In this worksheet we study the parametrizability of Maxwell equations. See H. Weyl, Space Time Matter, fourth edition, Dover, 1952.

```
> with(Ore_algebra):
> with(OreModules):
```

We define the Weyl algebra $A l g=A_{4}$, where d_{i} acts as differential operator w.r.t. $x_{i}, i=1, \ldots, 4$, and where x_{1}, x_{2}, x_{3} are the spatial variables and x_{4} is the time variable.

```
> Alg := DefineOreAlgebra(diff=[d[1],x[1]], diff=[d[2],x[2]], diff=[d[3],x[3]],
> diff=[d[4],x[4]], polynom=[x[1],x[2],x[3],x[4]], comm=[epsilon,mu]):
```

We enter the system matrix of the first set of Maxwell equations, which is a matrix with entries in Alg: The first three rows stand for the sum of the time derivative of the magnetic field and the curl of the electric field; the last row of the matrix is the divergence of the magnetic field.

```
> R := evalm([[d[4], 0, 0, 0, -d[3], d[2]],
> [0, d[4], 0, d[3], 0, -d[1]],
> [0, 0, d[4],-d[2], d[1], 0],
> [d[1], d[2], d[3], 0, 0, 0]]);
\[
R:=\left[\begin{array}{cccccc}
d_{4} & 0 & 0 & 0 & -d_{3} & d_{2} \\
0 & d_{4} & 0 & d_{3} & 0 & -d_{1} \\
0 & 0 & d_{4} & -d_{2} & d_{1} & 0 \\
d_{1} & d_{2} & d_{3} & 0 & 0 & 0
\end{array}\right]
\]
```

In terms of equations, the first set of Maxwell equations is given by:

$$
\begin{aligned}
& >\text { ApplyMatrix(R, } \\
& >\quad[\operatorname{seq}(B[i](\operatorname{seq}(x[j], j=1 \ldots 4)), i=1 \ldots 3), \operatorname{seq}(E[i](\operatorname{seq}(x[j], j=1 \ldots 4)), i=1 . .3)], A l g) \\
& >\quad=e v a l m([0] \$ 4]) \text {; } \\
& {\left[\begin{array}{c}
\left(\frac{\partial}{\partial x_{4}} B_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)-\left(\frac{\partial}{\partial x_{3}} E_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)+\left(\frac{\partial}{\partial x_{2}} E_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right) \\
\left(\frac{\partial}{\partial x_{4}} B_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)+\left(\frac{\partial}{\partial x_{3}} E_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)-\left(\frac{\partial}{\partial x_{1}} E_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right) \\
\left(\frac{\partial}{\partial x_{4}} B_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)-\left(\frac{\partial}{\partial x_{2}} E_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)+\left(\frac{\partial}{\partial x_{1}} E_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right) \\
\left(\frac{\partial}{\partial x_{1}} B_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)+\left(\frac{\partial}{\partial x_{2}} B_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)+\left(\frac{\partial}{\partial x_{3}} B_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

The syzygy module of the $A l g$-module generated by the rows of R is defined by:

```
> Syzygy := SyzygyModule(R, Alg);
```

$$
\text { Syzygy }:=\left[\begin{array}{llll}
d_{1} & d_{2} & d_{3} & -d_{4}
\end{array}\right]
$$

Equivalently, if we consider the first set of Maxwell equations with a right member $(\kappa[1]: \ldots: \kappa[4])^{T}$, then the compatibility condition of the inhomogeneous system is given by:

```
> ApplyMatrix(Syzygy, [seq(kappa[i](seq(x[j],j=1..4)),i=1..4)], Alg)[1,1]=0;
```

$$
\begin{aligned}
& \left(\frac{\partial}{\partial x_{1}} \kappa_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)+\left(\frac{\partial}{\partial x_{2}} \kappa_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)+\left(\frac{\partial}{\partial x_{3}} \kappa_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right) \\
& -\left(\frac{\partial}{\partial x_{4}} \kappa_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)=0
\end{aligned}
$$

Let us check whether or not the first set of Maxwell equations is parametrizable. In order to do that, let us introduce the formal adjoint R_{-}adj of R :

```
> R_adj := Involution(R, Alg);
```

$$
\text { R_adj }:=\left[\begin{array}{cccc}
-d_{4} & 0 & 0 & -d_{1} \\
0 & -d_{4} & 0 & -d_{2} \\
0 & 0 & -d_{4} & -d_{3} \\
0 & -d_{3} & d_{2} & 0 \\
d_{3} & 0 & -d_{1} & 0 \\
-d_{2} & d_{1} & 0 & 0
\end{array}\right]
$$

