presents the torsion-free part of M has full row rank, but does not admit a right-inverse. Hence, $M / \mathrm{t}(M)$ is not projective. Note that the existence of a complement of $\mathrm{t}(M)$ in M is equivalent to the fact that the short exact sequence $0 \longrightarrow t(M) \longrightarrow M \longrightarrow M / t(M) \longrightarrow 0$ splits, i.e., there exists an $A l g$-morphism $M / t(M) \rightarrow M$ which, composed by the canonical projection $M \rightarrow M / t(M)$, gives the identity on $M / \mathrm{t}(M)$. The image of this morphism in M provides a complement of $\mathrm{t}(M)$ in M. Let us check whether such a morphism exists:

$$
\begin{aligned}
& >C:=\text { ComplementConstCoeff (Ext1 [2], R, Alg); } \\
& \qquad C:=\left[\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
\frac{-1}{2} & \frac{-1}{2}
\end{array}\right],\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
\frac{-1}{2} & 0 \\
0 & 0
\end{array}\right]\right]
\end{aligned}
$$

We find one complement of $\mathrm{t}(M)$ in M. It is generated by the residue classes of the rows of $C[1]$ in M.

```
> S := C[3]: V := C[2]:
```

In fact, the system of equations over Alg which ComplementConstCoeff has solved is $R^{\prime}-R^{\prime} S R^{\prime}=V R$, where $R^{\prime}=\operatorname{Ext1}[2]$ and R were given and S and V were to be found. For more details see A. Quadrat, D. Robertz, Parametrizing all solutions of controllable multidimensional linear systems, Proceedings of the 16th IFAC World Congress, Prague, 2005.

```
> evalm(Ext1[2] - Mult(Ext1[2], S, Ext1[2], Alg) - Mult(V, R, Alg));
```

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

In order to construct a parametrization of M, we use the data just computed to glue the parametrization of the torsion-free part $M / \mathrm{t}(M)$ with the "integration of the torsion elements" which follows first. We need to find the Alg-linear relations satisfied by the generating set of torsion elements Ext1[2] in M (i.e., modulo the rows of R):

```
> SyzygyModule(linalg[stackmatrix](Ext1[2], R), Alg);
    [\begin{array}{ccrc}{1}&{-1}&{0}&{-1}\\{0}&{\mp@subsup{\delta}{}{2}-1}&{-1}&{\mp@subsup{\delta}{}{2}}\end{array}]
```

The rows of the preceding result generate all linear relations that hold for the union of the rows of $\operatorname{Ext1}[2]$ and R. So for each linear relation, the i th column gives the coefficient of the i th row of Ext1[2], if $1 \leq i \leq 2$ and the $(2+i)$ th column gives the coefficient of the i th row of $R, i=1,2$. Hence, we see from the first row of the preceding result, that the two torsion elements given by the rows of Ext1 [2] are equal modulo the rows of R. Hence, we have to solve $\theta_{1}(t-2)-\theta_{1}(t)=0, \theta_{2}=\theta_{1}$. We find that θ_{1} is any 2-periodic function of t and $\theta_{2}=\theta_{1}$. A parametrization of M is then given by (see A. Quadrat, D.

Robertz, Parametrizing all solutions of controllable multidimensional linear systems, Proceedings of the 16th IFAC World Congress, Prague, 2005): $(\phi 1(t), \phi 2(t), \phi 3(t))^{T}=S\left(\theta_{1}(t), \theta_{2}(t)\right)^{T}+E x t 1[3] \xi_{1}$.

```
> P := evalm(ApplyMatrix(S, [theta[1](t),theta[2](t)], Alg) +
> ApplyMatrix(Ext1[3], [xi[1](t)], Alg));
```

$$
P:=\left[\begin{array}{c}
\frac{1}{2} \theta_{1}(t)+2 \mathrm{D}\left(\xi_{1}\right)(t-1) \\
-\frac{1}{2} \theta_{1}(t)+2 \mathrm{D}\left(\xi_{1}\right)(t-1) \\
\xi_{1}(t)+\xi_{1}(t-2)
\end{array}\right]
$$

We check that P is a parametrization of the system:

```
> ApplyMatrix(R, P, Alg);
```

$$
\left[\begin{array}{c}
\frac{1}{2} \theta_{1}(t-2)-\frac{1}{2} \theta_{1}(t) \\
\frac{1}{2} \theta_{1}(t)-\frac{1}{2} \theta_{1}(t-2)
\end{array}\right]
$$

Since θ_{1} is an arbitrary function of t which is 2 -periodic, we see that the previous result is the zero vector, which proves that P is a parametrization of the Saint-Venant equations.

