The procedures of OreModules can be used to treat underdetermined linear systems of PDEs with variable coefficients. We present one example that appears in mathematical physics, namely the study of Lie-Poisson structures. See C. M. Bender, G. V. Dunne, L. R. Mead, Underdetermined systems of partial differential equations, Journal of Mathematical Physics, vol. 41, no. 9 (2000), pp. 6388-6398 and W. M. Seiler, Involution analysis of the partial differential equations characterising Hamiltonian vector fields, Journal of Mathematical Physics, vol. 44 (2003), pp. 1173-1182.

```
> with(Ore_algebra):
> with(OreModules):
```

For the computations that follow, we define the Weyl algebra $A l g=A_{3}$: In this Ore algebra we have for $1 \leq i, j \leq 3, \mathrm{D}_{i} x_{j}=x_{j} \mathrm{D}_{i}+\delta_{i, j}$, where $\delta_{i, j}$ is the Kronecker symbol.

```
> Alg := DefineOreAlgebra(diff=[D[1],x[1]], diff=[D[2],x[2]],
> diff=[D[3],x[3]], polynom=[x[1],x[2],x[3]]):
```

The following example appears in (Bender, Dunne, Mead, 2000), where the E_{2} algebra is studied. We want to parametrize the solutions of the linear system of partial differential equations which is defined by the following matrix:

$$
\begin{aligned}
& >\quad \mathrm{R}:=\mathrm{evalm}([[\mathrm{x}[1] * \mathrm{D}[3], \mathrm{x}[2] * \mathrm{D}[3], 0], \\
& >\quad[-\mathrm{x}[1] * \mathrm{D}[2]+\mathrm{x}[2] * \mathrm{D}[1],-1, \mathrm{x}[2] * \mathrm{D}[3]], \\
& >\quad[-1,-\mathrm{x}[2] * \mathrm{D}[1]+\mathrm{x}[1] * \mathrm{D}[2], \mathrm{x}[1] * \mathrm{D}[3]]]) ; \\
& \qquad R:=\left[\begin{array}{ccc}
x_{1} \mathrm{D}_{3} & x_{2} \mathrm{D}_{3} & 0 \\
-x_{1} \mathrm{D}_{2}+x_{2} \mathrm{D}_{1} & -1 & x_{2} \mathrm{D}_{3} \\
-1 & -x_{2} \mathrm{D}_{1}+x_{1} \mathrm{D}_{2} & x_{1} \mathrm{D}_{3}
\end{array}\right]
\end{aligned}
$$

In order to check parametrizability, we compute the formal adjoint of R first:

$$
\begin{aligned}
& >\text { R_adj }:=\text { Involution }(\mathrm{R}, \mathrm{Alg}) ; \\
& \qquad R_{-} a d j:=\left[\begin{array}{ccc}
-x_{1} \mathrm{D}_{3} & -x_{2} \mathrm{D}_{1}+x_{1} \mathrm{D}_{2} & -1 \\
-x_{2} \mathrm{D}_{3} & -1 & -x_{1} \mathrm{D}_{2}+x_{2} \mathrm{D}_{1} \\
0 & -x_{2} \mathrm{D}_{3} & -x_{1} \mathrm{D}_{3}
\end{array}\right]
\end{aligned}
$$

We compute the first extension module with values in $A l g$ of the left $A l g$-module which is associated with R_adj:
$\begin{aligned} & >\text { Ext1 }:=\text { Exti }\left(R_{-} \text {adj, Alg, 1); }\right. \\ E x t 1 & :\left[\left[\begin{array}{ccc}\mathrm{D}_{3} & 0 & 0 \\ -x_{2} \mathrm{D}_{1}+x_{1} \mathrm{D}_{2} & 0 & 0 \\ 0 & x_{2} \mathrm{D}_{3} & 0 \\ 0 & x_{1} \mathrm{D}_{3} & 0 \\ 0 & -x_{2} \mathrm{D}_{1}+x_{1} \mathrm{D}_{2} & 0 \\ 0 & 0 & 1\end{array}\right],\left[\begin{array}{ccc}x_{1} & x_{2} & 0 \\ \mathrm{D}_{1} & \mathrm{D}_{2} & \mathrm{D}_{3} \\ -1 & -x_{2} \mathrm{D}_{1}+x_{1} \mathrm{D}_{2} & x_{1} \mathrm{D}_{3}\end{array}\right],\left[\begin{array}{c} \\ -x_{2} \mathrm{D}_{3} \\ x_{1} \mathrm{D}_{3} \\ -x_{1} \mathrm{D}_{2}+x_{2} \mathrm{D}_{1}\end{array}\right]\right]\end{aligned}$
Since Ext1[1] is not an identity matrix, we see that the above system of linear PDEs is not parametrizable. The rows of Ext1 [2] give a generating set of torsion elements of the left Alg-module M associated to this system. The non-zero elements in the i th column of Ext1[1] generate the annihilator of the i th row r_{i} of Ext1[2] in M, i.e. the set of elements P of $A l g$ that satisfy $P r_{i}=0$ in M. The generating set of torsion elements of M can be displayed in a more familiar way by using TorsionElements:

```
> T := TorsionElements(R, [F(x[1],x[2],x[3]), G(x[1],x[2],x[3]),
>H(x[1],x[2],x[3])], Alg);
```

