
The procedures of OreModules can be used to treat underdetermined linear systems of PDEs with
variable coefficients. We present one example that appears in mathematical physics, namely the study of
Lie-Poisson structures. See C. M. Bender, G. V. Dunne, L. R. Mead, Underdetermined systems of partial
differential equations, Journal of Mathematical Physics, vol. 41, no. 9 (2000), pp. 6388-6398 and W. M.
Seiler, Involution analysis of the partial differential equations characterising Hamiltonian vector fields,
Journal of Mathematical Physics, vol. 44 (2003), pp. 1173-1182.

> with(Ore_algebra):

> with(OreModules):

For the computations that follow, we define the Weyl algebra Alg = A3: In this Ore algebra we have for
1 ≤ i, j ≤ 3, Di xj = xj Di + δi, j , where δi, j is the Kronecker symbol.

> Alg := DefineOreAlgebra(diff=[D[1],x[1]], diff=[D[2],x[2]],
> diff=[D[3],x[3]], polynom=[x[1],x[2],x[3]]):

The following example appears in (Bender, Dunne, Mead, 2000), where the E2 algebra is studied. We
want to parametrize the solutions of the linear system of partial differential equations which is defined
by the following matrix:

> R := evalm([[x[1]*D[3], x[2]*D[3], 0],
> [-x[1]*D[2]+x[2]*D[1], -1, x[2]*D[3]],
> [-1, -x[2]*D[1]+x[1]*D[2], x[1]*D[3]]]);

R :=

 x1 D3 x2 D3 0
−x1 D2 + x2 D1 −1 x2 D3

−1 −x2 D1 + x1 D2 x1 D3


In order to check parametrizability, we compute the formal adjoint of R first:

> R_adj := Involution(R, Alg);

R adj :=

 −x1 D3 −x2 D1 + x1 D2 −1
−x2 D3 −1 −x1 D2 + x2 D1

0 −x2 D3 −x1 D3


We compute the first extension module with values in Alg of the left Alg-module which is associated with
R adj :

> Ext1 := Exti(R_adj, Alg, 1);

Ext1 :=




D3 0 0

−x2 D1 + x1 D2 0 0
0 x2 D3 0
0 x1 D3 0
0 −x2 D1 + x1 D2 0
0 0 1

 ,

 x1 x2 0
D1 D2 D3

−1 −x2 D1 + x1 D2 x1 D3

 ,

 −x2 D3

x1 D3

−x1 D2 + x2 D1




Since Ext1 [1] is not an identity matrix, we see that the above system of linear PDEs is not parametrizable.
The rows of Ext1 [2] give a generating set of torsion elements of the left Alg-module M associated to this
system. The non-zero elements in the ith column of Ext1 [1] generate the annihilator of the ith row ri of
Ext1 [2] in M , i.e. the set of elements P of Alg that satisfy P ri = 0 in M . The generating set of torsion
elements of M can be displayed in a more familiar way by using TorsionElements:

> T := TorsionElements(R, [F(x[1],x[2],x[3]), G(x[1],x[2],x[3]),
> H(x[1],x[2],x[3])], Alg);
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T :=




∂

∂x3
%2 = 0

−x2 ( ∂
∂x1

%2) + x1 ( ∂
∂x2

%2) = 0
x2 ( ∂

∂x3
%1) = 0

x1 ( ∂
∂x3

%1) = 0
−x2 ( ∂

∂x1
%1) + x1 ( ∂

∂x2
%1) = 0

 ,

[
%2 = x1 F(x1, x2, x3) + x2 G(x1, x2, x3)

%1 = ( ∂
∂x1

F(x1, x2, x3)) + ( ∂
∂x2

G(x1, x2, x3)) + ( ∂
∂x3

H(x1, x2, x3))

]


%1 := θ2(x1, x2, x3)
%2 := θ1(x1, x2, x3)

We exhibit the same parametrization as in (Bender, Dunne, Mead, 2000) (up to the mistake in (Bender,
Dunne, Mead, 2000) concerning the existence of the torsion elements which is underlined in (Seiler,
2003)). In fact, Ext1 [3] is a parametrization of the torsion-free part M / t(M) of M :

