We consider the electrical circuit containing an LC transmission line described by (5) in page 161 of V. Rasvan, S.-I. Niculescu, Oscillations in lossless propagation models: a Liapunov-Krasovskii approach, IMA J. Mathematical Control and Information, 19 (2002), pp. 151-172.

Let us point out that system (5) is a non-linear differential time-delay system.
We are going to show how to obtain a π-flat output for the non-linear system by studying the linearized system by means of OreModules.

First, we define the Ore algebra of differential time-delay operators. In particular, we add all the constants of the system in "comm". Let us point out that we use the notation $\alpha=\sqrt{\frac{C}{L}}$.

```
> Alg := DefineOreAlgebra(diff=[D,t], dual_shift=[delta,s], polynom=[t,s],
> comm=[R1,R2,C1,C2,alpha], shift_action=[delta,t,sqrt(L*C)]):
```

The non-linear system is defined by:

```
> evalm([[R1*C1*D(v1)(t)+v1(t)+R1*alpha*v1(t)+R1*f1(v1(t))-2*R1*alpha
> *v2(t-(L*C)^(1/2))+E(t)],
> [(1+R2*alpha)*C2*D(v2)(t)+alpha*v2(t)-2*alpha*eta1(t-(L*C)~ (1/2))],
> [-v1(t)+eta1(t)+eta2(t-(L*C)^}(1/2))]
> [-1/(1+R2*alpha)*v2(t)+(1-R2*alpha)/(1+R2*alpha)*eta1 (t-(L*C) ~}(1/2))+eta2(t)]]
> = matrix([[0], [0], [0], [0]]);
```


Let us point out that the non-linearity of the system appears only in the term $R 1 \mathrm{f} 1(\mathrm{v} 1(t))$ of the first equation. We first consider the system without the non-linear term in the first equation. Therefore, the linear differential time-delay system is defined by:

```
> R :=evalm([[R1*C1*D+1+R1*alpha,-2*R1*alpha*delta,0,0,1],
> [0, (1+R2*alpha)*C2*D+alpha, -2*alpha*delta, 0, 0], [-1,0,1,delta,0],
> [0,-1/(1+R2*alpha),(1-R2*alpha)/(1+R2*alpha)*delta,1,0]]);
\[
R:=\left[\begin{array}{ccccc}
R 1 C 1 \mathrm{D}+1+R 1 \alpha & -2 R 1 \alpha \delta & 0 & 0 & 1 \\
0 & (1+R 2 \alpha) C 2 \mathrm{D}+\alpha & -2 \alpha \delta & 0 & 0 \\
-1 & 0 & 1 & \delta & 0 \\
0 & -\frac{1}{1+R 2 \alpha} & \frac{(1-R 2 \alpha) \delta}{1+R 2 \alpha} & 1 & 0
\end{array}\right]
\]
```

Then, we define R_{-}adj by using an involution of the Ore algebra Alg.

$$
\begin{aligned}
& >\text { R_adj }:=\text { Involution (R, Alg); } \\
& R_{-} \text {adj }:=\left[\begin{array}{cccc}
-R 1 C 1 \mathrm{D}+1+R 1 \alpha & 0 & -1 & 0 \\
2 R 1 \alpha \delta & \text {-C2 D }- \text { C2 D R2 } \alpha+\alpha & 0 & -\frac{1}{1+R 2 \alpha} \\
0 & 2 \alpha \delta & 1 & -\frac{\delta}{1+R 2 \alpha}+\frac{\delta R 2 \alpha}{1+R 2 \alpha} \\
0 & 0 & -\delta & 1 \\
1 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Let us check whether or not the linear system is controllable, parametrizable and flat.

```
> st := time(): Ext1 := Exti(R_adj, Alg, 1); time()-st;
```