$$
\left.\begin{array}{l}
T:=\left[\left[\begin{array}{c}
\frac{\partial}{\partial x_{3}} \% 2=0 \\
-x_{2}\left(\frac{\partial}{\partial x_{1}} \% 2\right)+x_{1}\left(\frac{\partial}{\partial x_{2}} \% 2\right)=0 \\
x_{2}\left(\frac{\partial}{\partial x_{3}} \% 1\right)=0 \\
x_{1}\left(\frac{\partial}{\partial x_{3}} \% 1\right)=0 \\
-x_{2}\left(\frac{\partial}{\partial x_{1}} \% 1\right)+x_{1}\left(\frac{\partial}{\partial x_{2}} \% 1\right)=0
\end{array}\right],\right. \\
{\left[\begin{array}{c}
\% 2=x_{1} \mathrm{~F}\left(x_{1}, x_{2}, x_{3}\right)+x_{2} \mathrm{G}\left(x_{1}, x_{2}, x_{3}\right) \\
\% 1=\left(\frac{\partial}{\partial x_{1}} \mathrm{~F}\left(x_{1}, x_{2}, x_{3}\right)\right)+\left(\frac{\partial}{\partial x_{2}} \mathrm{G}\left(x_{1}, x_{2}, x_{3}\right)\right)+\left(\frac{\partial}{\partial x_{3}} \mathrm{H}\left(x_{1}, x_{2}, x_{3}\right)\right)
\end{array}\right]} \\
\% 1:=\theta_{2}\left(x_{1}, x_{2}, x_{3}\right) \\
\% 2:=\theta_{1}\left(x_{1}, x_{2}, x_{3}\right)
\end{array}\right]
$$

We exhibit the same parametrization as in (Bender, Dunne, Mead, 2000) (up to the mistake in (Bender, Dunne, Mead, 2000) concerning the existence of the torsion elements which is underlined in (Seiler, 2003)). In fact, Ext1 [3] is a parametrization of the torsion-free part $M / \mathrm{t}(M)$ of M :

$$
\begin{gathered}
>\text { ApplyMatrix(Ext1 }[3], \quad[\mathrm{H}(\mathrm{x}[1], \mathrm{x}[2], \mathrm{x}[3])], \mathrm{Alg}) ; \\
{\left[\begin{array}{c}
-x_{2}\left(\frac{\partial}{\partial x_{3}} \% 1\right) \\
x_{1}\left(\frac{\partial}{\partial x_{3}} \% 1\right) \\
x_{2}\left(\frac{\partial}{\partial x_{1}} \% 1\right)-x_{1}\left(\frac{\partial}{\partial x_{2}} \% 1\right)
\end{array}\right]} \\
\% 1:=\mathrm{H}\left(x_{1}, x_{2}, x_{3}\right)
\end{gathered}
$$

Since M is not a torsion module, i.e. $\mathrm{t}(M) \neq M$, but R is a square matrix, we notice that R does not have full row rank. The relations that the rows of R satisfy are computed in a free resolution of M :

```
> Free := FreeResolution(R, Alg);
```

$$
\begin{aligned}
& \text { Free }:=\operatorname{table}\left(\left[1=\left[\begin{array}{ccc}
x_{1} \mathrm{D}_{3} & x_{2} \mathrm{D}_{3} & 0 \\
-x_{1} \mathrm{D}_{2}+x_{2} \mathrm{D}_{1} & -1 & x_{2} \mathrm{D}_{3} \\
-1 & -x_{2} \mathrm{D}_{1}+x_{1} \mathrm{D}_{2} & x_{1} \mathrm{D}_{3}
\end{array}\right],\right.\right. \\
& 2=\left[\begin{array}{lll}
-x_{2} \mathrm{D}_{1}+x_{1} \mathrm{D}_{2} & x_{1} \mathrm{D}_{3} & -x_{2} \mathrm{D}_{3}
\end{array}\right], \\
& 3=\operatorname{INJ}(1) \\
&])
\end{aligned}
$$

We see that the left Alg-module L associated to Free[2] is torsion-free:
$>$ ext := Exti(Involution(Free[2], Alg), Alg, 1);

$$
\text { ext }:=\left[[1],\left[\begin{array}{lll}
-x_{2} \mathrm{D}_{1}+x_{1} \mathrm{D}_{2} & x_{1} \mathrm{D}_{3} & -x_{2} \mathrm{D}_{3}
\end{array}\right],\left[\begin{array}{ccc}
\mathrm{D}_{3} & x_{1} \mathrm{D}_{3} & 0 \\
-\mathrm{D}_{2} & -x_{1} \mathrm{D}_{2}+x_{2} \mathrm{D}_{1} & x_{2} \\
-\mathrm{D}_{1} & -1 & x_{1}
\end{array}\right]\right]
$$