To check whether the system of Maxwell equations is parametrizable, we compute the first extension module ext^1 with values in $A l g$ of the left $A l g$-module N which is associated with $R_{-} a d j$:

$$
\begin{aligned}
&>\text { st }:=\operatorname{time}(): \text { Ext1 }:=\text { Exti(R_adj, Alg, 1); time()-st; } \\
& \text { Ext1 }:=\left[\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{cccccc}
d_{4} & 0 & 0 & 0 & -d_{3} & d_{2} \\
d_{1} & d_{2} & d_{3} & 0 & 0 & 0 \\
0 & -d_{4} & 0 & -d_{3} & 0 & d_{1} \\
0 & 0 & d_{4} & -d_{2} & d_{1} & 0
\end{array}\right],\left[\begin{array}{cccc}
d_{3} & d_{2} & 0 & 0 \\
0 & -d_{1} & d_{3} & 0 \\
-d_{1} & 0 & -d_{2} & 0 \\
0 & 0 & -d_{4} & -d_{1} \\
d_{4} & 0 & 0 & -d_{2} \\
0 & -d_{4} & 0 & -d_{3}
\end{array}\right]\right]
\end{aligned}
$$

$$
0.680
$$

Since Ext1[1] is the identity matrix, we see that the module M, which is associated with R, is torsion-free. Equivalently, the system of Maxwell equations is parametrizable and Ext1[3] is a parametrization of the system. More precisely, if we introduce the following notations

$$
\begin{array}{r}
>\operatorname{Bvec}:=\operatorname{evalm}([\operatorname{seq}([\mathrm{B}[\mathrm{i}](\operatorname{seq}(\mathrm{x}[\mathrm{j}], \mathrm{j}=1 . .4))], \mathrm{i}=1 \ldots 3)]) ; \\
\qquad \text { Bvec }:=\left[\begin{array}{l}
B_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
B_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
B_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{array}\right] \\
>\text { Evec }:=\operatorname{evalm}([\operatorname{seq}([\mathrm{E}[\mathrm{i}](\operatorname{seq}(\mathrm{x}[\mathrm{j}], \mathrm{j}=1 . .4))], \mathrm{i}=1 \ldots 3)]) ; \\
\text { Evec }:=\left[\begin{array}{l}
E_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
E_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
E_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{array}\right]
\end{array}
$$

then, we obtain the following classical parametrization of the first set of the Maxwell equation by means of the quadri-potential $(A[1], A[2], A[3], V)$:

Let us point out that the parametrization of the first set of Maxwell equations is not unique. In particular, we had to permute some columns of Ext1[3] in order to find again the standard parametrization of the first set of Maxwell by the quadri-potential ($A[1], A[2], A[3], V)$. In the rest of this Maple worksheet, in order to find again the classical results of electromagnetism, we shall use the following standard parametrization P instead of Ext1[3]:

```
> grad := evalm([[d[1]], [d[2]], [d[3]]]):
```

$$
\begin{aligned}
& \text { > ApplyMatrix(Ext1[3], } \\
& >[-\mathrm{A}[2](\mathrm{seq}(\mathrm{x}[\mathrm{i}], \mathrm{i}=1 . .4)), \mathrm{A}[3](\mathrm{seq}(\mathrm{x}[\mathrm{i}], \mathrm{i}=1.4)), \mathrm{A}[1](\mathrm{seq}(\mathrm{x}[\mathrm{i}], \mathrm{i}=1 . .4) \text {), } \\
& >V(\operatorname{seq}(x[i], i=1 . .4))] \text {, Alg)=linalg[stackmatrix] (Bvec, Evec); } \\
& {\left[\begin{array}{c}
-\left(\frac{\partial}{\partial x_{3}} A_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)+\left(\frac{\partial}{\partial x_{2}} A_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right) \\
-\left(\frac{\partial}{\partial x_{1}} A_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)+\left(\frac{\partial}{\partial x_{3}} A_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right) \\
\left(\frac{\partial}{\partial x_{1}} A_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)-\left(\frac{\partial}{\partial x_{2}} A_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right) \\
-\left(\frac{\partial}{\partial x_{4}} A_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)-\left(\frac{\partial}{\partial x_{1}} \mathrm{~V}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right) \\
-\left(\frac{\partial}{\partial x_{4}} A_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)-\left(\frac{\partial}{\partial x_{2}} \mathrm{~V}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right) \\
-\left(\frac{\partial}{\partial x_{4}} A_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)-\left(\frac{\partial}{\partial x_{3}} \mathrm{~V}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)
\end{array}\right]=\left[\begin{array}{l}
B_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
B_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
B_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
E_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
E_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
E_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{array}\right]}
\end{aligned}
$$

```
> curl := evalm([[0, -d[3], d[2]], [d[3], 0, -d[1]], [-d[2], d[1], 0]]):
> P1 := linalg[stackmatrix](curl, linalg[band]([-d[4]], 3)):
> P2 := linalg[stackmatrix]([[0]$3], -grad):
> P := linalg[augment] (P1, P2);
```

$$
P:=\left[\begin{array}{cccc}
0 & -d_{3} & d_{2} & 0 \\
d_{3} & 0 & -d_{1} & 0 \\
-d_{2} & d_{1} & 0 & 0 \\
-d_{4} & 0 & 0 & -d_{1} \\
0 & -d_{4} & 0 & -d_{2} \\
0 & 0 & -d_{4} & -d_{3}
\end{array}\right]
$$

Let us insist that P is obtained by multiplying the second column by -1 and by performing a cyclic permutation on the first three colums of Ext1 [3].

