
Here we investigate a RLC-circuit which is composed of two resistances, one coil, and one condenser.
See J.-F. Pommaret, Partial Differential Control Theory, Kluwer, 2001, p. 576.

> with(Ore_algebra):

> with(OreModules):

We define the Weyl algebra Alg = A1, where D is the differential operator w.r.t. time t. Note that we
have to declare all constants that occur in the system matrix by using the option comm in the definition
of the Ore Algebra Alg .

> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t], comm=[R1, R2, C, L]):

We enter the system matrix R:

> R := evalm([[D+1/(R1*C), 0, -1/(R1*C)], [0, D+R2/L, -1/L]]);

R :=

 D +
1

R1 C
0 − 1

R1 C

0 D +
R2
L

− 1
L


The formal adjoint R adj of R is computed using Involution:

> R_adj := Involution(R, Alg);

R adj :=


−D +

1
R1 C

0

0 −D +
R2
L

− 1
R1 C

− 1
L


To check controllability of the RLC-circuit, we compute the first extension module extˆ1 with values in
Alg of the Alg-module which is associated with R adj :

> Ext := Exti(R_adj, Alg, 1);

Ext :=

[
1 0
0 1

]
,

[
DR1 C + 1 0 −1

0 DL + R2 −1

]
,

 D L + R2
DR1 C + 1

D L + LD2 C R1 + R2 C R1 D + R2


Since Ext [1] is the identity matrix, we see that the torsion submodule t(M) of the Alg-module M which
is associated with the system is trivial in the generic case, i.e., the RLC-circuit is generically controllable
(and, equivalently, parametrizable). This means that we have controllability for ”almost all” choices of
values for the constants R1 , R2 , C, L but there may be some configurations of the constants in which the
RLC-circuit is not controllable. We shall actually find the only relation that leads to an uncontrollable
system if the constants satisfy this relation.

Moreover, Ext [3] is a parametrization of the system, namely we have (x1 : x2 : u)T = Ext [3] ξ. We
check whether this parametrization admits a left-inverse. In the affirmative case, we obtain a flat output
of the system:

> S := LeftInverse(Ext[3], Alg);

S :=
[
− R1 C

L− R1 C R2
L

L− R1 C R2
0

]
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Hence, whenever R1 C R2 − L 6= 0, we find a flat output ξ = S (x1 : x2 : u)T of the system satisfies
(x1 : x2 : u)T = Ext[3] ξ. Then, the RLC-circuit is generically a flat system.

Let us point out that knowing the result of Exti above, it was already clear that the system is
generically flat, because Alg is a principal ideal domain and torsion-free modules over principal ideal
domains are free (and free modules correspond to flat systems).

The parametrization given in Ext [3], can be obtained directly by using Parametrization:

> Parametrization(R, Alg); R2 ξ1(t) + L ( d
dt ξ1(t))

ξ1(t) + R1 C ( d
dt ξ1(t))

R2 ξ1(t) + L ( d
dt ξ1(t)) + ( d

dt ξ1(t))R1 C R2 + LC R1 ( d2

dt2 ξ1(t))


In fact, one directly gets the last result by applying Ext [3] to the free function ξ1:

> ApplyMatrix(Ext[3], [xi[1](t)], Alg); R2 ξ1(t) + L ( d
dt ξ1(t))

ξ1(t) + R1 C ( d
dt ξ1(t))

R2 ξ1(t) + (L + R1 C R2 ) ( d
dt ξ1(t)) + LC R1 ( d2

dt2 ξ1(t))


> SyzygyModule(R, Alg);

INJ(2)

Therefore, R has full row rank. So we know that M is projective if and only if R admits a right-inverse:

> T := RightInverse(R, Alg);

T :=



LC R1
L− R1 C R2

− L2

L− R1 C R2
R1 2 C2

L− R1 C R2
− LC R1

L− R1 C R2
DR1 2 C2 L

L− R1 C R2
+

R1 2 C2 R2
L− R1 C R2

− C R1 D L2

L− R1 C R2
− L2

L− R1 C R2


> simplify(Mult(R, T, Alg)); [

1 0
0 1

]
This right-inverse is well defined if and only if R1 C R2 − L 6= 0. Hence, we recover the same condition on
the constants as above. If R1 C R2 − L 6= 0, then M is projective. Since the system is time-invariant, M
is actually defined over the commutative polynomial ring with indeterminated D and t. By the theorem
of Quillen and Suslin, we conclude that M is a free module, hence we see again that the system is flat.

Let us compute the Brunovský canonical form of the system in the case where R1 C R2 − L 6= 0.