The system associated to Free[2] is parametrizable because L is torsion-free. Of course, $R=$ Free[1] is a parametrization of Free[2], but we have found another parametrization in ext[3]. We compute the rank of L :

We see that neither R nor ext[3] is a minimal parametrization of Free[2]. Let us compute some minimal parametrizations of Free[2]:

```
> MinimalParametrizations(Free[2], Alg);
```

$$
\left[\left[\begin{array}{cc}
\mathrm{D}_{3} & x_{1} \mathrm{D}_{3} \\
-\mathrm{D}_{2} & -x_{1} \mathrm{D}_{2}+x_{2} \mathrm{D}_{1} \\
-\mathrm{D}_{1} & -1
\end{array}\right],\left[\begin{array}{cc}
\mathrm{D}_{3} & 0 \\
-\mathrm{D}_{2} & x_{2} \\
-\mathrm{D}_{1} & x_{1}
\end{array}\right],\left[\begin{array}{cc}
x_{1} \mathrm{D}_{3} & 0 \\
-x_{1} \mathrm{D}_{2}+x_{2} \mathrm{D}_{1} & x_{2} \\
-1 & x_{1}
\end{array}\right]\right]
$$

Let us finish by checking whether the system given by R is parametrizable or not if we turn the variables x_{1}, x_{2}, x_{3} into invertible elements of Alg. More precisely, we consider the system to be given over the Ore algebra B_{3}, which differs from the Weyl algebra A_{3} only in the fact that the domain of coefficients of $\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{2}$ is not the polynomial ring in x_{1}, x_{2}, x_{3} but the field of rational functions in x_{1}, x_{2}, x_{3}. However, using OreModules, we use Alg $=A_{3}$ as above, but instead of Exti we apply ExtiRat, which takes into account that the coefficients are rational functions:

$$
\begin{align*}
& >\text { st }:=\text { time }(): \text { Ext1 }:=\text { ExtiRat (R_adj, Alg, 1); time() }- \text { st; } \\
& \text { Ext1 }:=\left[\left[\begin{array}{cc}
\mathrm{D}_{3} & 0 \\
-x_{1} \mathrm{D}_{2}+x_{2} \mathrm{D}_{1} & 0 \\
0 & \mathrm{D}_{3} \\
0 & -x_{1} \mathrm{D}_{2}+x_{2} \mathrm{D}_{1}
\end{array}\right],\left[\begin{array}{cc}
x_{1} & x_{2} \\
0 & -x_{2}+x_{1} x_{2} \mathrm{D}_{1}-\mathrm{D}_{2} x_{1}^{2} \\
{\left[\left[\begin{array}{c}
\\
x_{2} \mathrm{D}_{3} \\
-x_{1} \mathrm{D}_{3} \\
-x_{2} \mathrm{D}_{1}+x_{1} \mathrm{D}_{2}
\end{array}\right]\right]} \\
{\left[\begin{array}{c}
\text { D }
\end{array}\right]}
\end{array}\right]\right.
\end{align*}
$$

Again, we conclude that the system is not parametrizable because non-trivial torsion elements exist. A generating set of torsion elements is given in Ext1[2] and can also be obtained in this case by using TorsionElementsRat:

$$
\begin{aligned}
& >\text { TorsionElementsRat }(R,[F(x[1], x[2], x[3]), G(x[1], x[2], x[3]) \text {, } \\
& >H(x[1], x[2], x[3])], A l g) \text {; } \\
& {\left[\begin{array}{c}
{\left[\begin{array}{c}
\frac{\partial}{\partial x_{3}} \% 3=0 \\
x_{2}\left(\frac{\partial}{\partial x_{1}} \% 3\right)-x_{1}\left(\frac{\partial}{\partial x_{2}} \% 3\right)=0 \\
\frac{\partial}{\partial x_{3}} \% 1=0 \\
x_{2}\left(\frac{\partial}{\partial x_{1}} \% 1\right)-x_{1}\left(\frac{\partial}{\partial x_{2}} \% 1\right)=0
\end{array}\right], ~, ~, ~, ~, ~}
\end{array}\right.} \\
& {\left[\begin{array}{c}
\% 3=x_{1} \mathrm{~F}\left(x_{1}, x_{2}, x_{3}\right)+x_{2} \% 2 \\
\% 1=-x_{2} \% 2+x_{1} x_{2}\left(\frac{\partial}{\partial x_{1}} \% 2\right)-x_{1}^{2}\left(\frac{\partial}{\partial x_{2}} \% 2\right)-x_{1}^{2}\left(\frac{\partial}{\partial x_{3}} \mathrm{H}\left(x_{1}, x_{2}, x_{3}\right)\right)
\end{array}\right]} \\
& \% 1:=\theta_{2}\left(x_{1}, x_{2}, x_{3}\right) \\
& \% 2:=\mathrm{G}\left(x_{1}, x_{2}, x_{3}\right) \\
& \% 3:=\theta_{1}\left(x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