Therefore, P and Ext1[3] define the same parametrization up to a change of names of the arbitrary functions, i.e., of the potentials. We have:

$$
\begin{aligned}
& >\text { ApplyMatrix(P, [seq(A[i] (seq(x[i], i=1..4)), i=1..3), V(seq(x[i], i=1..4))], Alg) } \\
& >\text { = linalg[stackmatrix] (Bvec, Evec); } \\
& \qquad\left[\begin{array}{c}
-\left(\frac{\partial}{\partial x_{3}} A_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)+\left(\frac{\partial}{\partial x_{2}} A_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right) \\
-\left(\frac{\partial}{\partial x_{1}} A_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)+\left(\frac{\partial}{\partial x_{3}} A_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right) \\
\left(\frac{\partial}{\partial x_{1}} A_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)-\left(\frac{\partial}{\partial x_{2}} A_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right) \\
-\left(\frac{\partial}{\partial x_{4}} A_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)-\left(\frac{\partial}{\partial x_{1}} \mathrm{~V}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right) \\
-\left(\frac{\partial}{\partial x_{4}} A_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)-\left(\frac{\partial}{\partial x_{2}} \mathrm{~V}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right) \\
-\left(\frac{\partial}{\partial x_{4}} A_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)-\left(\frac{\partial}{\partial x_{3}} \mathrm{~V}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)
\end{array}\right]=\left[\begin{array}{l}
B_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
B_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
B_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
E_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
E_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
E_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{array}\right]
\end{aligned}
$$

In what follows, we shall see that this parametrization is not minimal. We first compute a free resolution of the Alg-module M associated with R :

$$
\begin{aligned}
& >\text { FreeResolution(R, Alg); } \\
& \quad \operatorname{table}\left(\left[1=\left[\begin{array}{cccccc}
d_{4} & 0 & 0 & 0 & -d_{3} & d_{2} \\
0 & d_{4} & 0 & d_{3} & 0 & -d_{1} \\
0 & 0 & d_{4} & -d_{2} & d_{1} & 0 \\
d_{1} & d_{2} & d_{3} & 0 & 0 & 0
\end{array}\right], 2=\left[\begin{array}{llll}
d_{1} & d_{2} & d_{3} & -d_{4}
\end{array}\right], 3=\operatorname{INJ}(1)\right]\right)
\end{aligned}
$$

In particular, by summing alternatingly the number of columns of all the entries in this free resolution, we find that the rank of M is $6-4+1=3$. This result can also be obtained using OreRank:

```
> OreRank(R, Alg);
```


3

Hence, a minimal parametrization of the system involves only three potentials contrary to the parametrization by the quadri-potential. Let us compute some minimal parametrizations of the system using MinimalParametrizations:
$\begin{aligned}> & \text { st }:=\text { time () : Pmin }:=\text { MinimalParametrizations(R, Alg); time()-st; } \\ \text { Pmin } & :=\left[\left[\begin{array}{ccc}d_{3} & d_{2} & 0 \\ 0 & -d_{1} & d_{3} \\ -d_{1} & 0 & -d_{2} \\ 0 & 0 & -d_{4} \\ d_{4} & 0 & 0 \\ 0 & -d_{4} & 0\end{array}\right],\left[\begin{array}{ccc}d_{3} & d_{2} & 0 \\ 0 & -d_{1} & 0 \\ -d_{1} & 0 & 0 \\ 0 & 0 & -d_{1} \\ d_{4} & 0 & -d_{2} \\ 0 & -d_{4} & -d_{3}\end{array}\right],\left[\begin{array}{ccc}d_{3} & 0 & 0 \\ 0 & d_{3} & 0 \\ -d_{1} & -d_{2} & 0 \\ 0 & -d_{4} & -d_{1} \\ d_{4} & 0 & -d_{2} \\ 0 & 0 & -d_{3}\end{array}\right],\left[\begin{array}{ccc}d_{2} & 0 & 0 \\ -d_{1} & d_{3} & 0 \\ 0 & -d_{2} & 0 \\ 0 & -d_{4} & -d_{1} \\ 0 & 0 & -d_{2} \\ -d_{4} & 0 & -d_{3}\end{array}\right]\right]\end{aligned}$

We write the first of these minimal parametrizations in a more familiar way using the free functions $\psi_{1}, \psi_{2}, \psi_{3}$:

$$
\begin{aligned}
& >\text { ApplyMatrix(Pmin[1], [seq(psi[i](seq(x[j],j=1..4)), i=1..3)], Alg) } \\
& >\text { =linalg[stackmatrix] (Bvec, Evec); } \\
& \qquad\left[\begin{array}{c}
\left(\frac{\partial}{\partial x_{3}} \psi_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)+\left(\frac{\partial}{\partial x_{2}} \psi_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right) \\
-\left(\frac{\partial}{\partial x_{1}} \psi_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)+\left(\frac{\partial}{\partial x_{3}} \psi_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right) \\
-\left(\frac{\partial}{\partial x_{1}} \psi_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)-\left(\frac{\partial}{\partial x_{2}} \psi_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right) \\
-\left(\frac{\partial}{\partial x_{4}} \psi_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right) \\
\frac{\partial}{\partial x_{4}} \psi_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
-\left(\frac{\partial}{\partial x_{4}} \psi_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)
\end{array}\right]=\left[\begin{array}{l}
B_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
B_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
B_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
E_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
E_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
E_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{array}\right]
\end{aligned}
$$

