This worksheet deals with the problem of parametrizing systems of partial differential equations. We treat a system of partial differential equations with non-constant coefficients that appears in the study of the Lie algebra SU(2). See C. M. Bender, G. V. Dunne, L. R. Mead, Underdetermined systems of partial differential equations, Journal of Mathematical Physics, vol. 41 no. 9 (2000), pp. 6388-6398.

```
> with(Ore_algebra):
> with(OreModules):
```

We define $A l g$ as the Weyl algebra, i.e., D_{i} acts as differential operator w.r.t. $x_{i}, i=1,2,3$.

```
> Alg := DefineOreAlgebra(diff=[D[1],x[1]], diff=[D[2],x[2]],
> diff=[D[3],x[3]], polynom=[x[1],x[2],x[3]]):
```

We enter the system matrix R :

```
> R := evalm([[x[3]*D[1]-x[1]*D[3], x[3]*D[2]-x[2]*D[3], -1],
> [-1, x[1]*D[2]-x[2]*D[1], x[1]*D[3]-x[3]*D[1]],
> [x[2]*D[1]-x[1]*D[2], -1, x[2]*D[3]-x[3]*D[2]]]);
\[
R:=\left[\begin{array}{ccc}
x_{3} \mathrm{D}_{1}-x_{1} \mathrm{D}_{3} & x_{3} \mathrm{D}_{2}-x_{2} \mathrm{D}_{3} & -1 \\
-1 & x_{1} \mathrm{D}_{2}-x_{2} \mathrm{D}_{1} & x_{1} \mathrm{D}_{3}-x_{3} \mathrm{D}_{1} \\
x_{2} \mathrm{D}_{1}-x_{1} \mathrm{D}_{2} & -1 & x_{2} \mathrm{D}_{3}-x_{3} \mathrm{D}_{2}
\end{array}\right]
\]
```

Next, we define the formal adjoint $R_{-} a d j$ of R :

```
> R_adj := Involution(R, Alg);
```

$$
\text { R_adj }:=\left[\begin{array}{ccc}
x_{1} \mathrm{D}_{3}-x_{3} \mathrm{D}_{1} & -1 & x_{1} \mathrm{D}_{2}-x_{2} \mathrm{D}_{1} \\
x_{2} \mathrm{D}_{3}-x_{3} \mathrm{D}_{2} & x_{2} \mathrm{D}_{1}-x_{1} \mathrm{D}_{2} & -1 \\
-1 & x_{3} \mathrm{D}_{1}-x_{1} \mathrm{D}_{3} & x_{3} \mathrm{D}_{2}-x_{2} \mathrm{D}_{3}
\end{array}\right]
$$

Applying Exti to $R_{-} a d j$, we check whether the system given by the matrix R is parametrizable or not:

$$
\begin{aligned}
& >\text { st := time(): Ext1 := Exti(R_adj, Alg, 1): time() - st; Ext1[1]; } \\
& >\text { Ext1[2]; } \\
& 0.409 \\
& {\left[\begin{array}{ccc}
x_{2} \mathrm{D}_{3}-x_{3} \mathrm{D}_{2} & 0 & 0 \\
x_{1} \mathrm{D}_{3}-x_{3} \mathrm{D}_{1} & 0 & 0 \\
x_{1} \mathrm{D}_{2}-x_{2} \mathrm{D}_{1} & 0 & 0 \\
0 & x_{2} \mathrm{D}_{3}-x_{3} \mathrm{D}_{2} & 0 \\
0 & x_{1} \mathrm{D}_{3}-x_{3} \mathrm{D}_{1} & 0 \\
0 & x_{1} \mathrm{D}_{2}-x_{2} \mathrm{D}_{1} & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
\mathrm{D}_{1} & \mathrm{D}_{2} & \mathrm{D}_{3} \\
-1 & x_{1} \mathrm{D}_{2}-x_{2} \mathrm{D}_{1} & x_{1} \mathrm{D}_{3}-x_{3} \mathrm{D}_{1}
\end{array}\right]}
\end{aligned}
$$

We see that the torsion submodule $\mathrm{t}(M)$ of the left $A l g$-module M which is associated with the system is non-trivial. More precisely, we find in Ext1[1] the operators that kill the corresponding torsion elements in Ext1[2]: Applying any of the operators in the i th column of Ext1 [1] to the i th row of Ext1 [2] gives a zero row modulo the equations of the system given by R, i.e., gives zero in the module M. We conclude that the system of partial differential equations given by R is not parametrizable.