Now, we consider the linear system of the Saint-Venant equations over the Ore algebra $\operatorname{Alg} 2$ which contains the differential operator D w.r.t. time t, the shift operator δ and the operator τ which acts as an advance on the variable t :

```
> Alg2 := DefineOreAlgebra(diff=[D,t], 'shift+dual_shift'=[tau,delta,s],
> shift_action=[delta,t], shift_action=[tau,t], polynom=[s,t]):
```

The system matrix is then entered as follows:

```
> R2 := evalm([[delta, tau, -2*D], [tau, delta, -2*D]]);
    R2 :=[ llll
```

The corresponding linear differential time-delay system is:

```
> ApplyMatrix(R2, [phi1(t),phi2(t),phi3(t)], Alg2)=evalm([[0],[0]]);
```

$$
\left[\begin{array}{c}
\phi 1(t-1)+\phi 2(t+1)-2 \mathrm{D}(\phi 3)(t) \\
\phi 1(t+1)+\phi 2(t-1)-2 \mathrm{D}(\phi 3)(t)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

We denote the $\operatorname{Alg} 2$-module which is associated with this linear system by M2. In order to compute the torsion submodule of M2, we compute the first extension module with values in $\operatorname{Alg} 2$ of the transposed module of M2 (note that we deal again with matrices over a commutative polynomial ring):

$$
\begin{aligned}
& >\text { Ext2 }:=\text { Exti (Involution(R2, Alg2), Alg2, 1); } \\
& \qquad \text { Ext2 }:=\left[\left[\begin{array}{cc}
\tau-\delta & 0 \\
0 & \tau-\delta
\end{array}\right],\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & -\tau-\delta & 2 \mathrm{D}
\end{array}\right],\left[\begin{array}{c}
2 \mathrm{D} \\
2 \mathrm{D} \\
\tau+\delta
\end{array}\right]\right]
\end{aligned}
$$

Hence, we find a generating set of torsion elements of M2 in Ext2[2]. When we compare Ext2[2] and Ext1 [2], we see that the generators of $\mathrm{t}(\mathrm{M2})$ are obtained from the generators of $\mathrm{t}(\mathrm{M2})$ by shifting by 1 . Of course, we obtain the rows of R by shifting the rows of $R 2$ by 1 which explains the relationship. The generating torsion elements are expressed in terms of the system variables $\phi 1, \phi 2, \phi 3$ now as follows:

```
> TorsionElements(R2, [phi1(t), phi2(t), phi3(t)], Alg2);
```

$$
\left[\left[\begin{array}{c}
\theta_{1}(t+1)-\theta_{1}(t-1)=0 \\
\theta_{2}(t+1)-\theta_{2}(t-1)=0
\end{array}\right],\left[\begin{array}{c}
\theta_{1}(t)=\phi 1(t)-\phi 2(t) \\
\theta_{2}(t)=-\phi 2(t+1)-\phi 2(t-1)+2 \mathrm{D}(\phi 3)(t)
\end{array}\right]\right]
$$

We investigate again whether or not t (M2) has a complement in M2. First of all, we check whether $M 2 / t(M 2)$ is projective:

```
> RightInverse(Ext2[2], Alg2);
```

