In this worksheet, we study the motions of a fluid in a tank which is moved horizontally. These
motions are described by the linearized Saint-Venant equations. See F. Dubois, N. Petit, P. Rouchon,
Motion planning and nonlinear simulations for a tank containing a fluid, Proceedings of the European
Control Conference, Karlsruhe, 1999 and N. Petit, P. Rouchon, Motion Dynamics and Solutions to Some
Control Problems for Water-Tank Systems, IEEE Trans. Autom. Contr., vol. 47, no. 4, 2002, pp.
594-6009.

> with(Ore_algebra):
> with(OreModules) :

In order to write down the system matrix of the Saint-Venant equations, we define the Ore algebra Alg
which contains the differential operator D w.r.t. time ¢ and the operator § which acts as a shift on the
variable t. Without loss of generality, the length of the shift is taken to be 1.

> Alg := DefineOreAlgebra(diff=[D,t], dual_shift=[delta,s], polynom=[t,s],
> shift_action=[delta,t]):

We enter the system matrix of the Saint-Venant equations (which are shifted by 1 here):

> R := evalm([[delta"2, 1, -2*xDxdelta],[1, delta"2, -2*Dxdeltall);

2 1 —2D6
R':[ 15 —2D5}

The corresponding linear differential time-delay system is:

> ApplyMatrix(R, [phil(t),phi2(t),phi3(t)], Alg)=evalm([[0],[0]1]1);

{ ALt —2) + ¢2(t) — 2D(3)(t — 1) ] _ { 0 }
L(t) + ¢2(t — 2) —2D(43)(t — 1) 0

We denote the Alg-module which is associated with this linear system by M. In order to check control-
lability and parametrizability of the system, we compute the first extension module with values in Alg of
the transposed module of M (note that, since the system is time-invariant, we actually deal with matrices
over a commutative polynomial ring, so we choose transposition of matrices as a trivial involution here).

> Extl := Exti(Involution(R, Alg), Alg, 1);

2Do

5% -1 0 :| {1 -1 0
Extl := 2 5 2 5 2D5
0 ) 1 0 0 1 2D$§ 1442

Since FEzt1[1] is not an identity matrix, we find a generating set of torsion elements of M in Ext[2].
Both rows r; and 75 of Ext1[2] are annihilated in M by 62 — 1, i.e. (62 — 1) 7; is zero modulo the rows of
R, i =1,2. Hence, the torsion submodule t(M) of M is non-trivial which means that the linear system
described by the Saint-Venant equations is not controllable and not parametrizable. FExt![3] gives a
parametrization of the torsion-free part M / t(M) of M. The generating set of torsion elements can also
be obtained by TorsionElements which expresses the torsion elements in terms of the system variables

P1, 92, ¢3:

> TorsionElements(R, [phil(t),phi2(t),phi3(t)], Alg);

[ (=2~ 6i(1) =0 01(t) = H1(t) — ¢2(t) |
Oa(t —2) — 02(t) =0 02(t) = —¢2(t — 2) — ¢2(t) + 2D(¢3)(t — 1)



Since M is not torsion-free, it is not projective and not free either. In what follows, we investigate whether
the torsion submodule t(M) has a complement in M, i.e. whether there exists a submodule C' of M such
that M is the direct sum of t(M) and C. In the affirmative case, the complement C allows to construct
a parametrization of M, although M corresponds to a linear system which has autonomous elements. A
sufficient condition for this direct sum decomposition of M is that the torsion-free Alg-module M / t(M)
is projective. Let us check whether this simplest of all cases applies here:

> RightInverse(Ext1[2], Alg);

I

The matrix Fztl[2] which presents the torsion-free part of M has full row rank, but does not admit a
right-inverse. Hence, M / t(M) is not projective. Note that the existence of a complement of t(M)
in M is equivalent to the fact that the short exact sequence 0 — t(M) — M — M/t(M) — 0
splits, i.e., there exists an Alg-morphism M /t(M) — M which, composed by the canonical projection
M — M/t(M), gives the identity on M / t(M). The image of this morphism in M provides a complement
of t(M) in M. Let us check whether such a morphism exists:

> C := ComplementConstCoeff (Ext1[2], R, Alg);

1 1 1
S 20 0
[ R I
C=1 2 2 ol | = =L, =22
2 2 2 9 2
0 0 1 0 0

We find one complement of t(M) in M. It is generated by the residue classes of the rows of C[1] in M.
> S :=C[3]: V :=cC[2]:

In fact, the system of equations over Alg which ComplementConstCoeff has solved is R’ — R'SR' = V R,
where R’ = FExt1[2] and R were given and S and V' were to be found. For more details see A. Quadrat,
D. Robertz, Parametrizing all solutions of controllable multidimensional linear systems, Proceedings of

the 16th IFAC World Congress, Prague, 2005.

