The purpose of this Maple worksheet is to show how to use OreModules in order to handle the Pedalvit
exercise given in J.-P. Quadrat and M. Viot, Introduction a la commande stochastique, Lecture Notes of
Ecole Polytechnique, 1999. The system considered is formed by an equilibrist clown riding a one-wheeled
bicycle. This system is modelized by a linearized inverted pendulum around the vertical equilibrum point.
We denote by m the mass of the wheel. For sake of simplicity, the mass of the clown’s head, the length
of the pendulum and the gravity constant g are all supposed to be equal to 1.

> with(Ore_algebra):
> with(OreModules):

Define the Weyl algebra Alg = A;, where D acts as differential operator w.r.t. the variable ¢:
> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t], comm=[m,gamma]):
Then, the matrix of ordinary differential operators defining the system is the following one:

> R := evalm([[(1+m)*D"2, D~2,1],[D"2,D"2-1,0]11);

p._ [ @+mD> D> 1
= D2 D2—1 0

The system variables are the horizontal displacement x, the angle with respect to the vertical § and the
force u acting on the one-wheeled bicycle by the clown Pedalvit. Therefore, the system equations are
then given by:

> ApplyMatrix(R, [x(t),theta(t),u(t)], Alg)=evalm([[0]$2]);

(L+m) (4 x(1) + (3 0(8) + u(t) ] _ [ 0 ]
(= x(8) = 0(t) + (= 0(1)) 0

First of all, let us study whether or not this system is controllable, parametrizable and flat. In order to
do that, we first define the formal adjoint R_adj of R.

> R_adj := Involution(R, Alg);
D2 +D?m D?
R_adj = D2 D? -1
1 0

Then, the system is controllable, and thus, parametrizable iff the Alg-module associated with R is torsion-
free or, equivalently, if the first extension module ext”1 with values in Alg of the Alg-module associated

with R_adj is the zero module. Let us check this last point.

> st := time(): Ext := Exti(R_adj, Alg, 1); time()-st;

N2
ot o [1 0} [D2m 1 1 b
B ) 1 2 _ )
0 1 0 1—-m+D%m -1 D DPmaDim
0.179

As the first matrix is the identity, ext"1 of the Alg-module associated with R_adj is the zero module.
Therefore, the system is controllable and Fzt[3] defines a parametrization of the system, namely we have:

> evalm([[x(t)], [theta(t)], [u(t)]])=Parametrization(R, Alg);



x(t) 51 (t) - %1
o(t) | = 70l
u(t) —%1 — %ol m + m (e &1(1))

%1 := & &(t)

As the system is time-invariant, the system is also flat. Then, a flat output of the system is defined by
computing a left-inverse of the parametrization Fzt[3].

> S := LeftInverse(Ext[3], Alg);
S:=[11 0]

Hence, we have the following flat output of the system:

> xi[11(t)=ApplyMatrix (S, [x(t),theta(t),u(t)], Alg)[1,1];
&u(t) = x(t) +0(t)

which satisfies (z : 0 : u)T = Ext[3] £[1] . Therefore, we can do some motion planning by determining a
trajectory of the system which starts at the position x(0) = 1, Dx(0) = 0, (0)=0, D(0) = 0 and ends
at x(1) =0, D x(1)=0, (1) =0, DA(1) = 0. In order to do that, we consider a polynomial trajectory
&[1] of degree 7. By substituting this polynomial trajectory into the parametrization of the system, we
obtain:

> M1 := ApplyMatrix(Ext[3], [sum(alil*t~i,i=0..7)]1, Alg);
M1 =
[ao+a1t+a2t2+a3t3+a4t4+a5t5+a6t6+a7t7—2a2—6a3t—12a4t2
—20a5t> —30agt* —42a7 t°
2as +6ast+12ast* +20a5t> + 30 ag t* + 42 az 17
[(—1—m)(2a2+6a3t+12a4t2+20a5t3+3Oa6t4+42a7t5)

+m (24aq + 120 as t + 360 ag 2 + 840 ay t3)]

In order to impose the conditions on the derivative of x and €, we also need to differentiate the previous
result.