Since Ext2[2] has full row rank and does not admit a right-inverse, the torsion-free Alg2-module $M 2 / t(M 2)$ is not projective. Let us try to find S and V which satisfy $R^{\prime}-R^{\prime} S R^{\prime}=V R 2$, where $R^{\prime}=\operatorname{Ext2} 2[2]$:

```
> C := ComplementConstCoeff(Ext2[2], R2, Alg2);
```

$$
C:=\left[\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
\frac{-1}{2} & \frac{-1}{2}
\end{array}\right],\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
\frac{-1}{2} & 0 \\
0 & 0
\end{array}\right]\right]
$$

We find the same result as above.

```
> S := C[3]:
```

In order to construct a parametrization of M2, we compute the linear relations satisfied by the torsion elements given by Ext2[2]:

```
> SyzygyModule(linalg[stackmatrix](Ext2[2], R2), Alg2);
```

$$
\left[\begin{array}{cccc}
\delta & -1 & -1 & 0 \\
\tau & -1 & 0 & -1 \\
0 & \tau-\delta & \tau & -\delta
\end{array}\right]
$$

Let us denote the torsion element given by the i th row of $\operatorname{Ext2}[2]$ by $\theta_{i}, i=1,2$. We find that θ_{2} equals θ_{1} advanced by 1. Hence, we have to solve (see the output of TorsionElements): $\theta_{1}(t+1)-\theta_{1}(t-1)=0$, $\theta_{2}(t)=\theta_{1}(t-1)$. We find that θ_{1} is any 2 -periodic function of t and θ_{2} equals θ_{1} advanced by 1 . Therefore, a parametrization of M2 is given by (see A. Quadrat, D. Robertz, Parametrizing all solutions of controllable multidimensional linear systems, Proceedings of the 16th IFAC World Congress, Prague, 2005): $\left.(\phi 1(t), \phi 2(t), \phi 3(t))^{T}=S\left(\theta_{1}(t), \theta_{2}(t)\right)^{T}+\operatorname{Ext2} 2\right]\left[\xi_{1}\right.$.

```
> P2 := evalm(ApplyMatrix(S, [theta[1](t),theta[2](t)], Alg2) +
> ApplyMatrix(Ext2[3], [xi[1](t)], Alg2));
\[
P 2:=\left[\begin{array}{c}
\frac{1}{2} \theta_{1}(t)+2 \mathrm{D}\left(\xi_{1}\right)(t) \\
-\frac{1}{2} \theta_{1}(t)+2 \mathrm{D}\left(\xi_{1}\right)(t) \\
\xi_{1}(t+1)+\xi_{1}(t-1)
\end{array}\right]
\]
```

Let us check that P is a parametrization of the system:

```
> ApplyMatrix(R2, P2, Alg2);
```

$$
\left[\begin{array}{l}
\frac{1}{2} \theta_{1}(t-1)-\frac{1}{2} \theta_{1}(t+1) \\
\frac{1}{2} \theta_{1}(t+1)-\frac{1}{2} \theta_{1}(t-1)
\end{array}\right]
$$

Since θ_{1} is a 2-periodic function of t, we see that P is a parametrization of the linearized Saint-Venant equations.

If we define $\pi=\theta_{1} / 2$ and $v=2 \xi_{1}$, then the previous parametrization P of the system becomes the one obtained in (9) and (10) in F. Dubois, N. Petit, P. Rouchon, Motion planning and nonlinear simulations for a tank containing a fluid, Proceedings of the European Control Conference, Karlsruhe, 1999.

In N. Petit, P. Rouchon, Motion Dynamics and Solutions to Some Control Problems for Water-Tank Systems, IEEE Trans. Autom. Contr., vol. 47, no. 4, 2002, pp. 594-609, another model of a 1-D tank with a straight bottom and moving in translation is considered.

```
> Alg3 := DefineOreAlgebra(diff=[D,t], 'shift+dual_shift'=[tau,delta,s],
> shift_action=[delta,t], shift_action=[tau,t], polynom=[s,t], comm=[c,g]):
```