> evalm(Ext1[2] - Mult(Ext1[2], S, Ext1[2], Alg) - Mult(V, R, Alg));
0 0 0
0 0 0
In order to construct a parametrization of M, we use the data just computed to glue the parametrization
of the torsion-free part M / t(M) with the “integration of the torsion elements” which follows first. We

need to find the Alg-linear relations satisfied by the generating set of torsion elements Fzt![2] in M (i.e.,
modulo the rows of R):

> SyzygyModule(linalg[stackmatrix] (Ext1[2], R), Alg);

1 -1 0 -1
0 62—-1 -1 62

The rows of the preceding result generate all linear relations that hold for the union of the rows of
Ezt1[2] and R. So for each linear relation, the ith column gives the coefficient of the ith row of Fzt1[2],
if 1 <i <2 and the (24 4)th column gives the coefficient of the ith row of R, ¢ = 1,2. Hence, we see
from the first row of the preceding result, that the two torsion elements given by the rows of Fxt![2] are
equal modulo the rows of R. Hence, we have to solve 61 (t —2) — 01(t) =0, 63 = 6;. We find that 6; is
any 2-periodic function of ¢ and 03 = 6;. A parametrization of M is then given by (see A. Quadrat, D.



Robertz, Parametrizing all solutions of controllable multidimensional linear systems, Proceedings of the

16th IFAC World Congress, Prague, 2005): (¢1(t), p2(t), p3(t))* = S (61(t), 02(t))T + Ext1[3] ;.

> P := evalm(ApplyMatrix(S, [theta[1](t),thetal2](t)], Alg) +
> ApplyMatrix(Ext1[3], [xi[1]1(t)], Alg));

3 01(0) +2D(E)(t — 1)

Pi= _% 01(t) +2D(&)(t - 1)

() +&(t—2)

We check that P is a parametrization of the system:

> ApplyMatrix(R, P, Alg);

%Gl(t— %) — %91(0
%Hl(t) _ %01(15— %)

Since 6, is an arbitrary function of ¢ which is 2-periodic, we see that the previous result is the zero vector,
which proves that P is a parametrization of the Saint-Venant equations.

Now, we consider the linear system of the Saint-Venant equations over the Ore algebra Alg2 which
contains the differential operator D w.r.t. time ¢, the shift operator 6 and the operator = which acts as
an advance on the variable ¢:

> Alg2 := DefineOreAlgebra(diff=[D,t], ‘shift+dual_shift‘=[tau,delta,s],
> shift_action=[delta,t], shift_action=[tau,t], polynom=[s,t]):

The system matrix is then entered as follows:

> R2 := evalm([[delta, tau, -2*D], [tau, delta, -2%D]]);

6 ™ —2D
RQ':[T 1) 2D}

The corresponding linear differential time-delay system is:

> ApplyMatrix(R2, [phil(t),phi2(t),phi3(t)], Alg2)=evalm([[0],[0]]);
Plt—1)+2(t+1)—2D(¢3)(t) | | O
ALt +1)+¢2(t—1) —2D(3)(¢) | | O

We denote the Alg 2-module which is associated with this linear system by M2. In order to compute the
torsion submodule of M2, we compute the first extension module with values in Alg2 of the transposed
module of M2 (note that we deal again with matrices over a commutative polynomial ring):

> Ext2 := Exti(Involution(R2, Alg2), Alg2, 1);