> M2 := ApplyMatrix(Mult(D, Ext[3], Alg), [sum(alil*t"i,i=0..7)], Alg);
M2 =
[al+2a2t+3a3t2+4a4t3+5a5t4+6a6t5+7a7t6—6a3—24a4t—60a5t2
~ 120 a6t? — 210 az tﬂ
6as +24ast +60ast? + 120 ag t3 4 210 az ¢
[(—1—m)(6a3+24a4t+60a5t2+120a6t3+210a7t4)

+m (120 a5 + 720 ag t + 2520 a tQ)}
Then, by substituting ¢t = 0

> N1 := subs(t=0, evalm(M1)); N2 := subs(t=0, evalm(M2));



a072a2

N1 = 2(12
2(=1—m)as+24may
a1 —6&3
N2 = 6(13

6(—1—m)asz+120mas

and t = 1 into the previous matrices

> N3 := subs(t=1, evalm(M1)); N4 := subs(t=1, evalm(M2));

N3 =
ho-ﬁ-al —a2—5a3—11a4—19a5—29a6—41aﬂ
Ras +6a3+ 12a4 + 20 a5 + 30 ag + 42 a7

[(—1 —m) (2as + 6 a3 + 12as + 20 a5 + 30 ag + 42 ar)
+m (24 as + 120 a5 + 360 ag + 840 cw)}

a1 +2as —3a3 —20a4 — 55a5 — 114 ag — 203 ay
Ny = 6as +24a4 +60a5 + 120ag + 210 ay
(-1 —m)(6az+24as+60as +120as +210a7) + m (120 a5 + 720 ag + 2520 a7)

we finally obtain the conditions on the coefficients a[i] of the polynomial trajectory &[1]_ref. Solving this
system, we obtain:

> Sol := solve({N1[1,1]1=1, N1[2,1]=0, N2[1,1]=0, N2[2,1]=0, N3[1,1]1=0,
> N3[2,1]=0, N4[1,1]=0, N4[2,1]=0});

Sol :={ag = —70, a4 = =35, a2 =0, a3 =0, a5 =84, a1 =0, ag = 1, ay = 20}
Hence, the particular polynomial trajectory for £[1], called Path, is then defined by:

> Path := subs(Sol, sum(al[il*t~i,i=0..7));

Path :=1—35t*+ 8415 — 7015 +20¢7
> plot(Path, t=0..1);




Then, the corresponding trajectory of the system (z_ref : 6_ref : u_ref) is defined by:

> P := ApplyMatrix(Ext[3], [Path], Alg);

P .=

[142065t* — 756 t° — 70t% + 20¢7 + 420> — 1680 %]
[—4201% + 16803 — 2100 t* + 840 ¢°]

[(—1 —m) (—420¢2 + 16803 — 2100 t* + 840¢°)

+m (=840 + 10080 ¢ — 25200t + 16800 t3)]

We can check that it is a solution of the system by substituting it into the equations of the system:

o)

Moreover, we have the following plot for the displacement x_ref(¢):

> simplify(ApplyMatrix(R, P, Alg));

> plot(P[1,1],t=0..1);

—
—q —

Let us plot the trajectory of the angle 6 _ref(t):

> plot(P[2,1], t=0..1);



4 -

_6{

Finally, if we choose m = 1, then the open-loop input u_ref(t) is defined by:

> plot(subs(m=1, P[3,1]), t=0..1);

800
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400

200

—200 -
—400 -

—600 -

-800 -

Now, if we take the previous input u_ref, then the equations of the system become:

> System := subs(m=1, ApplyMatrix(R, [x(t),theta(t),P[3,1]1], Alg));

System =
2 (L x(t)) + (& 0(t)) — 24360 2 + 13440 % 4 4200 t* — 1680 > — 840 + 10080 ¢
2 2
(4= x(t) = 0(t) + (= 0(2))



Therefore, if we choose the following initial conditions

> Initial := {x(0)=1,D(x)(0)=0,theta(0)=0,D(theta) (0)=0};
Initial :== {x(0) = 1, D(x)(0) = 0, (0) = 0, D(#)(0) = 0}
then we can simulate the open-loop behaviour of the system by numerically integrating it:
dsol := dsolve({System[1,1]=0, System[2,1]=0} union Initial,

type=numeric, stiff=true):

>
>
> plots[odeplot] (dsol, [[t,x(t), color=bluel, [t,theta(t),color=red]],
> 0..1);

., theta

In order to stabilize the system around the reference trajectory, we first compute the Brunovsky canonical
form of the system.