The system is defined by the following system matrix:

$$
\begin{gathered}
>\mathrm{R} 3:=\operatorname{evalm}\left(\left[\left[\mathrm{D} * \mathrm{tau},-\mathrm{D} * \operatorname{delta},(\mathrm{c} / \mathrm{g}) * \mathrm{D}^{\wedge} 2\right],\right.\right. \\
\left.\left.\left.\qquad \mathrm{D} * \operatorname{delta},-\mathrm{D} * \operatorname{tau},(\mathrm{c} / \mathrm{g}) * \mathrm{D}^{\wedge} 2\right]\right]\right) ; \\
R 3:=\left[\begin{array}{ccc}
\mathrm{D} \tau & -\mathrm{D} \delta & \frac{c \mathrm{D}^{2}}{g} \\
\mathrm{D} \delta & -\mathrm{D} \tau & \frac{c \mathrm{D}^{2}}{g}
\end{array}\right]
\end{gathered}
$$

The corresponding linear differential time-delay system is:

```
> ApplyMatrix(R3, [phi1(t),phi2(t),phi3(t)], Alg3)=evalm([[0],[0]]);
```

$$
\left[\begin{array}{l}
\frac{\mathrm{D}(\phi 1)(t+1) g-\mathrm{D}(\phi 2)(t-1) g+c\left(\mathrm{D}^{(2)}\right)(\phi 3)(t)}{g} \\
\frac{\mathrm{D}(\phi 1)(t-1) g-\mathrm{D}(\phi 2)(t+1) g+c\left(\mathrm{D}^{(2)}\right)(\phi 3)(t)}{g}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

We denote the Alg3-module which is associated with this linear system by M3. In order to compute the torsion submodule of $M 3$, we compute the first extension module with values in $\operatorname{Alg} 3$ of the transposed module of M3 (note that we deal again with matrices over a commutative polynomial ring):

$$
\begin{aligned}
& >\text { Ext3 }:=\operatorname{Exti}(\text { Involution(R3, Alg3), Alg3, 1); } \\
& \qquad \text { Ext3 }:=\left[\left[\begin{array}{cc}
\mathrm{D} \tau-\mathrm{D} \delta & 0 \\
0 & \mathrm{D} \tau-\mathrm{D} \delta
\end{array}\right],\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & -\tau g-\delta g & c \mathrm{D}
\end{array}\right],\left[\begin{array}{c}
c \mathrm{D} \\
-c \mathrm{D} \\
-\tau g-\delta g
\end{array}\right]\right]
\end{aligned}
$$

Hence, we find that M3 is not a torsion-free Alg3-module. The generating torsion elements are expressed in terms of the system variables $\phi 1, \phi 2, \phi 3$ as follows:

$$
\begin{aligned}
> & \text { TorsionElements(R3, [phi1 (t), phi2(t), phi3(t)], Alg3); } \\
& {\left[\left[\begin{array}{c}
\mathrm{D}\left(\theta_{1}\right)(t+1)-\mathrm{D}\left(\theta_{1}\right)(t-1)=0 \\
\mathrm{D}\left(\theta_{2}\right)(t+1)-\mathrm{D}\left(\theta_{2}\right)(t-1)=0
\end{array}\right],\left[\begin{array}{c}
\theta_{1}(t)=\phi 1(t)+\phi 2(t) \\
\theta_{2}(t)=-g \phi 2(t+1)-g \phi 2(t-1)+c \mathrm{D}(\phi 3)(t)
\end{array}\right]\right] }
\end{aligned}
$$

Let us investigate again whether or not $\mathrm{t}(\mathrm{M} 3)$ has a complement in M3. First of all, we check whether M3 / $\mathrm{t}(\mathrm{M} 3)$ is projective:

```
> RightInverse(Ext3[2], Alg3);
```