> B := Brunovsky(R, Alg);

B :=


− R1 C

L− R1 C R2
L

L− R1 C R2
0

1
L− R1 C R2

− R2
L− R1 C R2

0

− 1
(L− R1 C R2 ) C R1

R2 2

(L− R1 C R2 ) L

1
LC R1


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In other words, we have the following transformation between the system variables x1 , x2 and u and the
Brunovský variables z[i] and v:

> evalm([seq([z[i](t)],i=1..2),[v(t)]])=ApplyMatrix(B, [x1(t),x2(t),u(t)], Alg);

 z1(t)
z2(t)
v(t)

 =


− R1 C x1(t)

L− R1 C R2
+

L x2(t)
L− R1 C R2

x1(t)
L− R1 C R2

− R2 x2(t)
L− R1 C R2

− x1(t)
(L− R1 C R2 ) C R1

+
R2 2 x2(t)

(L− R1 C R2 )L
+

u(t)
LC R1


Let us check that the new variables z[ i] and v satisfy a Brunovský canonical form:

> F := Elimination(linalg[stackmatrix](B, R), [x1,x2,u],
> [seq(z[i],i=1..2),v,0,0], Alg):
> ApplyMatrix(F[1], [x1(t),x2(t),u(t)], Alg)=
> ApplyMatrix(F[2], [seq(z[i](t),i=1..2),v(t)], Alg);

0
0

u(t)
x2(t)
x1(t)

 =


−( d

dt z2(t)) + v(t)
−( d

dt z1(t)) + z2(t)
R2 z1(t) + (R1 C R2 + L) z2(t) + LC R1 v(t)

z1(t) + R1 C z2(t)
R2 z1(t) + Lz2(t)


Now, we study the case where R1 C R2 = L.

> R_mod := subs(L=R1*R2*C, evalm(R));

R mod :=

 D +
1

R1 C
0 − 1

R1 C

0 D +
1

R1 C
− 1

R1 C R2


> Ext_mod := Exti(Involution(R_mod, Alg), Alg, 1);

Ext mod :=

[
DR1 C + 1 0

0 1

]
,

[
1 −R2 0
0 R2 R1 C D + R2 −1

]
,

 −R2
−1

−R2 R1 C D− R2


Hence, if R1 C R2 = L, then the RLC-circuit is not controllable. The generating set of torsion elements
(which correspond to autonomous elements of the system) can also be obtained using TorsionElements.
The generating torsion elements are expressed in terms of the dependent variables x1 , x2 , u of the system:

> TorsionElements(R_mod, [x1(t),x2(t),u(t)], Alg);

[
[

θ1(t) + R1 C ( d
dt θ1(t)) = 0

]
,
[

θ1(t) = x1(t)− R2 x2(t)
]
]

We know that the torsion elements and the first integrals of motion are in one-to-one correspondence.
Hence, let us compute a first integral of motion of the system.

> V := FirstIntegral(R_mod, [x1(t),x2(t),u(t)], Alg);

V := − C1 e( t
R1 C ) (x1(t)− R2 x2(t))

R2

Let us check that the derivative of V with respect to t is 0.
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> Vdot := diff(V,t);

Vdot := − C1 e( t
R1 C ) (x1(t)− R2 x2(t))

R1 C R2
−

C1 e( t
R1 C ) (( d

dt x1(t))− R2 ( d
dt x2(t)))

R2

The equations of the system are given by:

> Sys_mod := ApplyMatrix(R_mod, [x1(t),x2(t),u(t)], Alg) = evalm([[0],[0]]);

Sys mod :=


x1(t)
R1 C

+ ( d
dt x1(t))− u(t)

R1 C

x2(t)
R1 C

+ ( d
dt x2(t))− u(t)

R1 C R2

 =
[

0
0

]

From these equations, let us extract the first derivatives of x1 and x2 :

> lhs1 := solve(lhs(Sys_mod)[1,1], diff(x1(t),t));

lhs1 := −x1(t)− u(t)
R1 C

> lhs2 := solve(lhs(Sys_mod)[2,1], diff(x2(t),t));

lhs2 := −R2 x2(t)− u(t)
R1 C R2

> simplify(subs({diff(x1(t),t)=lhs1, diff(x2(t),t)=lhs2}, Vdot));

0

Therefore, if we take into account the equations of the systems, Vdot becomes 0, i.e., V is a first integral
of motion.

Finally, let us compute the parametrization of the system defined by the matrix R by means of an
arbitrary function ξ1 and constants:

> P := Parametrization(R_mod, Alg);

P :=

 C1 e(− t
R1 C ) − R2 ξ1(t)
−ξ1(t)

−R2 (ξ1(t) + R1 C ( d
dt ξ1(t)))


We can check that P parametrizes some solutions of the system defined by R:

> simplify(ApplyMatrix(R_mod, P, Alg));[
0
0

]
In fact, we can prove that P parametrizes all the C∞solutions. For more details, we refer the reader to
A. Quadrat, D. Robertz, ”On Monge problem for uncontrollable linear systems”, to appear.

In (Pommaret, 2001) more examples for electric circuits are presented which can be treated analo-
gously by using OreModules.
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