Similar minimal parametrizations of the first set of Maxwell equations can be obtained using Pmin[2] and Pmin[3]. We finish by studying the second and the third extension modules with values in $A l g$ of the $A l g$-module N associated with $R_{-} a d j$:

$$
\begin{aligned}
>\text { st }:=\text { time() }: & \text { Ext2 }:=\text { Exti(Involution(P, Alg), Alg, } 1) ; \text { time()-st; } \\
\text { Ext2 }:= & {\left[\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{cccc}
d_{4} & 0 & 0 & d_{1} \\
-d_{3} & 0 & d_{1} & 0 \\
-d_{2} & d_{1} & 0 & 0 \\
0 & d_{4} & 0 & d_{2} \\
0 & -d_{3} & d_{2} & 0 \\
0 & 0 & d_{4} & d_{3}
\end{array}\right],\left[\begin{array}{c}
-d_{1} \\
-d_{2} \\
-d_{3} \\
d_{4}
\end{array}\right]\right] }
\end{aligned}
$$

Since Ext2[1] is the identity matrix, we see that ext 2 of N is zero, and thus, the $A l g$-module associated with the first set of Maxwell equations is reflexive.

Therefore, if we consider the system of equations formed by the parametrization of the first set of Maxwell equations by means of the quadri-potential $(A[1], A[2], A[3], V)$ with a zero right hand side, then this new system is parametrizable. In fact, such a parametrization is given in Ext2 [3].

$$
\left.\begin{array}{l}
>\text { ApplyMatrix(Ext2[3], } \quad[-\mathrm{xi}(\mathrm{seq}(\mathrm{x}[\mathrm{i}], \mathrm{i}=1 \ldots 4))], \mathrm{Alg}) \\
>=\operatorname{evalm}([\mathrm{seq}([\mathrm{~A}[\mathrm{i}](\mathrm{seq}(\mathrm{x}[\mathrm{i}], \mathrm{i}=1 \ldots 4))], \mathrm{i}=1 \ldots 4)]) ; \\
\qquad\left[\begin{array}{c}
\frac{\partial}{\partial x_{1}} \% 1 \\
\frac{\partial}{\partial x_{2}} \\
\hline
\end{array}\right]=\left[\begin{array}{l}
A_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
A_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
A_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
A_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{array}\right] \\
-\left(\frac{\partial}{\partial x_{4}} \% 1\right)
\end{array}\right] \quad\left[1:=\xi\left(x_{1}, x_{2}, x_{3}, x_{4}\right) .\right.
$$

This parametrization corresponds to the gauge transformation of the quadri-potential ($A[1], A[2], A[3]$, $V)$. Obviously, this parametrization is a minimal one.

$$
\begin{gathered}
>\text { st }:=\text { time() }: \text { Ext3 }:=\operatorname{Exti}(\text { Involution(P,Alg), Alg, 2); time()-st; } \\
E \operatorname{Ext3}:=\left[\left[\begin{array}{c}
d_{4} \\
d_{3} \\
d_{2} \\
d_{1}
\end{array}\right],[1], \operatorname{SURJ}(1)\right] \\
0.330
\end{gathered}
$$

Since Ext3[1] is not an identity matrix, we see that ext 3 of N is not the zero module. Therefore, the Alg module associated with the first set of Maxwell equations is not projective, and thus, free. In particular, we cannot parametrize the above gauge transformation if $(A[1], A[2], A[3], V)^{T}=(0: 0: 0: 0)^{T}$.

Let us interpret the formal adjoints of $P, E x t 2[3]$ and R. Let us start with the formal adjoint P_{-}adj of the parametrization P of the first set of Maxwell equations. We have:

$$
\begin{aligned}
& >\text { P_adj := Involution(P, Alg) } ; \\
& \qquad P_{-} a d j:=\left[\begin{array}{cccccc}
0 & -d_{3} & d_{2} & d_{4} & 0 & 0 \\
d_{3} & 0 & -d_{1} & 0 & d_{4} & 0 \\
-d_{2} & d_{1} & 0 & 0 & 0 & d_{4} \\
0 & 0 & 0 & d_{1} & d_{2} & d_{3}
\end{array}\right]
\end{aligned}
$$

We easily check that P_{-}adj corresponds to the second set of Maxwell equations. More precisely, we have