> ApplyMatrix(Ext1[3], [H(x[1],x[2],x[3])], Alg); −x2 ( ∂
∂x3

%1)
x1 ( ∂

∂x3
%1)

x2 ( ∂
∂x1

%1)− x1 ( ∂
∂x2

%1)


%1 := H(x1, x2, x3)

Since M is not a torsion module, i.e. t(M) 6= M , but R is a square matrix, we notice that R does not
have full row rank. The relations that the rows of R satisfy are computed in a free resolution of M :

> Free := FreeResolution(R, Alg);

Free := table([1 =

 x1 D3 x2 D3 0
−x1 D2 + x2 D1 −1 x2 D3

−1 −x2 D1 + x1 D2 x1 D3

 ,

2 =
[
−x2 D1 + x1 D2 x1 D3 −x2 D3

]
,

3 = INJ(1)
])

We see that the left Alg-module L associated to Free[2] is torsion-free:

> ext := Exti(Involution(Free[2], Alg), Alg, 1);

ext :=

[
1

]
,
[
−x2 D1 + x1 D2 x1 D3 −x2 D3

]
,

 D3 x1 D3 0
−D2 −x1 D2 + x2 D1 x2

−D1 −1 x1


The system associated to Free[2] is parametrizable because L is torsion-free. Of course, R = Free[1] is a
parametrization of Free[2], but we have found another parametrization in ext [3]. We compute the rank
of L:
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> OreRank(Free[2], Alg);

2

We see that neither R nor ext [3] is a minimal parametrization of Free[2]. Let us compute some minimal
parametrizations of Free[2]:

> MinimalParametrizations(Free[2], Alg); D3 x1 D3

−D2 −x1 D2 + x2 D1

−D1 −1

 ,

 D3 0
−D2 x2

−D1 x1

 ,

 x1 D3 0
−x1 D2 + x2 D1 x2

−1 x1


Let us finish by checking whether the system given by R is parametrizable or not if we turn the variables
x1, x2, x3 into invertible elements of Alg . More precisely, we consider the system to be given over the
Ore algebra B3, which differs from the Weyl algebra A3 only in the fact that the domain of coefficients
of D1, D2, D2 is not the polynomial ring in x1, x2, x3 but the field of rational functions in x1, x2, x3.
However, using OreModules, we use Alg = A3 as above, but instead of Exti we apply ExtiRat , which
takes into account that the coefficients are rational functions:

> st := time(): Ext1 := ExtiRat(R_adj, Alg, 1); time() - st;

Ext1 :=




D3 0
−x1 D2 + x2 D1 0

0 D3

0 −x1 D2 + x2 D1

 ,

[
x1 x2 0
0 −x2 + x1 x2 D1 −D2 x1

2 −x1
2 D3

]
,

 x2 D3

−x1 D3

−x2 D1 + x1 D2




0.231

Again, we conclude that the system is not parametrizable because non-trivial torsion elements exist. A
generating set of torsion elements is given in Ext1 [2] and can also be obtained in this case by using
TorsionElementsRat :

> TorsionElementsRat(R, [F(x[1],x[2],x[3]), G(x[1],x[2],x[3]),
> H(x[1],x[2],x[3])], Alg);


∂

∂x3
%3 = 0

x2 ( ∂
∂x1

%3)− x1 ( ∂
∂x2

%3) = 0
∂

∂x3
%1 = 0

x2 ( ∂
∂x1

%1)− x1 ( ∂
∂x2

%1) = 0

 ,

[
%3 = x1 F(x1, x2, x3) + x2 %2

%1 = −x2 %2 + x1 x2 ( ∂
∂x1

%2)− x1
2 ( ∂

∂x2
%2)− x1

2 ( ∂
∂x3

H(x1, x2, x3))

]


%1 := θ2(x1, x2, x3)
%2 := G(x1, x2, x3)
%3 := θ1(x1, x2, x3)
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