By using TorsionElements, we can obtain the same generating set of the torsion submodule but written in terms of the dependent variables $F 1, G 1, H 1$ of the system. The first matrix gives the relations that the torsion elements θ_{i} satisfy, $i=1,2$, the second matrix defines θ_{i} in terms of $F 1, G 1, H 1$:

$$
\begin{aligned}
& >\text { TorsionElements }(\mathrm{R}, \\
& >\text { [F1 }(\mathrm{x}[1], \mathrm{x}[2], \mathrm{x}[3]), \mathrm{G} 1(\mathrm{x}[1], \mathrm{x}[2], \mathrm{x}[3]), \mathrm{H} 1(\mathrm{x}[1], \mathrm{x}[2], \mathrm{x}[3])], \mathrm{Alg}) ; \\
& \\
& {\left[\left[\begin{array}{l}
-x_{3}\left(\frac{\partial}{\partial x_{2}} \% 2\right)+x_{2}\left(\frac{\partial}{\partial x_{3}} \% 2\right)=0 \\
-x_{3}\left(\frac{\partial}{\partial x_{1}} \% 2\right)+x_{1}\left(\frac{\partial}{\partial x_{3}} \% 2\right)=0 \\
-x_{2}\left(\frac{\partial}{\partial x_{1}} \% 2\right)+x_{1}\left(\frac{\partial}{\partial x_{2}} \% 2\right)=0 \\
-x_{3}\left(\frac{\partial}{\partial x_{2}} \% 1\right)+x_{2}\left(\frac{\partial}{\partial x_{3}} \% 1\right)=0 \\
-x_{3}\left(\frac{\partial}{\partial x_{1}} \% 1\right)+x_{1}\left(\frac{\partial}{\partial x_{3}} \% 1\right)=0 \\
-x_{2}\left(\frac{\partial}{\partial x_{1}} \% 1\right)+x_{1}\left(\frac{\partial}{\partial x_{2}} \% 1\right)=0
\end{array}\right],\right.} \\
& \\
& {\left[\begin{array}{l}
\% 1=\left(\frac{\partial}{\partial x_{1}} \mathrm{~F}_{1} 1\left(x_{1}, x_{2}, x_{3}\right)\right)+\left(\frac{\partial}{\partial x_{2}} \mathrm{G} 1\left(x_{1}, x_{2}, x_{3}\right)\right)+\left(\frac{\partial}{\partial x_{3}} \mathrm{H} 1\left(x_{1}, x_{2}, x_{3}\right)\right)
\end{array}\right]} \\
& \% \\
& \% 1:=\theta_{2}\left(x_{1}, x_{2}, x_{3}\right) \\
& \% 2:=\theta_{1}\left(x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

Ext1 [3] provides a parametrization of the torsion-free part $M / t(M)$ of M :
$>$ Ext1[3];

$$
\left[\begin{array}{c}
x_{3} \mathrm{D}_{2}-x_{2} \mathrm{D}_{3} \\
x_{1} \mathrm{D}_{3}-x_{3} \mathrm{D}_{1} \\
x_{2} \mathrm{D}_{1}-x_{1} \mathrm{D}_{2}
\end{array}\right]
$$

Let us point out that we recover the same parametrization as in (Bender, Dunne, Mead, 2000) (up to a mistake made in (Bender, Dunne, Mead, 2000, p. 6394) concerning the existence of the torsion elements):
$>$ ApplyMatrix(Ext1[3], [H(x[1],x[2],x[3])], Alg);

$$
\begin{aligned}
& {\left[\begin{array}{c}
x_{3}\left(\frac{\partial}{\partial x_{2}} \% 1\right)-x_{2}\left(\frac{\partial}{\partial x_{3}} \% 1\right) \\
-x_{3}\left(\frac{\partial}{\partial x_{1}} \% 1\right)+x_{1}\left(\frac{\partial}{\partial x_{3}} \% 1\right) \\
x_{2}\left(\frac{\partial}{\partial x_{1}} \% 1\right)-x_{1}\left(\frac{\partial}{\partial x_{2}} \% 1\right)
\end{array}\right]} \\
& \% 1:=\mathrm{H}\left(x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

Let us continue with the structural analysis of the torsion-free part $M / t(M)$ of M. Of course, $M / t(M)$ has trivial torsion submodule:
$>$ Exti(Involution(Ext1[2], Alg), Alg, 1);

$$
\left[\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
\mathrm{D}_{1} & \mathrm{D}_{2} & \mathrm{D}_{3} \\
-1 & x_{1} \mathrm{D}_{2}-x_{2} \mathrm{D}_{1} & x_{1} \mathrm{D}_{3}-x_{3} \mathrm{D}_{1}
\end{array}\right],\left[\begin{array}{c}
x_{3} \mathrm{D}_{2}-x_{2} \mathrm{D}_{3} \\
x_{1} \mathrm{D}_{3}-x_{3} \mathrm{D}_{1} \\
x_{2} \mathrm{D}_{1}-x_{1} \mathrm{D}_{2}
\end{array}\right]\right]
$$

We check for reflexivity of the torsion-free part $M / t(M)$:

$$
\begin{aligned}
>\text { Exti(Involution(Ext1 } & {[2], \text { Alg), Alg, 2); } } \\
& {\left[\left[\begin{array}{c}
x_{2} \mathrm{D}_{3}-x_{3} \mathrm{D}_{2} \\
x_{1} \mathrm{D}_{3}-x_{3} \mathrm{D}_{1} \\
x_{1} \mathrm{D}_{2}-x_{2} \mathrm{D}_{1}
\end{array}\right],[1], \operatorname{SURJ}(1)\right] }
\end{aligned}
$$