$$
\begin{aligned}
& >\text { ApplyMatrix }\left(P_{-} \operatorname{adj}, \quad[\operatorname{seq}(H[j](\operatorname{seq}(x[j], j=1 \ldots 4)), j=1 \ldots 3),-D 1(\operatorname{seq}(x[j], j=1 . .4)) \text {, }\right. \\
& >- \text { D2 }(\operatorname{seq}(x[j], \bar{j}=1 . .4)),-D 3(\operatorname{seq}(x[j], j=1.4))], A 1 g) \\
& >=\operatorname{evalm}([\operatorname{seq}([j[i](\operatorname{seq}(x[j], j=1.4))], i=1 . .3),[-\operatorname{rho}(\operatorname{seq}(x[j], j=1 . .4))]]) \text {; } \\
& {\left[\begin{array}{c}
-\left(\frac{\partial}{\partial x_{3}} H_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)+\left(\frac{\partial}{\partial x_{2}} H_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)-\left(\frac{\partial}{\partial x_{4}} \mathrm{D} 1\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right) \\
\left(\frac{\partial}{\partial x_{3}} H_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)-\left(\frac{\partial}{\partial x_{1}} H_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)-\left(\frac{\partial}{\partial x_{4}} \mathrm{D} 2\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right) \\
-\left(\frac{\partial}{\partial x_{2}} H_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)+\left(\frac{\partial}{\partial x_{1}} H_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)-\left(\frac{\partial}{\partial x_{4}} \mathrm{D} 3\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right) \\
-\left(\frac{\partial}{\partial x_{1}} \mathrm{D} 1\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)-\left(\frac{\partial}{\partial x_{2}} \mathrm{D} 2\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)-\left(\frac{\partial}{\partial x_{3}} \mathrm{D} 3\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)
\end{array}\right]=} \\
& {\left[\begin{array}{c}
j_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
j_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
j_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
-\rho\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{array}\right]}
\end{aligned}
$$

where $(H[1], H[2], H[3])$ denotes the magnetic induction, (D1, D2, D3) the electric induction, ($j[1], j[2]$, $j[3])$ the density of current and ρ the density of electric charge. Now, the formal adjoint $R 3_{-}$adj of the gauge transformation Ext2[3] is defined by:

```
> R3_adj := Involution(Ext2[3], Alg);
    R3_adj:=[llllll}\mp@subsup{d}{1}{
```

We easily check that R3_adj corresponds to the conservation law, as we have:

```
> ApplyMatrix(R3_adj, [seq(j[i](seq(x[j],j=1..4)),i=1..3),-rho(seq(x[j],j=1..4))],
> Alg)[1,1]=0;
(\frac{\partial}{\partial\mp@subsup{x}{1}{}}\mp@subsup{j}{1}{}(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\mp@subsup{x}{3}{},\mp@subsup{x}{4}{}))+(\frac{\partial}{\partial\mp@subsup{x}{2}{}}\mp@subsup{j}{2}{}(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\mp@subsup{x}{3}{},\mp@subsup{x}{4}{}))+(\frac{\partial}{\partial\mp@subsup{x}{3}{}}\mp@subsup{j}{3}{}(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\mp@subsup{x}{3}{},\mp@subsup{x}{4}{}))+(\frac{\partial}{\partial\mp@subsup{x}{4}{}}\rho(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\mp@subsup{x}{3}{},\mp@subsup{x}{4}{}))
=0
```

Finally, if we take $j[\mathrm{i}]=0$ and $\rho=0$, we can check whether or not the resulting second set of Maxwell equations are parametrizable.

$$
\begin{aligned}
>\operatorname{ext1} & :=\operatorname{Exti}(P, A l g, 1) ; \\
& \text { ext1 }:=\left[\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{cccccc}
-d_{3} & 0 & d_{1} & 0 & -d_{4} & 0 \\
-d_{2} & d_{1} & 0 & 0 & 0 & d_{4} \\
0 & -d_{3} & d_{2} & d_{4} & 0 & 0 \\
0 & 0 & 0 & d_{1} & d_{2} & d_{3}
\end{array}\right],\left[\begin{array}{cccc}
-d_{4} & -d_{1} & 0 & 0 \\
0 & -d_{2} & d_{4} & 0 \\
0 & -d_{3} & 0 & -d_{4} \\
0 & 0 & d_{3} & d_{2} \\
d_{3} & 0 & 0 & -d_{1} \\
-d_{2} & 0 & -d_{1} & 0
\end{array}\right]\right]
\end{aligned}
$$

Therefore, the second set of Maxwell equation is parametrized by ext1[3], i.e., we have the following parametrization of the magnetic/electric inductions:

```
> Hvec := evalm([seq([H[i](seq(x[j],j=1..4))],i=1..3)]):
> Dvec := evalm([[D1(seq(x[j],j=1..4))],[D2(seq(x[j],j=1..4))],[D3(seq(x[j],j=1..4))]]):
> ApplyMatrix(ext1[3], [seq(theta[i](seq(x[j],j=1..4)),i=1..4)], Alg)
> =linalg[stackmatrix](Hvec, Dvec);
```

$$
\begin{aligned}
& {\left[\begin{array}{c}
-\left(\frac{\partial}{\partial x_{4}} \% 2\right)-\left(\frac{\partial}{\partial x_{1}} \% 4\right) \\
-\left(\frac{\partial}{\partial x_{2}} \% 4\right)+\left(\frac{\partial}{\partial x_{4}} \% 1\right) \\
-\left(\frac{\partial}{\partial x_{3}} \% 4\right)-\left(\frac{\partial}{\partial x_{4}} \% 3\right) \\
\left(\frac{\partial}{\partial x_{3}} \% 1\right)+\left(\frac{\partial}{\partial x_{2}} \% 3\right) \\
\left(\frac{\partial}{\partial x_{3}} \% 2\right)-\left(\frac{\partial}{\partial x_{1}} \% 3\right) \\
-\left(\frac{\partial}{\partial x_{2}} \% 2\right)-\left(\frac{\partial}{\partial x_{1}} \% 1\right)
\end{array}\right]=\left[\begin{array}{l}
H_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
H_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
H_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
\mathrm{D} 1\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
\mathrm{D} 2\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
\mathrm{D} 3\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{array}\right]} \\
& \% 1:=\theta_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
& \% 2:=\theta_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
& \% 3:=\theta_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
& \% 4:=\theta_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{aligned}
$$