Since Ext3 [2] has full row rank and does not admit a right-inverse, the torsion-free Alg3-module $M 3 / t(M 3)$ is not projective. Let us try to find S and V which satisfy $R^{\prime}-R^{\prime} S R^{\prime}=V R 3$, where $R^{\prime}=E x t 3[2]$:

```
> C3 := ComplementConstCoeff(Ext3[2], R3, Alg3);
```

$$
C 3:=[]
$$

We obtain that $\mathrm{t}(M 3)$ has no complement in M3. Therefore, we cannot glue the autonomous elements θ_{1} and θ_{2} of the system to the parametrization $E x t 3[3]$ of the torsion-free $\operatorname{Alg} 3$-module $M 3 / \mathrm{t}(\mathrm{M} 3)$ only by means of differential, delay and advance operators in order to parametrize the solutions of the system $R 3\left(\eta_{1}, \eta_{2}, \eta_{3}\right)^{T}=0$. Hence, a direct consequence of the lack of a splitting of M3 into a direct sum of t (M3) and M3 / $\mathrm{t}(\mathrm{M} 3)$ is that we cannot easily compute a parametrization of the system. Let us try to explain the obstruction.

We first factorize $R 3$ by Ext3 [2]:

```
> F := Factorize(R3, Ext3[2], Alg3);
```

$$
F:=\left[\begin{array}{cc}
\mathrm{D} \tau & \frac{\mathrm{D}}{g} \\
\mathrm{D} \delta & \frac{\mathrm{D}}{g}
\end{array}\right]
$$

Therefore, we have $R 3=F \operatorname{Ext} 3[2]$, and thus, $R 3 \eta=0$ is equivalent to the inhomogeneous system $E x t 3[2] \eta=\theta \& F \theta=0$. Hence, we need to solve the following system:

```
> ApplyMatrix(F, [theta[1](t),theta[2](t)], Alg3)=evalm([[0],[0]]);
```

$$
\left[\begin{array}{c}
\frac{\mathrm{D}\left(\theta_{1}\right)(t+1) g+\mathrm{D}\left(\theta_{2}\right)(t)}{g} \\
\frac{\mathrm{D}\left(\theta_{1}\right)(t-1) g+\mathrm{D}\left(\theta_{2}\right)(t)}{g}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

which, after one integration, leads to the system

$$
\begin{aligned}
& >\text { ApplyMatrix }(\text { evalm }(1 / \mathrm{D} * \mathrm{~F}),[\text { theta }[1](\mathrm{t}), \text { theta }[2](\mathrm{t})], \operatorname{Alg} 3)=\operatorname{evalm}([[\mathrm{c}[1]],[\mathrm{c}[2]]]) ; \\
& \\
& {\left[\begin{array}{c}
\frac{\theta_{1}(t+1) g+\theta_{2}(t)}{g} \\
\frac{\theta_{1}(t-1) g+\theta_{2}(t)}{g}
\end{array}\right]=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]}
\end{aligned}
$$

where c_{1} and c_{2} are two arbitrary real constants. Subtracting the two equations, we can eliminate θ_{2} and obtain the following equation in θ_{1} :

```
> ApplyMatrix(evalm(linalg[submatrix](1/D*F, 1..1, 1..2)-
> linalg[submatrix](1/D*F, 2..2, 1..2)), [theta[1](t),theta[2](t)],
> Alg3)[1,1]=c[1]-c[2];
```

$$
\theta_{1}(t+1)-\theta_{1}(t-1)=c_{1}-c_{2}
$$

Therefore, we need to solve the previous equation. A general solution of the homogeneous part is a 2-periodic function π. Moreover, we easily check that a particular solution of the inhomogeneous system is given by $\alpha(t)=\left(c_{1}-c_{2}\right) \frac{t}{2}$. Hence, a general solution of the previous equation is of the form $\theta_{1}(t)=$ $\pi(t)+\alpha(t)$.

Then, from the previous system, we can obtain θ_{2} explicitly in terms of θ_{1} as we have:

```
> Sol := solve(ApplyMatrix(evalm(1/D*F), [theta[1](t),theta[2](t)],
> Alg3)[2,1]=c[2], theta[2](t)): theta[2](t)=Sol;
\[
\theta_{2}(t)=-\theta_{1}(t-1) g+c_{2} g
\]
```

