Let us consider the example of a high speed network defined in M. Fliess, H. Mounier, Quasi-finite linear delay systems: theory and applications, IFAC Linear Time Delay Systems, Grenoble, France 1998, pp. 169-173.

```
> with(Ore_algebra):
> with(OreModules):
```

We define the Ore algebra $A l g$, which contains the differential operator $D t$ w.r.t. time t and the shift operators $\delta 1, \delta 2$:

```
> Alg := DefineOreAlgebra(diff=[Dt,t], dual_shift=[delta1,s1],
> dual_shift=[delta2,s2], polynom=[t,s1,s2], shift_action=[delta1,t,tau1],
> shift_action=[delta2,t,tau2]):
```

The high speed network is modeled by the following matrix of operators.

$$
\begin{array}{r}
>\mathrm{R}:=\operatorname{evalm}\left(\left[\begin{array}{lll}
{[D t,} & 0, & 1, \\
\hline
\end{array}\right)\right. \\
\qquad R:=\left[\begin{array}{cccc}
D t & 0 & 1 & -\delta 1 \\
0 & D t & -\delta 2 & 0
\end{array}\right]
\end{array}
$$

The system is controllable because the $A l g$-module M associated with the system is torsion-free:
> Ext1 := Exti(Involution(R, Alg), Alg, 1);

$$
\text { Ext1 }:=\left[\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cccc}
D t & 0 & 1 & -\delta 1 \\
0 & D t & -\delta 2 & 0
\end{array}\right],\left[\begin{array}{cc}
-\delta 1 & 1 \\
0 & -\delta 2 \\
0 & -D t \\
-D t & 0
\end{array}\right]\right]
$$

A parametrization of the system is defined by Ext1[3]. It is a minimal parametrization, as we have:

$$
\begin{aligned}
&>\text { MinimalParametrizations(R, Alg) ; } \\
& {\left[\left[\begin{array}{cc}
-\delta 1 & 1 \\
0 & -\delta 2 \\
0 & -D t \\
-D t & 0
\end{array}\right]\right] }
\end{aligned}
$$

The same parametrization can be obtained by using Parametrization. The result involves two free functions ξ_{1}, ξ_{2} :

```
> Parametrization(R, Alg);
```

$$
\left[\begin{array}{c}
-\xi_{1}(t-\tau 1)+\xi_{2}(t) \\
-\xi_{2}(t-\tau 2) \\
-\mathrm{D}\left(\xi_{2}\right)(t) \\
-\mathrm{D}\left(\xi_{1}\right)(t)
\end{array}\right]
$$

Let us compute the second extension module ext ${ }^{\wedge} 2$ with values in $A l g$ of the left $A l g$-module which is associated with Involution (R, Alg):

```
> Ext2 := Exti(Involution(R, Alg), Alg, 2);
    Ext2 }:=[[[\begin{array}{cc}{Dt}&{0}\\{\delta2\delta1}&{0}\\{0}&{\delta2}\\{0}&{Dt}\end{array}],[\begin{array}{ll}{1}&{0}\\{0}&{1}\end{array}],\operatorname{SURJ}(2)
```

The Alg-module M associated with the system is not reflexive, because the first matrix Ext2[1] of Ext2 is not an identity matrix. Therefore, M is not a projective, and thus, not a free Alg-module. Hence, the corresponding high speed network is not flat.

The matrix R has full row rank, as we can easily check by computing a free resolution of the $A l g$ module M.
$>$ FreeResolution(R, Alg);

$$
\operatorname{table}\left(\left[1=\left[\begin{array}{cccc}
D t & 0 & 1 & -\delta 1 \\
0 & D t & -\delta 2 & 0
\end{array}\right], 2=\operatorname{INJ}(2)\right]\right)
$$

Let us recall that we know that an Alg-module M defined by a full row rank matrix R is projective iff R admits a right-inverse. Hence, we already know that R should have no right-inverse. Let us check it:

```
> RightInverse(R, Alg);
```

Moreover, we also know that the parametrization Ext1 [3] of the system is not injective, as it would imply that the $A l g$-module M is free. Let us check it:

```
> LeftInverse(Ext1[3], Alg);
```

As the $A l g$-module M is torsion-free but not free, we know that the high speed network is π-free. Let us compute a π-polynomial for this system:

```
> PiPolynomial(R, Alg, [delta1,delta2]);
```

Thus, the system is $\pi=\delta 1 \delta 2$-free. Let us compute a left-inverse of the parametrization Ext1 [3] in the ring $\operatorname{Alg}\left[\pi^{-1}\right]$.

```
> L := LocalLeftInverse(Ext1[3], [delta1*delta2], Alg);
```

$$
L:=\left[\begin{array}{cccc}
-\frac{1}{\delta 1} & -\frac{1}{\delta 2 \delta 1} & 0 & 0 \\
0 & -\frac{1}{\delta 2} & 0 & 0
\end{array}\right]
$$

We easily check that L is a left-inverse of Ext1 [3]:

```
> simplify(evalm(L &* Ext1[3]));
```

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

We obtain that $(\xi 1(t): \xi 2(t))^{T}=L(\xi(t): \chi(t): \mathrm{u}(t): \mu(t))^{T}$ is a flat output of the system. More precisely, we have:

```
> evalm([[xi1(t)],[xi2(t)]])=ApplyMatrix(L, [xi(t),chi(t),u(t),mu(t)], Alg);
    [l}\begin{array}{l}{\xi1(t)}\\{\xi2(t)}\end{array}]=[\begin{array}{c}{-\xi(t+\tau1)-\chi(t+\tau2+\tau1)}\\{-\chi(t+\tau2)}\end{array}
> P := simplify(evalm(Ext1[3] &* L));
```

$$
P:=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & \frac{D t}{\delta 2} & 0 & 0 \\
\frac{D t}{\delta 1} & \frac{D t}{\delta 2 \delta 1} & 0 & 0
\end{array}\right]
$$

The matrix P is such that we have $(\xi(t): \chi(t): \mathrm{u}(t): \mu(t))^{T}=P(\xi(t): \chi(t): \mathrm{u}(t): \mu(t))^{T}$. From P, we easily see that the system variables $\mathrm{u}(t)$ and $\mu(t)$ can be expressed as $\operatorname{Alg}\left[\pi^{-1}\right]$-linear combinations of $\xi(t)$ and $\chi(t)$ showing that $\xi(t)$ and $\chi(t)$ are flat outputs of the high speed network over $\operatorname{Alg}\left[\pi^{-1}\right]$. More precisely, we have:

```
> evalm([[xi(t)], [chi(t)], [mu(t)], [u(t)]])=
> ApplyMatrix(P,[xi(t),chi(t),mu(t),u(t)],Alg);
\(\left[\begin{array}{c}\xi(t) \\ \chi(t) \\ \mu(t) \\ \mathrm{u}(t)\end{array}\right]=\left[\begin{array}{c}\xi(t) \\ \chi(t) \\ \mathrm{D}(\chi)(t+\tau 2) \\ \mathrm{D}(\xi)(t+\tau 1)+\mathrm{D}(\chi)(t+\tau 2+\tau 1)\end{array}\right]\)
```