The arbitrary functions $\theta[\mathrm{i}], \mathrm{i}=1, \ldots, 4$, are sometimes called pseudo-potentials. Let us point out that the parametrization ext1 [3] of the second set of Maxwell equations by the pseudo-potentials is equivalent to the formal adjoint R_{-}adj of the first set of Maxwell equations:

Let us introduce the following matrix, where μ denotes the magnetic constant and ε is the dielectric constant:

```
> M := linalg[diag](evalm([[1/mu,0,0],[0,1/mu,0],[0,0,1/mu]]),evalm([[epsilon,0,0],
> [0,epsilon,0],[0,0,epsilon]]));
\[
M:=\left[\begin{array}{cccccc}
\frac{1}{\mu} & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{\mu} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{\mu} & 0 & 0 & 0 \\
0 & 0 & 0 & \varepsilon & 0 & 0 \\
0 & 0 & 0 & 0 & \varepsilon & 0 \\
0 & 0 & 0 & 0 & 0 & \varepsilon
\end{array}\right]
\]
```

Then, the Minkowski law is defined by:

$$
\begin{aligned}
& >\operatorname{linalg}[\text { stackmatrix] }(\text { Hvec, Dvec) }=\text { ApplyMatrix }(M, \\
& >[\operatorname{seq}(B[i](\operatorname{seq}(x[j], j=1 \ldots 4)), i=1 . .3), \operatorname{seq}(E[i](\operatorname{seq}(x[j], j=1 . .4)), i=1 \ldots 3)], A l g) ;
\end{aligned}
$$

$$
\left[\begin{array}{c}
H_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
H_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
H_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
\operatorname{D} 1\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
\operatorname{D} 2\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
\operatorname{D} 3\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{array}\right]=\left[\begin{array}{c}
\frac{B_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)}{\mu} \\
\frac{B_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)}{\mu} \\
\frac{B_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)}{\mu} \\
\varepsilon E_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
\varepsilon E_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
\varepsilon E_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{array}\right]
$$

Now, if we substitute the parametrization of the first set of Maxwell equations by means of the quadripotential $(A[1], A[2], A[3], V)$ into the Minkowski law and substitute again the result into the second set of Maxwell equations, we obtain the matrix of differential operators

```
> J := linalg[diag](linalg[band]([1], 3), linalg[band]([-1], 3)):
> wave := Mult(P_adj, J, M, P, Alg);
```


or, in terms of the $(A[1], A[2], A[3], V)$, we obtain the following equations:

```
> Equations := ApplyMatrix(wave, [seq(A[j](seq(x[i],i=1..4)),j=1..3),
> V(seq(x[i],i=1..4))], Alg):
> E1 := simplify(Equations[1,1])=j[1](seq(x[i],i=1..4));
    E1:= (\varepsilon (\frac{\mp@subsup{\partial}{}{2}}{\partial\mp@subsup{x}{4}{2}}\mp@subsup{A}{1}{}(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\mp@subsup{x}{3}{},\mp@subsup{x}{4}{}))\mu-(\frac{\mp@subsup{\partial}{}{2}}{\partial\mp@subsup{x}{2}{2}}\mp@subsup{A}{1}{}(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\mp@subsup{x}{3}{},\mp@subsup{x}{4}{}))-(\frac{\mp@subsup{\partial}{}{2}}{\partial\mp@subsup{x}{3}{2}}\mp@subsup{A}{1}{}(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\mp@subsup{x}{3}{},\mp@subsup{x}{4}{}))
    +(\frac{\mp@subsup{\partial}{}{2}}{\partial\mp@subsup{x}{2}{}\partial\mp@subsup{x}{1}{}}\mp@subsup{A}{2}{(}(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\mp@subsup{x}{3}{},\mp@subsup{x}{4}{}))+(\frac{\mp@subsup{\partial}{}{2}}{\partial\mp@subsup{x}{3}{}\partial\mp@subsup{x}{1}{}}\mp@subsup{A}{3}{}(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\mp@subsup{x}{3}{},\mp@subsup{x}{4}{}))
    +\varepsilon(\frac{\mp@subsup{\partial}{}{2}}{\partial\mp@subsup{x}{4}{}\partial\mp@subsup{x}{1}{}}\textrm{V}(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\mp@subsup{x}{3}{},\mp@subsup{x}{4}{}))\mu)/\mu=\mp@subsup{j}{1}{}(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\mp@subsup{x}{3}{},\mp@subsup{x}{4}{})
> E2 := simplify(Equations[2,1])=j[2](seq(x[i],i=1..4));
    E2 := ((\frac{\mp@subsup{\partial}{}{2}}{\partial\mp@subsup{x}{2}{}\partial\mp@subsup{x}{1}{}}\mp@subsup{A}{1}{}(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\mp@subsup{x}{3}{},\mp@subsup{x}{4}{}))+\varepsilon(\frac{\mp@subsup{\partial}{}{2}}{\partial\mp@subsup{x}{4}{2}}\mp@subsup{A}{2}{(}(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\mp@subsup{x}{3}{},\mp@subsup{x}{4}{}))\mu-(\frac{\mp@subsup{\partial}{}{2}}{\partial\mp@subsup{x}{1}{2}}\mp@subsup{A}{2}{(}(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\mp@subsup{x}{3}{},\mp@subsup{x}{4}{}))
    - (\frac{\mp@subsup{\partial}{}{2}}{\partial\mp@subsup{x}{3}{2}}\mp@subsup{A}{2}{}(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\mp@subsup{x}{3}{},\mp@subsup{x}{4}{}))+(\frac{\mp@subsup{\partial}{}{2}}{\partial\mp@subsup{x}{3}{}\partial\mp@subsup{x}{2}{}}\mp@subsup{A}{3}{}(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\mp@subsup{x}{3}{},\mp@subsup{x}{4}{}))
    +\varepsilon(\frac{\partial}{\partial}
> E3 := simplify(Equations[3,1])=j[3](seq(x[i],i=1..4));
```