We finally obtain that $\theta_{2}(t)=\left(c_{2}-\pi(t-1)-\alpha(t-1)\right) g$, namely

```
> theta[2](t) := collect(collect(simplify(subs(
> theta[1](t-1)=pi(t-1)+(c[1]-c[2])*(t-1)/2, Sol)), t), g);
\[
\theta_{2}(t):=\left(\left(-\frac{1}{2} c_{1}+\frac{1}{2} c_{2}\right) t-\pi(t-1)+\frac{1}{2} c_{1}+\frac{1}{2} c_{2}\right) g
\]
```

and θ_{1} :

$$
\begin{aligned}
& >\operatorname{theta}[1](\mathrm{t}):=\mathrm{pi}(\mathrm{t})+(\mathrm{c}[1]-\mathrm{c}[2]) * \mathrm{t} / 2 \\
& \qquad \theta_{1}(t):=\pi(t)+\frac{1}{2}\left(c_{1}-c_{2}\right) t
\end{aligned}
$$

We now need to solve the inhomogeneous system $\operatorname{Ext} 3[2] \eta=\theta$, where $\theta=\left(\theta_{1}, \theta_{2}\right)^{T}$.

$$
\begin{aligned}
& >\text { ApplyMatrix(Ext3[2],[eta[1](t), eta[2] (t), eta[3] (t)],Alg3) } \\
& >\text { =evalm([[theta[1](t)], [theta[2](t)]]); } \\
& {\left[\begin{array}{c}
\eta_{1}(t)+\eta_{2}(t) \\
-g \eta_{2}(t+1)-g \eta_{2}(t-1)+c \mathrm{D}\left(\eta_{3}\right)(t)
\end{array}\right]=\left[\begin{array}{c}
\pi(t)+\frac{1}{2}\left(c_{1}-c_{2}\right) t \\
\left(\left(-\frac{1}{2} c_{1}+\frac{1}{2} c_{2}\right) t-\pi(t-1)+\frac{1}{2} c_{1}+\frac{1}{2} c_{2}\right) g
\end{array}\right]} \\
& >\operatorname{Ext} 3[2]=\operatorname{evalm}([[\text { theta[1] (t)], [theta[2](t)]]); }
\end{aligned}
$$

The general solution of this system is then the sum of a particular solution of the inhomogeneous system and the general solution of the homogeneous system Ext3[2] $\eta=0$.

The general solution of the homogeneous system $\operatorname{Ext} 3[2] \eta=0$ is given by the parametrization Ext3 [3] or equivalently by:

$$
\begin{aligned}
>P 3:=\operatorname{ApplyMatrix}(\operatorname{Ext} 3[3], & {[\mathrm{xi}[1](\mathrm{t})], \operatorname{Alg3}) ; } \\
& P 3:=\left[\begin{array}{c}
c \mathrm{D}\left(\xi_{1}\right)(t) \\
-c \mathrm{D}\left(\xi_{1}\right)(t) \\
-g \xi_{1}(t+1)-g \xi_{1}(t-1)
\end{array}\right]
\end{aligned}
$$

The fact that no splitting of M3 into a direct sum of $\mathrm{t}(\mathrm{M} 3)$ and $M 3 / \mathrm{t}(M 3)$ exists implies that there is no general algebraic way to obtain a particular solution of $\operatorname{Ext} 3[2] \eta=\theta$ using only θ and differential, delay and advance operators. However, we can check that a particular solution ζ of the inhomogeneous system Ext3[2] $\zeta=\theta$ is defined by:

$$
\begin{aligned}
& >\quad \text { evalm }([[z e t a[1](\mathrm{t})],[\mathrm{zeta}[2](\mathrm{t})],[\mathrm{zeta}[3](\mathrm{t})]])=\operatorname{evalm}([[\mathrm{pi}(\mathrm{t}) / 2 \\
& >+(\mathrm{c}[1]-\mathrm{c}[2]) * \mathrm{t} / 4+(\mathrm{c}[1]+\mathrm{c}[2]) / 4],[\mathrm{pi}(\mathrm{t}) / 2+(\mathrm{c}[1]-\mathrm{c}[2]) * \mathrm{t} / 4-(\mathrm{c}[1]+\mathrm{c}[2]) / 4],[0]]) ; \\
& {\left[\begin{array}{l}
\zeta_{1}(t) \\
\zeta_{2}(t) \\
\zeta_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \pi(t)+\frac{1}{4}\left(c_{1}-c_{2}\right) t+\frac{1}{4} c_{1}+\frac{1}{4} c_{2} \\
\frac{1}{2} \pi(t)+\frac{1}{4}\left(c_{1}-c_{2}\right) t-\frac{1}{4} c_{1}-\frac{1}{4} c_{2} \\
0
\end{array}\right]}
\end{aligned}
$$