> st := time(): B := Brunovsky(R, Alg); time()-st;

1 1 0
D D 0
B_lo 1 o0
0 D 0
1 1
o — M =
m m
0.290
Therefore, if we denote by z[1], ..., z[4] and v the Brunovsky canonical variables, then we have the

following transformation between the Brunovsky and the system variables x, 6 and u:

> evalm([seq([z[i](t)],i=1..4),[v(t)]])=ApplyMatrix(B, [x(t),theta(t),u(t)], Alg);



t)+6(t)
0 "
(1) (g x(1) + (4 0(1))
() | = d9(t)
2(t) @ 0(t)
v(t) (L+m)o@)  u(®)
m m
Let us check that the new variables z[1], ..., z[4] and v satisfy a Brunovsky canonical form:

> E := Elimination(linalg[stackmatrix] (B, R), [x,theta,u],
> [seq(z[il,i=1..4),v,0,0], Alg):
> ApplyMatrix(E[1], [x(t),theta(t),u(t)], Alg)=ApplyMatrix(E[2],
>  [seq(z[i]l (t),i=1..4),v(£)], Alg);
o0 1 T (%a(t))JrV(t)
0 —(§z3(t))+z4(t)
0 —( 7 22(t)) + 23(¢)
0 | = — (5 21 (1) + 22(t)
u(t) (=1 —m) z3(t) + mv(t)
o(t) z3(t)
L x(®) ]| z1(t) — z3(¢) |

From the first four equations, we check that we have a Brunovsky canonical form in the variables z[1],
.., z[4] and v. Let us also notice that the last three equations give the transformation of the system
variables x, # and u in terms of the Brunovsky variables z[i], ..., z[4], and v. In the new variables, the
system matrix becomes

> R2 := evalm(linalg[submatrix] (evalm(-E[2]), 1..4, 1..5));

0 0 0 D -1
0 0o D -1 0
0 D -1 O0 0
D -1 0 0 0

R2 =

and we have the following corresponding equations:

> ApplyMatrix(R2, [seq(z[il(t),i=1..4),v(t)], Alg)=evalm([[0]1$4]1);

(gt z4(t)) — v(t) 0
(£ 2a0) -2 | _ | 0
(7 22(t)) — 23(t) 0
(5 21 () = z(t) 0
> P2 := Parametrization(R2, Alg);
51( )
dg gl(t)
P2 = dtz €1(t)
dt3 51(t)
f4 gl(t)

Let us point out that if we substitute the parametrization Ezt[3] of the first system into the Brunovsky
matrix B, then we obtain the first Spencer operator, namely:

> J4 := Mult(B, Ext[3], Alg);



1
D
Jj = | D2
D3
D4

See A. Quadrat, Analyse algébrique des systémes de controle linéaires multidimensionnels, PhD Thesis,
Ecole Nationale des Ponts et Chaussées, 1999, for more details about the links between the Spencer
operator and the Brunovsky canonical form. Hence, if we consider the reference polynomial trajectory
defined above, then we obtain the corresponding z[i] and v by differentiation:

> ZVref := ApplyMatrix(J4, [Path], Alg);

1—35t*+84t5 — 70t +20¢7
—140¢3 4+ 420¢t* — 420¢° + 1408
ZVref := | —420t% 4+ 1680t — 2100t* 4 840>
—840t + 5040t — 84003 + 4200 t*
—840 4 10080 ¢ — 25200 ¢2 + 16800 ¢*

More precisely, we have:

> evalm([seq([z_ref[i](t)],i=1..4), [v_ref(t)]])=evalm(ZVref);

z_ref (1) 1—35t% 48415 — 700 4 20¢7
z_ref o(t) —1403 4 420 ¢* — 420t° + 140¢°
zrefs(t) | = | —420t2 4+ 1680t% — 2100t + 840¢°
z_ref 4 () —840t + 50402 — 8400 ¢> + 4200 t*
v_ref(t) —840 + 10080t — 252002 + 16800 t3

We easily check that ZVref is a trajectory of the system as we have:

> ApplyMatrix(R2, ZVref, Alg);

o O o o

If we denote by T' the matrix expressing the system variable z, § and v in terms of the Brunovsky variables
z[1], ..., z[4] and v,

> T := linalg[submatrix] (evalm(E[2]), 5..7, 1..5);
00 —-1—-m 0 m
T:=]10 0 1 0 0
1 0 -1 0 0
then, by substitution, we find again the reference trajectory computed previously.

> evalm([[u_ref(t)], [theta_ref(t)], [x_ref(t)]])=ApplyMatrix(T, ZVref, Alg);

u_ref (¢)
theta_ref(t) | =
x.ref(t)

[(—1 —m) (=420 + 1680 > — 2100 t* + 840¢°)

+m (—840 + 10080 ¢ — 252002 + 16800 ¢3)]

[—420¢2 + 16803 — 2100 t* + 840¢°]

[1+2065¢* — 756> — 70t% 4+ 20¢7 4 420t — 1680 ]



Hence, for m = 1 and v_ref, we obtain the following open-loop system:

> Sys_openloop := ApplyMatrix(R2, [seq(z[i](t),i=1..4),ZVref[5,11]1, Alg);

(& 2,(t)) + 840 — 10080 ¢ + 252002 — 16800 ¢>
(%Za(t)) — 24(t)
(3 #(1) = 2(1)
(5 21(t) — 22(t)

Sys_openloop :=

The previous initial conditions for x and 6 give the following initial conditions for the z[]:

> IC := {z[11(0)=1, seq(z[i](0)=0,i=2..4)};
IC :={22(0) =0, 23(0) =0, 21(0) = 1, z4(0) = 0}

Then, we can numerically integrate the corresponding system.

> dsol_openloop := dsolve({seq(Sys_openloop[i,1]=0,i=1..4)} union IC,
> type=numeric, stiff=true):

However, due to some disturbances, pertubations or modelizing errors, we need to stabilize the system
around the trajectory ZVref. In order to compare with the closed-loop system thereafter, we numerically
integrate the previous one but with a constant perturbation equal to % in the right hand side of the

equations Sys_openloop.

> dsol_openloopnoise := dsolve({seq(Sys_openloop[i,1]=1/10,i=1..4)}
> union IC, type=numeric, stiff=true):

The Brunovsky system is in particular a Kalman system D z = F' z + G v, where F and G are defined by:

> F := linalg[JordanBlock] (0, 4); G := evalm([[0],[0],[0],[1]11);

01 00
00 10
F'_0001
00 0O
0
0
G.—O
1

Then, we have D z_ref = F z_ref + Gu_ref and, if we define e = z — z_ref, then the error satisfies the
system De = Fe+ G (v—wv_ref). Using the fact that the system is controllable, we can stabilize the
system by using a feedback v = v_ref + K e. Hence, we have De = (F + GK) e and

Dz=(F+GK)z+Guref — GK z_ref.

Therefore, we need to choose a constant feedback K such that the error asymptotically tends to O.

> K := evalm([[k1l,k2,k3,k4]1]);
Ke=[hki k2 k3 K|

Then, the matrix F' 4+ GK is defined by:



> Fclos := evalm(F + G &* K);

0 1 0 0

0 0 1 0

Fclos := 0 0 0 1
k1 k2 k3 k4

Its characteristic polynomial is defined by:

> 1linalg[charpoly] (Fclos, lambda);
AN =Nk — N2 k3 — Nk2 — kI

If we want that the closed-loop characteristic polynomial equals

> expand((lambda+10)~4);
A% 40 A% 4 600 A% + 4000 A + 10000

then we need to choose kI = —10%, k2 = —4000, k3 = —600 and k4 = —40. Then, the corresponding K
and F' + GK become:

> Kval := subs(k1=-10"4,k2=-4000,k3=-600,k4=-40, evalm(K));

Kval = [ —10000 —4000 —-600 —40 ]
> Fclosval := subs(kl1=-10"4,k2=-4000,k3=-600,k4=-40, evalm(Fclos));
0 1 0 0
0 0 1 0
Fclosval .= 0 0 0 1

—10000 —4000 —-600 —40
Then, the system Dz = (F' 4+ GK) z 4+ G v is defined by the following matrix:

> Rclos := linalglaugment] (evalm(D-(F + G &* Kval)), -G);

D -1 0 0 0

0 D -1 0 0

Rclos := 0 0 D 1 0
10000 4000 600 40+D -1

Moreover, GK v_ref is defined by:

> GKvalz_ref := evalm((G &* Kval) &* linalg[submatrix] (ZVref, 1..4, 1..1));

GKvalz_ref :=
(0]

(0]
[0]

[~10000 — 238000 t* + 3360005 + 1400005 — 200000 " — 112000 > + 50400 ¢
+ 33600¢]

Hence, the system Dz = (F + GK) z + Gu_ref — GK z_ref is then defined by:

> Sys_closedloop := evalm(ApplyMatrix(Rclos,
> [seq(z[il(t),i=1..4),ZVref[5,1]], Alg)+GKvalz_ref);

10



Sys_closedloop =
(5 21(1) — z2(t)]
(4 22(t)) — 23(t)]
(5 23(t)) — 2a(t)

10000 2y (£) + 4000 25 (£) + 600 z5(t) + 40 24 (t) + (L z4(t)) — 9160 + 23520 ¢

~

+ 75600 ¢* — 128800 ¢3 — 238000 ¢* + 336000 £° + 140000 ¢° — 200000 ¢”

Let us integrate it numerically with the same right hand side perturbation %.

> dsol_closedloop := dsolve({seq(Sys_closedloopli,1]=1/10,i=1..4)}
> union IC, type=numeric, stiff=true):

The open-loop z[1] and z[2] are the following ones:

> plots[odeplot] (dsol_openloop, [[t,z[1](t),color=blue],
> [t,z[2] (t),color=red]l], 0..1);

—0.5

:[11, z[2]

—1.5

—2

The plots of the open-loop z[1] and z[2] with the perturbation are the following ones:

> plots[odeplot] (dsol_openloopnoise, [[t,z[1](t),color=blue],
> [t,z[2] (t),color=red]], 0..1);

11



1

—0.5 4

z[1], z[2]

—1.5

Finally, we have the following closed-loop z[1] and z[2] in the case where the perturbation occurs:

> plots[odeplot] (dsol_closedloop, [[t,z[1](t),color=blue],
> [t,z[2](t),color=red]], 0..1);

—0.5

:[1], z[2]

—1.5

—2

We easily understand why we need to stabilize the system around the desired trajectory using a feedback
law. In all the three previous cases, the components z[3] and z[4] closely follow the same trajectories.
We only plot here the case with the feedback law.

> plots[odeplot] (dsol_closedloop, [[t,z[3](t),color=green],
> [t,z[4] (t),color=black]], 0..1);

12



40

(31, z[4]

20 |

—20

—40 -

Now, we study the optimal control for the Pedalvit example following the exercise given in J.-P. Quadrat
and M. Viot, Introduction a la commande stochastique, Lecture Notes of Ecole Polytechnique, 1999. For
more details on the theory, we refer the reader to A. Quadrat, Analyse algébrique des systémes de controle
linéaires multidimensionnels, PhD Thesis, Ecole Nationale des Ponts et Chaussées, 1999, as well as J.-F.
Pommaret, A. Quadrat, A differential operator approach to multidimensional optimal control, to appear
in International Journal of Control, 2004.