$$
\begin{aligned}
& E 3:=-\left(-\left(\frac{\partial^{2}}{\partial x_{3} \partial x_{1}} A_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)-\left(\frac{\partial^{2}}{\partial x_{3} \partial x_{2}} A_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)\right. \\
&-\varepsilon\left(\frac{\partial^{2}}{\partial x_{4}{ }^{2}} A_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right) \mu+\left(\frac{\partial^{2}}{\partial x_{1}{ }^{2}} A_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)+\left(\frac{\partial^{2}}{\partial x_{2}{ }^{2}} A_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right) \\
&\left.-\varepsilon\left(\frac{\partial^{2}}{\partial x_{4} \partial x_{3}} \mathrm{~V}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right) \mu\right) / \mu=j_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
&>\quad\text { E4 }:=\operatorname{simplify}(\text { Equations [4,1])})=- \text { rho(seq(x[i] }, \mathrm{i}=1 . .4)) ; \\
& E 4:=\varepsilon\left(\left(\frac{\partial^{2}}{\partial x_{4} \partial x_{1}} A_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)+\left(\frac{\partial^{2}}{\partial x_{4} \partial x_{2}} A_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)+\left(\frac{\partial^{2}}{\partial x_{4} \partial x_{3}} A_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)\right. \\
&+\left.\left(\frac{\partial^{2}}{\partial x_{1}{ }^{2}} \mathrm{~V}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)+\left(\frac{\partial^{2}}{\partial x_{2}{ }^{2}} \mathrm{~V}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)+\left(\frac{\partial^{2}}{\partial x_{3}{ }^{2}} \mathrm{~V}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)\right)= \\
&-\rho\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{aligned}
$$

However, we saw that the quadri-potential $(A[1], A[2], A[3], V)$ is defined up to a gauge transformation. Therefore, we can assume that the quadri-potential $(A[1], A[2], A[3], V)$ satisfies the following equation:

```
> G := evalm([[seq(d[i],i=1..3),epsilon*mu*d[4]]]):
> ApplyMatrix(G, [seq(A[j](seq(x[i],i=1..4)),j=1..3),V(seq(x[i],i=1..4))],Alg)[1,1]=0;
\[
\begin{aligned}
& \left(\frac{\partial}{\partial x_{1}} A_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)+\left(\frac{\partial}{\partial x_{2}} A_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)+\left(\frac{\partial}{\partial x_{3}} A_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right) \\
& +\varepsilon \mu\left(\frac{\partial}{\partial x_{4}} \mathrm{~V}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)=0
\end{aligned}
\]
```

Multiplying the previous equation by the following column of differential operators

```
> T := evalm([seq([-1/mu*d[i]], i=1..3),[-epsilon*d[4]]]);
```

$$
T:=\left[\begin{array}{c}
-\frac{d_{1}}{\mu} \\
-\frac{d_{2}}{\mu} \\
-\frac{d_{3}}{\mu} \\
-\varepsilon d_{4}
\end{array}\right]
$$

we obtain the so-called gauge condition defined by Gauge $(A[1], A[2], A[3], V)^{T}=(0: 0: 0: 0)^{T}$, where Gauge is the following matrix:

```
> Gauge := Mult(T, G, Alg);
```

$$
\text { Gauge }:=\left[\begin{array}{cccc}
-\frac{d_{1}^{2}}{\mu} & -\frac{d_{2} d_{1}}{\mu} & -\frac{d_{3} d_{1}}{\mu} & -d_{4} \varepsilon d_{1} \\
-\frac{d_{2} d_{1}}{\mu} & -\frac{d_{2}^{2}}{\mu} & -\frac{d_{3} d_{2}}{\mu} & -d_{4} \varepsilon d_{2} \\
-\frac{d_{3} d_{1}}{\mu} & -\frac{d_{3} d_{2}}{\mu} & -\frac{d_{3}{ }^{2}}{\mu} & -d_{4} \varepsilon d_{3} \\
-d_{4} \varepsilon d_{1} & -d_{4} \varepsilon d_{2} & -d_{4} \varepsilon d_{3} & -\varepsilon^{2} d_{4}^{2} \mu
\end{array}\right]
$$