$$
\begin{aligned}
& \text { Ext1 }:=\left[\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\right. \\
& {\left[\begin{array}{ccccc}
-1 & 0 & 1 & \delta & 0 \\
R 1 C 1 \mathrm{D}+1+R 1 \alpha & -2 R 1 \alpha \delta & 0 & 0 & 1 \\
0 & 1 & -\delta+\delta R 2 \alpha & -1-R 2 \alpha & 0 \\
0 & -C 2 \mathrm{D}+\text { C2 D R2 } \alpha+\alpha & 0 & -2 \alpha & 0
\end{array}\right],} \\
& {\left[-\delta^{2} \alpha-C 2 \mathrm{D}-\text { C2 } \mathrm{D} \text { R2 } \alpha+\mathrm{D} \text { C2 } \delta^{2}-\text { R2 } \alpha \mathrm{D} C 2 \delta^{2}-\alpha\right]} \\
& {[-2 \alpha \delta]} \\
& \text { [-C2 D - C2 D R2 } \alpha-\alpha] \\
& {[-\alpha \delta+\mathrm{D} C 2 \delta-R 2 \alpha \mathrm{D} C 2 \delta]} \\
& {\left[D^{2} \text { C2 R2 } \alpha \text { R1 C1 - C2 D } \delta^{2} \text { R1 } \alpha+\text { C2 D R2 } \alpha+D^{2} \text { C2 R1 C1 }+\alpha-3 \alpha^{2} \delta^{2}\right. \text { R1 }} \\
& +\alpha^{2} \text { R1 + C2 } \mathrm{D}+\alpha \text { R1 C1 } \mathrm{D}+\mathrm{D} \text { C2 R2 } \alpha^{2} \text { R1 + D C2 R1 } \alpha-\mathrm{D} \text { C2 } \delta^{2}+\delta^{2} \alpha \\
& \text { - C2 } \mathrm{D}^{2} \delta^{2} \text { R1 C1 + R2 } \alpha \mathrm{D} \text { C2 } \delta^{2}+\text { C2 D R2 } \alpha^{2} \delta^{2} R 1+\text { C2 } \mathrm{D}^{2} R 2 \alpha \delta^{2} \text { R1 C1 } \\
& \left.\left.+\alpha \delta^{2} R 1 C 1 \mathrm{D}\right]\right]
\end{aligned}
$$

1.041

As the first matrix Ext1[1] of Ext1 is the identity matrix, we obtain that the Alg-module associated with R is torsion-free. Therefore, the linear system is controllable, and thus, parametrizable. A parametrization of the system is then given by the matrix Ext1 [3] or, equivalently, by:

```
\(>P\) := Parametrization(R, Alg):
\(>\quad \mathrm{v} 1(\mathrm{t})=\mathrm{P}[1,1]\);
        \(\mathrm{v} 1(t)=-\alpha \xi_{1}(t-2 \sqrt{L C})-C 2 \mathrm{D}\left(\xi_{1}\right)(t)-C 2 R 2 \alpha \mathrm{D}\left(\xi_{1}\right)(t)+C 2 \mathrm{D}\left(\xi_{1}\right)(t-2 \sqrt{L C})\)
        \(-C 2 R 2 \alpha \mathrm{D}\left(\xi_{1}\right)(t-2 \sqrt{L C})-\alpha \xi_{1}(t)\)
\(>\mathrm{v} 2(\mathrm{t})=\mathrm{P}[2,1]\);
                    \(\mathrm{v} 2(t)=-2 \alpha \xi_{1}(t-\sqrt{L C})\)
\(>\) eta1 \((\mathrm{t})=\mathrm{P}[3,1]\);
            \(\eta 1(t)=-C 2 \mathrm{D}\left(\xi_{1}\right)(t)-C 2 R 2 \alpha \mathrm{D}\left(\xi_{1}\right)(t)-\alpha \xi_{1}(t)\)
\(>\operatorname{eta2}(\mathrm{t})=\mathrm{P}[4,1]\);
    \(\eta 2(t)=-\alpha \xi_{1}(t-\sqrt{L C})+C 2 \mathrm{D}\left(\xi_{1}\right)(t-\sqrt{L C})-C 2 R 2 \alpha \mathrm{D}\left(\xi_{1}\right)(t-\sqrt{L C})\)
\(>E(t)=P[5,1]\);
```

```
\[
\begin{aligned}
& \mathrm{E}(t)=C 2 R 2 \alpha R 1 C 1\left(\mathrm{D}^{(2)}\right)\left(\xi_{1}\right)(t)-C 2 R 1 \alpha \% 1+C 2 R 2 \alpha \mathrm{D}\left(\xi_{1}\right)(t) \\
& +C 2 R 1 C 1\left(\mathrm{D}^{(2)}\right)\left(\xi_{1}\right)(t)+\alpha \xi_{1}(t)-3 \alpha^{2} R 1 \xi_{1}(t-2 \sqrt{L C})+\alpha^{2} R 1 \xi_{1}(t) \\
& +C 2 \mathrm{D}\left(\xi_{1}\right)(t)+\alpha R 1 C 1 \mathrm{D}\left(\xi_{1}\right)(t)+C 2 R 2 \alpha^{2} R 1 \mathrm{D}\left(\xi_{1}\right)(t)+C 2 R 1 \alpha \mathrm{D}\left(\xi_{1}\right)(t) \\
& -C 2 \% 1+\alpha \xi_{1}(t-2 \sqrt{L C})-C 2 R 1 C 1\left(\mathrm{D}^{(2)}\right)\left(\xi_{1}\right)(t-2 \sqrt{L C})+C 2 R 2 \alpha \% 1 \\
& +C 2 R 2 \alpha^{2} R 1 \% 1+C 2 R 2 \alpha R 1 C 1\left(D^{(2)}\right)\left(\xi_{1}\right)(t-2 \sqrt{L C})+\alpha R 1 C 1 \% 1 \\
& \% 1:=\mathrm{D}\left(\xi_{1}\right)(t-2 \sqrt{L C})
\end{aligned}
\]
```