We first want to optimize the trajectory of the system defined by R2 (2[1] : ... : z[4] : v)T = 0 with
respect to the quadratic criterion formed by the integration the differential form % v2(t) dt between 0
and 1. We first need to define the cost matrix @ which is such that

v? = (2[1] z[4] 1 v) Q (2[1] 2[4):0)T
> q := evalm([[1]1);
¢:=[1]
> r := evalm([seq([0$4], i=1..4)]1);
0 00O
oo o0 o0
"Zloo oo
0 00O
Then, the corresponding matrix @ is defined by:
> Q := evalm(linalg[diag]l(r, q));
00 0 0 O
00000
Q=000 00
00000
00 0 0 1

13



As the system R2 (z[1] : ... : 2[4] : v)T = 0 is parametrizable, we can substitute the parametrization of
the system (2[1] : ... : z[4] : v)T = P2 £[1] into the Lagrangian in order to transform the constrained
variational problem into a free/unconstrained one. Hence, instead of the Pontryagin approach, we only
need to solve a classical variational problem by computing the Euler-Lagrange equations for the new
problem. This last computation can be done by using the command LQFEquations.

> E1 := LQEquations(R2, Q, Alg);

Bi= || £ |,

%1 (7 &1(1)) — (5 %1) (L5 €1(8)) + (L %1) (L &1(1) + (25 %1) (Lx &1(1)),

51( )

d% 51 (t)

t2 &1 (t)
dt3 &(t)
dt4 51 (t)

%1 = (551 (t)

The first matrix E1[1] corresponds to the Euler-Lagrange equations in the parameter £[1] of the parametriza-
tion of the controllable system.

> E1[1];

[ dais fl(> }

The parametrization of the system is given by the third matrix E1[3].

> E1[3];
51( )
dﬁ €1 (t)
dt2 51 (t)
dt3 (t>
&1(t)

dt4

Finally, the second matrix F1[2] gives the boundary terms coming from the integrations by parts.

> E1[2];

7 2 6 3
—%1 (47 &1(1) — (2 %1) (i &1(8) + (5 %1) (i &1.(8)) + (5 %1) (s &a(8))
%1 := ¢, (t)
Therefore, depending on the problem (e.g., fixed terminal position, free terminal position, terminal er-

ror...), we can easily obtain the corresponding intial and final conditions. Note that we also need to
translate the initial conditions on z[1], ..., z[4] to initial conditions on £[1].

14



For instance, let us find the optimal trajectory passing from the initial point x(0) =1, Dx(0) = 0,
6(0) = 0, D#(0) = 0 to the terminal point x(1) =0, D x(1) = 0, 6(1) =0, DA(1) = 0. We easily check
that the corresponding conditions yield the following initial and final conditions:

> IC := {xi[l] (0)=1,xi[1] (1)=0,seq((D@@1i) (xi[1]) (0)=0, i=1..3),

> seq((DOOi) (xi[1]1)(1)=0, i=1..3)};
IC = {&(0) =1, &(1) = 0, (D@)(&)(0) = 0, D(£1)(0) =0, (D@)(&1)(1) =0
(D®)(&1)(1) =0, (DP®)(&)(0) =0, D(&)(1) = 0}

Hence, we integrate symbolically the corresponding Euler-Lagrange equations with the previous condi-
tions. We obtain:

> 0ODEsol := dsolve({E1[1][1,1]=0} union IC, xi[1](%t));
ODEsol := &, (t) =1 — 35t* + 841> — 705 + 207

In particular, we find again the trajectory Path previously computed. This trajectory is optimal for the
Lagrangian defined by the form % v2(t) dt between t =0 to t = 1.

Finally, the value of the cost is given by.

> Cost := simplify(int(P[3,1]172, t=0..1)/2);

Cost — 140 N 12600 _— 566860 2
11 11 11

Now, let us study the problem of minimizing the previous Lagrangian but without any constraint on the
terminal point at ¢t = 1. Using E2[3], we easily check that we must impose the following initial and final
conditions:

> IC2 := {xi[11(0)=1,seq((DO@i) (xi[1]1)(0)=0, i=1..7),
> seq((Deei) (xi[1]) (1)=0, i=4..7)};