Indeed, if we we compute $\operatorname{Ext} 3[2] \zeta$, we then get

$$
\begin{aligned}
& >\operatorname{map}(c o l l e c t, A p p l y M a t r i x(E x t 3[2],[p i(t) / 2+(c[1]-c[2]) * t / 4+(c[1]+c[2]) / 4 \text {, } \\
& >\operatorname{pi}(\mathrm{t}) / 2+(\mathrm{c}[1]-\mathrm{c}[2]) * \mathrm{t} / 4-(\mathrm{c}[1]+\mathrm{c}[2]) / 4,0], \mathrm{Alg} 3),\{\mathrm{g}, \mathrm{t}, \mathrm{pi}\} \text {, distributed); } \\
& {\left[\begin{array}{c}
\pi(t)+\left(\frac{1}{2} c_{1}-\frac{1}{2} c_{2}\right) t \\
\left(\frac{1}{2} c_{1}+\frac{1}{2} c_{2}\right) g-\frac{1}{2} g \pi(t-1)-\frac{1}{2} g \pi(t+1)+\left(-\frac{1}{2} c_{1}+\frac{1}{2} c_{2}\right) t g
\end{array}\right]}
\end{aligned}
$$

and using the fact that π is 2-periodic, we find θ. Hence, we finally have the following parametrization of all the smooth solutions of the system $R 3\left(\eta_{1}, \eta_{2}, \eta_{3}\right)^{\wedge} \mathrm{T}=0$

$$
\begin{aligned}
& >\quad \operatorname{evalm}([[\mathrm{eta}[1](\mathrm{t})],[\mathrm{eta}[2](\mathrm{t})],[\mathrm{eta}[3](\mathrm{t})]])=\mathrm{evalm}(\mathrm{P} 3+\mathrm{evalm}([[\mathrm{pi}(\mathrm{t}) / 2 \\
& >+(\mathrm{c}[1]-\mathrm{c}[2]) * \mathrm{t} / 4+(\mathrm{c}[1]+\mathrm{c}[2]) / 4],[\mathrm{pi}(\mathrm{t}) / 2+(\mathrm{c}[1]-\mathrm{c}[2]) * \mathrm{t} / 4-(\mathrm{c}[1]+\mathrm{c}[2]) / 4],[0]])) ; \\
& {\left[\begin{array}{l}
\eta_{1}(t) \\
\eta_{2}(t) \\
\eta_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
c \mathrm{D}\left(\xi_{1}\right)(t)+\frac{1}{2} \pi(t)+\frac{1}{4}\left(c_{1}-c_{2}\right) t+\frac{1}{4} c_{1}+\frac{1}{4} c_{2} \\
-c \mathrm{D}\left(\xi_{1}\right)(t)+\frac{1}{2} \pi(t)+\frac{1}{4}\left(c_{1}-c_{2}\right) t-\frac{1}{4} c_{1}-\frac{1}{4} c_{2} \\
-g \xi_{1}(t+1)-g \xi_{1}(t-1)
\end{array}\right]}
\end{aligned}
$$

where ξ_{1} is an arbitrary smooth function, π a 2-periodic function and c_{1} and c_{2} two constants. We find again the parametrization of $R 3\left(\eta_{1}, \eta_{2}, \eta_{3}\right)^{\wedge} \mathrm{T}=0$ obtained in the paper N. Petit, P. Rouchon, Motion Dynamics and Solutions to Some Control Problems for Water-Tank Systems, IEEE Trans. Autom. Contr., vol. 47, no. 4, 2002, pp. 594-609. See page 599 for more details.