Therefore, we have parametrized the system variables $v 1, v 2, \eta 1, \eta 2$ and E by means of an arbitrary function ξ_{1}. Let us check whether or not ξ_{1} can be expressed by means of the system variables $v 1, v 2, \eta 1, \eta 2$ and E. In order to do that, we need to determine whether or not the $A l g$-module associated with R is
projective. This fact is equivalent to the vanishing of the second extension module ext 2 with values in $A l g$ of the $A l g$-module associated with $R_{-} a d j$.

```
> Ext2 := Exti(R_adj, Alg, 2);
Ext2 := [[c
```

As the first matrix Ext2 [1] is not the identity matrix, we deduce that the Alg-module associated with R is not projective, and thus, not free. In particular, we conclude that the linear system is not flat. Let us compute the obstruction of flatness.

```
> PiPolynomial(R, Alg, [delta]);
```


[$\delta]$

Hence, the linear system is δ-flat, meaning that if we use the time-advance operator δ^{-1}, then the system becomes flat. In particular, using the time-advance operator δ^{-1}, we obtain the flat output $\xi=S(v 1: v 2: \eta 1: \eta 2: E)^{T}$ of the system, where S is the following matrix:

$$
\begin{aligned}
& >\mathrm{S}:=\text { LocalLeftInverse(Ext1[3], [delta], Alg); } \\
& \qquad S:=\left[\begin{array}{lllll}
0 & -\frac{1}{2 \delta \alpha} & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

More precisely, we have:

$$
\begin{gathered}
>\operatorname{xi}(\mathrm{t})=\operatorname{ApplyMatrix}(\mathrm{S},[\mathrm{v} 1(\mathrm{t}), \mathrm{v} 2(\mathrm{t}), \mathrm{eta} 1(\mathrm{t}), \mathrm{eta} 2(\mathrm{t}), \mathrm{E}(\mathrm{t})], \mathrm{Alg})[1,1] ; \\
\xi(\mathrm{t})=-\frac{1}{2} \frac{\mathrm{v} 2(t+\sqrt{L C})}{\alpha}
\end{gathered}
$$

Therefore, we obtain that $v 2$ is the δ-flat output of the linear system. Let us express the system variables $v 1, v 2, \eta 1, \eta 2$ and E in terms of the δ-flat output v2. In order to do that, we substitute the expression of $\xi(t)$ in terms of $\mathrm{v} 2(t)$ into the parametrization of $v 1, v 2, \eta 1, \eta 2$ and E obtained above. Finally, we obtain:

$$
\begin{aligned}
& >\text { F := simplify(Mult(Ext1[3], S, Alg)); } \\
& F:= \\
& {\left[0, \frac{\text { C2 D }+ \text { C2 D R2 } \alpha+\alpha-\text { D C2 } \delta^{2}+\text { R2 } \alpha \text { D C2 } \delta^{2}+\delta^{2} \alpha}{2 \alpha \delta}, 0,0,0\right]} \\
& {[0,1,0,0,0]} \\
& {\left[0, \frac{C 2 \mathrm{D}+C 2 \mathrm{D} R 2 \alpha+\alpha}{2 \alpha \delta}, 0,0,0\right]} \\
& {\left[0, \frac{-C 2 \mathrm{D}+\text { C2 D R2 } \alpha+\alpha}{2 \alpha}, 0,0,0\right]} \\
& {\left[0,-\left(\mathrm{D}^{2} C 2 R 2 \alpha \text { R1 C1 - C2 D } \delta^{2} R 1 \alpha+\text { C2 D R2 } \alpha+\mathrm{D}^{2} C 2 R 1 C 1+\alpha\right.\right.} \\
& -3 \alpha^{2} \delta^{2} R 1+\alpha^{2} R 1+C 2 \mathrm{D}+\alpha R 1 C 1 \mathrm{D}+\mathrm{D} C 2 R 2 \alpha^{2} R 1+\mathrm{D} C 2 R 1 \alpha \\
& \text { - D C2 } \delta^{2}+\delta^{2} \alpha-C 2 \mathrm{D}^{2} \delta^{2} R 1 C 1+R 2 \alpha \mathrm{D} C 2 \delta^{2}+C 2 \mathrm{D} R 2 \alpha^{2} \delta^{2} R 1 \\
& \left.\left.+C 2 \mathrm{D}^{2} R 2 \alpha \delta^{2} R 1 C 1+\alpha \delta^{2} R 1 C 1 \mathrm{D}\right) /(2 \alpha \delta), 0,0,0\right]
\end{aligned}
$$