Then, from the systems wave $(A[1], A[2], A[3], V)^{T}=(j[1]: j[2]: j[3]:-\rho)^{T}$ and Gauge $(A[1], A[2]$, $A[3], V)^{T}=(0: 0: 0: 0)^{T}$, we finally obtain Wave $(A[1], A[2], A[3], V)^{T}=(j[1]: j[2]: j[3]:-\rho)^{T}$, where the matrix Wave is defined by:

```
> Wave := simplify(evalm(wave+Gauge));
```

$$
\begin{aligned}
& \text { Wave }:=\left[\begin{array}{cccc}
\% 1 & 0 & 0 & 0 \\
0 & \% 1 & 0 & 0 \\
0 & 0 & \% 1 & 0 \\
0 & 0 & 0 & d_{1}{ }^{2} \varepsilon+d_{2}{ }^{2} \varepsilon+d_{3}{ }^{2} \varepsilon-\varepsilon^{2} d_{4}{ }^{2} \mu
\end{array}\right] \\
& \% 1:=\frac{-d_{2}{ }^{2}-d_{1}^{2}+d_{4}{ }^{2} \varepsilon \mu-d_{3}{ }^{2}}{\mu}
\end{aligned}
$$

Using the fact that $v^{2}=1 /(\mu \varepsilon)$, where v is the speed of light, we see that the quadri-potential $(A[1], A[2]$, $A[3], V)$ satisfies the following equations:

```
> WaveEq:= ApplyMatrix(Wave, [seq(A[j](seq(x[i],i=1..4)),j=1..3),
> V(seq(x[i],i=1..4))], Alg):
> subs(epsilon=1/(mu*v^2), simplify(mu*WaveEq[1,1]))=mu*j[1](seq(x[i],i=1..4));
\[
\begin{gathered}
\frac{\frac{\partial^{2}}{\partial x_{4}{ }^{2}} \% 1}{v^{2}}-\left(\frac{\partial^{2}}{\partial x_{1}{ }^{2}} \% 1\right)-\left(\frac{\partial^{2}}{\partial x_{2}{ }^{2}} \% 1\right)-\left(\frac{\partial^{2}}{\partial x_{3}{ }^{2}} \% 1\right)=\mu j_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
\% 1:=A_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
>\operatorname{subs}(\text { epsilon=1/(mu*v} 2), \operatorname{simplify}(m u * \operatorname{WaveEq}[2,1]))=m u * j[2](\operatorname{seq}(\mathrm{x}[\mathrm{i}], \mathrm{i}=1 \ldots 4)) ;
\end{gathered}
\]
\[
\begin{aligned}
& \frac{\frac{\partial^{2}}{\partial x_{4}{ }^{2}} \% 1}{v^{2}}-\left(\frac{\partial^{2}}{\partial x_{1}{ }^{2}} \% 1\right)-\left(\frac{\partial^{2}}{\partial x_{2}{ }^{2}} \% 1\right)-\left(\frac{\partial^{2}}{\partial x_{3}{ }^{2}} \% 1\right)=\mu j_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
& \% 1:=A_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{aligned}
\]
```

```
> subs(epsilon=1/(mu*v^2), simplify(mu*WaveEq[3,1]))=mu*j[3](seq(x[i],i=1..4));
\[
\begin{aligned}
& \qquad \frac{\frac{\partial^{2}}{\partial x_{4}{ }^{2}} \% 1}{v^{2}}-\left(\frac{\partial^{2}}{\partial x_{1}{ }^{2}} \% 1\right)-\left(\frac{\partial^{2}}{\partial x_{2}{ }^{2}} \% 1\right)-\left(\frac{\partial^{2}}{\partial x_{3}{ }^{2}} \% 1\right)=\mu j_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
& \% 1:=A_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
& >\quad \text { subs(epsilon=1/(mu*v^2), simplify(-WaveEq[4,1]/epsilon)) } \\
& >\quad \text { =epsilon*rho(seq(x[i],i=1..4)); }
\end{aligned}
\]
```

$$
\begin{aligned}
& \frac{\frac{\partial^{2}}{\partial x_{4}{ }^{2}} \% 1}{v^{2}}-\left(\frac{\partial^{2}}{\partial x_{1}{ }^{2}} \% 1\right)-\left(\frac{\partial^{2}}{\partial x_{2}{ }^{2}} \% 1\right)-\left(\frac{\partial^{2}}{\partial x_{3}{ }^{2}} \% 1\right)=\varepsilon \rho\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
& \% 1:=\mathrm{V}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{aligned}
$$

Finally, if there is no densities of current and of electric charge, i.e., $j[i]=0, \mathrm{i}=1, \ldots, 3$, and $\rho=0$, then we conclude that the quadri-potential $(A[1], A[2], A[3], V)$ satisfies an electromagnetic wave with a speed of propagation equals to the speed of light in the vacuum, i.e., $v=c=1 /(\varepsilon 0 \mu 0)$, where $\mu 0$ and $\varepsilon 0$ are respectively the magnetic and the electric constants in the vacuum.