2D

—0 0 1 —1 0
Eut2 — [T }[ | 2D
0 T—90 0 —7—0 2D 4§

Hence, we find a generating set of torsion elements of M2 in FEzt2[2]. When we compare Ezt2[2] and
Euxt1[2], we see that the generators of t(M2) are obtained from the generators of t(M2) by shifting by 1.
Of course, we obtain the rows of R by shifting the rows of R2 by 1 which explains the relationship. The
generating torsion elements are expressed in terms of the system variables ¢1, ¢2, ¢3 now as follows:



> TorsionElements(R2, [phil(t), phi2(t), phi3(t)], Alg2);

[ 91(t+1)—91(t—1)20} { 01(t) = ¢1(t) — ¢2(t) ]
Oa(t +1) —Oa(t—1) =0 || Oa(t) = —2(t +1) — ¢2(t — 1) + 2D($3)(t)

We investigate again whether or not t(M2) has a complement in M2. First of all, we check whether
M2/t(M2) is projective:

> RightInverse(Ext2[2], Alg2);

|

Since Ext2[2] has full row rank and does not admit a right-inverse, the torsion-free Alg2-module M2/t(M2)
is not projective. Let us try to find S and V which satisfy ' — R’ S R’ = V R2, where R’ = Ext2[2):

> C := ComplementConstCoeff (Ext2[2], R2, Alg2);

11 oy
1 o)A
CZ??Oa;l;lv;O
2 2 2 9 2

0 0 1 0 0

We find the same result as above.
> S := C[3]:

In order to construct a parametrization of M2, we compute the linear relations satisfied by the torsion
elements given by Ext2[2]:

> SyzygyModule(linalg[stackmatrix] (Ext2[2], R2), Alg2);

6 -1 -1 0
T -1 0 -1
0 -6 7 =0

Let us denote the torsion element given by the ith row of Ext2[2] by 6;, ¢ = 1, 2. We find that 62 equals 6;
advanced by 1. Hence, we have to solve (see the output of TorsionElements): 61(t +1) —601(t —1) =0,
02(t) = 01(t —1). We find that 6; is any 2-periodic function of ¢ and 6 equals 6; advanced by 1.
Therefore, a parametrization of M2 is given by (see A. Quadrat, D. Robertz, Parametrizing all solutions
of controllable multidimensional linear systems, Proceedings of the 16th IFAC World Congress, Prague,

2005): ($1(), 2(t), 63(£)" = S (61(t), 62(£))” + Ext2[3] 1.

> P2 := evalm(ApplyMatrix(S, [theta[1](t),thetal2](t)], Alg2) +
> ApplyMatrix(Ext2[3], [xi[1]1(t)], Alg2));

5 01() + 2D(E) (1)

P2 | 20 +2D(E)(0)

&GE+1)+&(E-1)

Let us check that P is a parametrization of the system:

> ApplyMatrix(R2, P2, Alg2);



1 1
5&@71y75&@+1)

1 1

Since 6; is a 2-periodic function of t, we see that P is a parametrization of the linearized Saint-Venant
equations.

If we define m = 61 /2 and v = 2 &3, then the previous parametrization P of the system becomes the one
obtained in (9) and (10) in F. Dubois, N. Petit, P. Rouchon, Motion planning and nonlinear simulations
for a tank containing a fluid, Proceedings of the European Control Conference, Karlsruhe, 1999.

In N. Petit, P. Rouchon, Motion Dynamics and Solutions to Some Control Problems for Water-Tank
Systems, IEEE Trans. Autom. Contr., vol. 47, no. 4, 2002, pp. 594-609, another model of a 1-D tank
with a straight bottom and moving in translation is considered.

> Alg3 := DefineOreAlgebra(diff=[D,t], ‘shift+dual_shift‘=[tau,delta,s],
> shift_action=[delta,t], shift_action=[tau,t], polynom=[s,t], comm=[c,gl):

The system is defined by the following system matrix:

> R3 := evalm([[D*tau, -Dxdelta, (c/g)*D"2], [Dxdelta, -D*tau, (c/g)*D"2]1]1);

2

Dr _ps P
R3 = %2
Ds -Dr S

g

The corresponding linear differential time-delay system is:

> ApplyMatrix(R3, [phil(t),phi2(t),phi3(t)], Alg3)=evalm([[0],[0]1);
D(¢1)(t +1) g — D(¢2)(t — 1) g + c¢(D®)(¢3)(¢)

g _
D(¢1)(t—1) g —D(2)(t + 1) g +c(DP)(@3)(1) | [
g

We denote the Alg3-module which is associated with this linear system by M3. In order to compute the
torsion submodule of M3, we compute the first extension module with values in Alg3 of the transposed
module of M3 (note that we deal again with matrices over a commutative polynomial ring):

> Ext3 := Exti(Involution(R3, Alg3), Alg3, 1);

D
Dr—Dé 0 } [1 1 0 c
Exts .= , , —cD
0 Dr—-Dé —-Tg—0g c¢D —rg—dg

Hence, we find that M3 is not a torsion-free Alg3-module. The generating torsion elements are expressed
in terms of the system variables ¢1, ¢2, ¢3 as follows:

> TorsionElements(R3, [phil(t), phi2(t), phi3(t)], Alg3);
[ DWQU+1)DWﬂ@1)—0} [ 01(t) = ¢1(t) + ¢2(t) ]
D(02)(t +1) =D(02)(t =1) =0 |7 | 02(t) = —g 92(t + 1) — g $2(t — 1) + cD(¢3)(¢)

Let us investigate again whether or not t(M3) has a complement in M3. First of all, we check whether
M3 | t(M3) is projective:



> RightInverse(Ext3[2], Alg3);

|

Since Ezt3[2] has full row rank and does not admit a right-inverse, the torsion-free Alg3-module M3/t(M3)
is not projective. Let us try to find S and V which satisfy ' — R’ S R’ =V R3, where R’ = Ext3[2]:

> (€3 := ComplementConstCoeff (Ext3[2], R3, Alg3);
Cs =]

We obtain that t(M3) has no complement in M3. Therefore, we cannot glue the autonomous elements
61 and 65 of the system to the parametrization Ezt3[3] of the torsion-free Alg3-module M3 / t(M3) only
by means of differential, delay and advance operators in order to parametrize the solutions of the system
R3(n1,m2,m3)T = 0. Hence, a direct consequence of the lack of a splitting of M3 into a direct sum of
t(M3) and M3 / t(M3) is that we cannot easily compute a parametrization of the system. Let us try to
explain the obstruction.

We first factorize R3 by Ext3[2]:

> F := Factorize(R3, Ext3[2], Alg3);

Dr
F =
D§

e |Uw|U

Therefore, we have R3 = F Ext3[2], and thus, R3n = 0 is equivalent to the inhomogeneous system
Ezt3[2) n =0 & F 0 = 0. Hence, we need to solve the following system:

> ApplyMatrix(F, [thetal[1](t),thetal[2](t)], Alg3)=evalm([[0],[0]1);
D(6:1)(t + 1) g + D(62)()

oo |- ]
D(#)(t—-1)g+D@:)) | [0
9

which, after one integration, leads to the system

> ApplyMatrix(evalm(1/DxF), [theta[1] (t),thetal[2] (t)],Alg3)=evalm([[c[1]1],[c[2]11]);
O1(t+1)g+62(t)

91(t—1)gg+92(t) B { 2 }
g

where ¢; and ¢y are two arbitrary real constants. Subtracting the two equations, we can eliminate 65 and
obtain the following equation in 6y:

> ApplyMatrix(evalm(linalg[submatrix] (1/D*F, 1..1, 1..2)-
> 1linalg[submatrix] (1/D*F, 2..2, 1..2)), [theta[1](t),theta[2](t)],
> Alg3)[1,1]=c[1]-c[2];

91(t+1)—01(t—1) =cCy —Co

Therefore, we need to solve the previous equation. A general solution of the homogeneous part is a
2-periodic function . Moreover, we easily check that a particular solution of the inhomogeneous system
is given by a(t) = (¢1 — ¢2) £. Hence, a general solution of the previous equation is of the form 6;(t) =
m(t) + alt).