In terms of the system variables, we have the following parametrization of $v 1, v 2, \eta 1, \eta 2$ and E by means of $v 2$:

$$
\begin{aligned}
& \mathrm{v} 1(t)=\frac{1}{2} \frac{C 2 \mathrm{D}(v 2)(t+\sqrt{L C})}{\alpha}+\frac{1}{2} \text { C2 R2 } \mathrm{D}(v 2)(t+\sqrt{L C})+\frac{1}{2} \mathrm{v} 2(t+\sqrt{L C}) \\
& -\frac{1}{2} \frac{C 2 \mathrm{D}(v 2)(t-\sqrt{L C})}{\alpha}+\frac{1}{2} \text { C2 R2 } \mathrm{D}(v 2)(t-\sqrt{L C})+\frac{1}{2} \mathrm{v} 2(t-\sqrt{L C}) \\
& >\mathrm{v} 2(\mathrm{t})=\text { ApplyMatrix }(\mathrm{F},[\mathrm{v} 1(\mathrm{t}), \mathrm{v} 2(\mathrm{t}), \mathrm{eta1}(\mathrm{t}), \mathrm{eta} 2(\mathrm{t}), \mathrm{E}(\mathrm{t})], \mathrm{Alg})[2,1] \text {; } \\
& \mathrm{v} 2(t)=\mathrm{v} 2(t) \\
& >\operatorname{eta1}(\mathrm{t})=\operatorname{ApplyMatrix}(\mathrm{F},[\mathrm{v} 1(\mathrm{t}), \mathrm{v} 2(\mathrm{t}), \mathrm{eta1}(\mathrm{t}), \mathrm{eta} 2(\mathrm{t}), \mathrm{E}(\mathrm{t})], \mathrm{Alg})[3,1] ; \\
& \eta 1(t)=\frac{1}{2} \mathrm{v} 2(t+\sqrt{L C})+\frac{1}{2} \frac{(C 2+C 2 R 2 \alpha) \mathrm{D}(v 2)(t+\sqrt{L C})}{\alpha} \\
& >\operatorname{eta2}(\mathrm{t})=\text { ApplyMatrix }(\mathrm{F},[\mathrm{v} 1(\mathrm{t}), \mathrm{v} 2(\mathrm{t}), \mathrm{eta1}(\mathrm{t}), \mathrm{eta} 2(\mathrm{t}), \mathrm{E}(\mathrm{t})], \mathrm{Alg})[4,1] \text {; } \\
& \eta 2(t)=\frac{1}{2} \mathrm{v} 2(t)+\frac{1}{2} \frac{(-C 2+C 2 R 2 \alpha) \mathrm{D}(v 2)(t)}{\alpha} \\
& >E(t)=\operatorname{ApplyMatrix}(F,[v 1(t), v 2(t), \text { eta1 }(t), e t a 2(t), E(t)], A l g)[5,1] \text {; } \\
& \mathrm{E}(t)=-\frac{1}{2} C 2 R 2 R 1 C 1\left(\mathrm{D}^{(2)}\right)(v 2)(t+\sqrt{L C})+\frac{1}{2} C 2 R 1 \% 1-\frac{1}{2} C 2 R 2 \% 2 \\
& -\frac{1}{2} \frac{C 2 R 1 C 1\left(\mathrm{D}^{(2)}\right)(v 2)(t+\sqrt{L C})}{\alpha}-\frac{1}{2} \mathrm{v} 2(t+\sqrt{L C})+\frac{3}{2} \alpha R 1 \mathrm{v} 2(t-\sqrt{L C}) \\
& -\frac{1}{2} \alpha R 1 \mathrm{v} 2(t+\sqrt{L C})-\frac{1}{2} \frac{C 2 \% 2}{\alpha}-\frac{1}{2} R 1 C 1 \% 2-\frac{1}{2} C 2 R 2 \alpha R 1 \% 2 \\
& -\frac{1}{2} C 2 R 1 \% 2+\frac{1}{2} \frac{C 2 \% 1}{\alpha}-\frac{1}{2} \mathrm{v} 2(t-\sqrt{L C})+\frac{1}{2} \frac{C 2 R 1 C 1\left(\mathrm{D}^{(2)}\right)(v 2)(t-\sqrt{L C})}{\alpha} \\
& -\frac{1}{2} C 2 R 2 \% 1-\frac{1}{2} C 2 R 2 \alpha R 1 \% 1-\frac{1}{2} C 2 R 2 R 1 C 1\left(\mathrm{D}^{(2)}\right)(v 2)(t-\sqrt{L C}) \\
& -\frac{1}{2} R 1 C 1 \% 1 \\
& \% 1:=\mathrm{D}(v 2)(t-\sqrt{L C}) \\
& \% 2:=\mathrm{D}(v 2)(t+\sqrt{L C})
\end{aligned}
$$