102 :={6(0) = 1, (D(Q))(&)(O) =0, D(&)(0) = (D(S))(fl)( ) =0, (D@)(&)(1) =0
(DW)(&1)(1) = 0, (DD)(&1)(1) = 0, (DD)(&1)(1) = 0, (DW)(£1)(0) =0,
(D®)(&1)(0) = 0, (D@)(&1)(0) = 0, (D) (£1)(0) = 0}

Then, we integrate symbolically the corresponding ordinary differential equation. We obtain:

> O0DEsol2 := dsolve({E1[1][1,1]=0} union IC2, xil[11(t));
ODEsol2 := & (t) =1

Therefore, the new optimal trajectory becomes:

> evalm([[x2_opt(t)], [theta2_opt(t)], [u2_opt(t)]])=ApplyMatrix(Ext[3], [1], Alg);

x2_opt(t) 1
theta2_opt(t) | = | 0
u2_opt(t) 0

Hence, the new optimal trajectory means to stay at rest. Indeed, the value of the cost is now 0:

> Cost2 := int(ApplyMatrix(Ext[3], [1], Alg) [3,1]1"2, t=0..1);
Cost2 :=0

15



Let us now consider the case where there is an additional cost on the state z[1]. Let us define the new
matrix @2 as follows:

r2 := evalm([[gamma,0,0,0],seq([0$4],i=1..3)]1):
> Q2 := evalm(linalg[diag] (r2, q));
~ 0 0 0 0
00 0 0 O
Q2:=10 0 0 0 O
000 00O
0 00 01

Then, we can compute the corresponding Euler-Lagrange equations and boundary terms:
> E2 := LQEquations(R2, Q2, Alg):
> E2[1];

YE () + (L & (1)
> E2[2];

7 2 5 6 3 4
=91 (g &1(1)) — (g %1) (s &1(1) + (5 %1) (G &) + (g %1) (4= &1(1))
%]. = (551 (t)
If we study the case where the final time is infinity, then we need to compute the spectral factorization
of the differential operator D® + v, namely we need to write D® + v = Ftilde o F, where Ftilde denotes
the formal adjoint of F' and all roots of F(D) = 0 have negative real parts. The roots of the equations

58 +1 =0 are given by:

> Unity8 := [seq(exp(I*(Pi/8+k*Pi/4)),k=0..7)];
U’N;Ztyg — [6(1/81ﬂ), 6(3/8177), 6(5/8[77), 6(7/8171)’ e(—7/8I7r)7 e(—5/8]7‘r)’ e(—3/8I7r)7 e(—l/SIﬂ)}

In particular, the real parts of the previous roots are

> evalf(map(Re, Unity8));

[0.9238795325, 0.3826834325, —0.3826834325, —0.9238795325, —0.9238795325,
—0.3826834325, 0.3826834325, 0.9238795325]

Hence, we may only select the roots with negative real parts, namely

> Realneg := [seq(Unity8[i], i=3..6)];
Realneg = [6(5/817\')7 6(7/81ﬂ), e(—7/8I7r)7 e(—5/8[71-)]

or equivalently:

> Realnegc := map(evalc, Realneg);
Realnege := [fcos(g—w)JrS'n(?)—W)I fcos(z)Jrsin(z)I fcos(z)fs'n(z)l
9= g/ RS 8 g’ g/~ Mgl h
3 3
—cos(%) - sin(%) 1)

Then, the spectral factor F(z) of 28 + 1 is defined by:
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> Pol := simplify(product(z-gamma~(1/8)*Realnegcl[i], i=1..4)):
> F := sort(collect(convert(Pol, radical), {gamma,z}), z)

Fi= 24+ (V24 V2+ V2= v2) /19 2 4 (V2 + V2 V2 — V24 2) 1174 22
F(V2HV2H V2 V2) 3 2y

Finally, the feedback law v = K z which is such that the dynamics of the closed-loop system
Dz=(F+GK)z
equals F(D) z[1] = 0 is defined by:

> K := -evalm([seq(coeff(F,z,i), i=0..4)]1);

Ki==[\7, (V24 V2+ V2= V2)1/9, (V2 + VB V2 = V2 +2)7(/,
(V2+V2+ V2 - v2)7/®), 1}
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