We see that the torsion-free part is not a reflexive left $A l g$-module.
Let us finish by checking whether the system given by R is parametrizable or not if we turn the variables x_{1}, x_{2}, x_{3} into invertible elements of Alg. More precisely, we consider the system to be given over the Ore algebra B_{3}, which differs from the Weyl algebra A_{3} only in the fact that the domain of coefficients of $\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}$ is not the polynomial ring in x_{1}, x_{2}, x_{3}, but the field of rational functions in x_{1}, x_{2}, x_{3}. However, in OreModules, we use $A l g=A_{3}$ as above but, instead of Exti, we apply ExtiRat which takes into account that the coefficients are rational functions:

```
> ExtiRat(R_adj, Alg, 1);
```

$$
\left.\left.\begin{array}{l}
{\left[\left[\begin{array}{cc}
x_{3} \mathrm{D}_{2}-x_{2} \mathrm{D}_{3} & 0 \\
x_{3} \mathrm{D}_{1}-x_{1} \mathrm{D}_{3} & 0 \\
0 & x_{3} \mathrm{D}_{2}-x_{2} \mathrm{D}_{3} \\
0 & x_{3} \mathrm{D}_{1}-x_{1} \mathrm{D}_{3}
\end{array}\right],\left[\begin{array}{cc}
x_{1} & x_{2} \\
0 & -x_{2}-x_{1}^{2} \mathrm{D}_{2}+x_{2} x_{1} \mathrm{D}_{1}
\end{array}\right]-x_{3}-x_{1}^{2} \mathrm{D}_{3}+x_{1} x_{3} \mathrm{D}_{1}\right.}
\end{array}\right], ~\left[\begin{array}{c}
x_{3} \mathrm{D}_{2}-x_{2} \mathrm{D}_{3} \\
x_{1} \mathrm{D}_{3}-x_{3} \mathrm{D}_{1} \\
x_{2} \mathrm{D}_{1}-x_{1} \mathrm{D}_{2}
\end{array}\right]\right] \quad\left[\begin{array}{l}
\\
{\left[\begin{array}{c}
\\
0
\end{array}\right]}
\end{array}\right.
$$

Again, we conclude that the system is not parametrizable because non-trivial torsion elements exist. A generating set of torsion elements is given in Ext1[2] and it can also be obtained in this case by using TorsionElementsRat (i.e., the version of TorsionElements that copes with rational coefficients):

$$
\begin{aligned}
& >\text { TorsionElementsRat }(\text { R_adj, } \\
& >\quad[\mathrm{F} 1(\mathrm{x}[1], \mathrm{x}[2], \mathrm{x}[3]), \mathrm{G} 1(\mathrm{x}[1], \mathrm{x}[2], \mathrm{x}[3]), \mathrm{H} 1(\mathrm{x}[1], \mathrm{x}[2], \mathrm{x}[3])], \mathrm{Alg}) ; \\
& \\
& {\left[\left[\begin{array}{l}
x_{3}\left(\frac{\partial}{\partial x^{2}} \% 4\right)-x_{2}\left(\frac{\partial}{\partial x_{3}} \% 4\right)=0 \\
x_{3}\left(\frac{\partial}{\partial x_{1}} \% 4\right)-x_{1}\left(\frac{\partial}{\partial x_{3}} \% 4\right)=0 \\
x_{3}\left(\frac{\partial}{\partial x_{2}} \% 1\right)-x_{2}\left(\frac{\partial}{\partial x_{3}} \% 1\right)=0 \\
x_{3}\left(\frac{\partial}{\partial x_{1}} \% 1\right)-x_{1}\left(\frac{\partial}{\partial x_{3}} \% 1\right)=0
\end{array}\right],\right.} \\
& \\
& {\left[\begin{array}{l}
\left.\% 1=x_{1} \% 3+x_{3}^{2}\left(\frac{\partial}{\partial x_{1}} \% 3\right)-x_{3} x_{1}\left(\frac{\partial}{\partial x_{3}} \% 3\right)+x_{2} \% 2+x_{3}^{2}\left(\frac{\partial}{\partial x_{2}} \% 2\right)-x_{2} x_{3}\left(\frac{\partial}{\partial x_{3}} \% 2\right)\right] \\
\% 1:=\theta_{2}\left(x_{1}, x_{2}, x_{3}\right) \\
\% 2:=\mathrm{H} 1\left(x_{1}, x_{2}, x_{3}\right) \\
\% 3:=\mathrm{G} 1\left(x_{1}, x_{2}, x_{3}\right) \\
\% 4:=\theta_{1}\left(x_{1}, x_{2}, x_{3}\right)
\end{array}\right.} \\
& \\
& \\
& \%
\end{aligned}
$$