Then, from the previous system, we can obtain 6, explicitly in terms of 8; as we have:

> Sol := solve(ApplyMatrix(evalm(1/D*F), [theta[1](t),thetal2](t)],
> Alg3)[2,1]1=c[2], theta[2](t)): theta[2](t)=Sol;

Oa(t) = =01t = 1) g+ c2g
We finally obtain that 62(t) = (co — 7(t — 1) — (¢t — 1)) g, namely

> thetal[2] (t) := collect(collect(simplify(subs(
> thetal1] (t-1)=pi(t-1)+(c[1]-c[2])*(t-1)/2, Sol)), t), g);
1

1 1 1
02(t) := ((—§cl+502)t—ﬂ'(t—l)+§cl+§c2)g

and 6;:

> thetal1l(t) := pi(t)+(c[1]-c[2])*t/2;
1

01(t) :=m(t) + 3 (c1 —eo)t

We now need to solve the inhomogeneous system Ext3[2]n = 6, where 6 = (01,6,)7.

> ApplyMatrix(Ext3[2], [eta[1] (t),etal[2] (t),etal31(t)],A1lg3)
> =evalm([[theta[1](t)], [thetal[2](t)]1]);
1
m (t) + ng(t) ’/T(t) + 5 (01 — Cg)t
—gma(t+1) —gna(t —1) +eD(ms)(t) | — 1 1 1 1
gm(t+1) —gna(t —1) (1) (¢) (Lot et-nlt-1)+ et e
> Ext3[2]=evalm([[thetal[1](t)], [thetal[2](t)]11);

The general solution of this system is then the sum of a particular solution of the inhomogeneous system
and the general solution of the homogeneous system FEzt3[2] n = 0.

The general solution of the homogeneous system Ext3[2] n = 0 is given by the parametrization Ext3[3]
or equivalently by:

> P3 := ApplyMatrix(Ext3[3], [xi[1](t)], Alg3);

¢D()()
P8 = —CD(Sl)(t)

—g&(t+1)—g&i(t—1)

The fact that no splitting of M3 into a direct sum of t(M3) and M3 / t(M3) exists implies that there
is no general algebraic way to obtain a particular solution of Fxt3[2] n = 6 using only 6 and differential,
delay and advance operators. However, we can check that a particular solution ¢ of the inhomogeneous
system Ext3[2] (= 0 is defined by:

> evalm([[zetal[1] ()], [zetal[2] ()], [zetal3] (t)]11)=evalm([[pi(t)/2
> +(c[1]-c[2])*t/4+(c[1]1+c[2]) /4], [pi(t)/2+(c[1]-c[2])*t/4-(c[1]+c[2])/4],[011);

1 1 1 1
Cl(t) §W(t)+1(01_62)t+iC1+1C2
ggg - %T((t)‘i‘z(Cl—CQ)t—ZCl—élCQ

Indeed, if we we compute Fzt3[2] (, we then get



> map(collect,ApplyMatrix(Ext3[2], [pi(t)/2+(c[1]-c[2])*t/4+(c[1]1+c[2])/4,
> pi(t)/2+(c[1]-c[2])*t/4-(c[11+c[2])/4,0],A1g3),{g,t,pi}, distributed);

1 1
w(t) + (5 1 — 502)t

1 1 1 1 1 1
(§Cl+502)9—§97f(t—1)—597(t+1)+(—501+502)t9

and using the fact that 7 is 2-periodic, we find #. Hence, we finally have the following parametrization
of all the smooth solutions of the system R& ( n1, 12, n3) T =0

> evalm([[etal[1] (£)], [etal2] (t)], [etal[3] (t)]])=evalm(P3+evalm([[pi(t)/2
> +(c[1]-c[2])*t/4+(c[1]1+c[2]) /4], [pi(t)/2+(c[1]-c[2])*t/4-(c[1]1+c[2])/4],[0]11));

cD(&)(t) + lw(t) + ! (1 *Cz)tJr}Cl + 102

o 2" 1977
) | =1 _ 1 Lo eyt te 21
Zz(t) CD(fl)(t) + ) ﬂ-(t) + 4 (Cl CQ)t 4 C1 1 C2

—g&it+1)—g&(t—1)

where £; is an arbitrary smooth function, 7 a 2-periodic function and ¢; and c¢s two constants. We find
again the parametrization of R3 ( 71, 12, n3)"T = 0 obtained in the paper N. Petit, P. Rouchon, Motion
Dynamics and Solutions to Some Control Problems for Water-Tank Systems, IEEE Trans.
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