Now, let us return to the non-linear system defined above. The previous computations of the parametrization show that the non-linear system is triangular:

1. From the second equation of the non-linear system, we can express $\eta 1$ in terms of $v 2$ by using a derivation and an advance operator δ^{-1}.
2. From the fourth equation, we can express $\eta 2$ in terms of $v 2$ and $\eta 1$, and thus, in terms of $v 2$ only by substituting the previous expression of $\eta 1$ in terms of $v 2$.
3. From the third equation, we can express $v 1$ in terms of $\eta 1$ and $\eta 2$, and thus, in terms of $v 2$ only by using the expressions already obtained.
4. From the first equation, we obtain E in terms of $v 1$ and $v 2$, and thus, in terms of $v 2$ only.

Therefore, the non-linearity $R 1 \mathrm{f} 1(\mathrm{v} 1(t))$ will only appear in step 4 when we express E in terms of $v 1$. Hence, the parametrization of $\eta 1, \eta 2$ and $v 1$ in terms of $v 2$ is the same as in the linear model. More precisely, by sustituting $\alpha=\sqrt{\frac{C}{L}}$, we have:

```
> v1(t)=subs(alpha=sqrt(C/L), ApplyMatrix(F,[v1(t),v2(t),eta1(t),eta2(t),E(t)],
> Alg)[1,1]);
```

$$
\begin{gathered}
\text { v1 }(t)=\frac{1}{2} \frac{C 2 \mathrm{D}(v 2)(t+\sqrt{L C})}{\sqrt{\frac{C}{L}}}+\frac{1}{2} C 2 R 2 \mathrm{D}(v 2)(t+\sqrt{L C})+\frac{1}{2} \mathrm{v} 2(t+\sqrt{L C}) \\
-\frac{1}{2} \frac{C 2 \mathrm{D}(v 2)(t-\sqrt{L C})}{\sqrt{\frac{C}{L}}}+\frac{1}{2} C 2 R 2 \mathrm{D}(v 2)(t-\sqrt{L C})+\frac{1}{2} \mathrm{v} 2(t-\sqrt{L C}) \\
>\quad \mathrm{v} 2(\mathrm{t})=\operatorname{ApplyMatrix}(\mathrm{F},[\mathrm{v} 1(\mathrm{t}), \mathrm{v} 2(\mathrm{t}), \operatorname{eta1}(\mathrm{t}), \operatorname{eta} 2(\mathrm{t}), \mathrm{E}(\mathrm{t})], \mathrm{Alg})[2,1] ; \\
\quad \mathrm{v} 2(t)=\mathrm{v} 2(t) \\
>\quad \operatorname{eta1}(\mathrm{t})=\operatorname{subs}(\mathrm{alpha}=\operatorname{sqrt}(\mathrm{C} / \mathrm{L}), \operatorname{ApplyMatrix}(\mathrm{F},[\mathrm{v} 1(\mathrm{t}), \mathrm{v} 2(\mathrm{t}), \mathrm{eta} 1(\mathrm{t}), \mathrm{eta2}(\mathrm{t}), \mathrm{E}(\mathrm{t})], \\
>\quad \mathrm{Alg})[3,1]) ;
\end{gathered}
$$

$$
\eta 1(t)=\frac{1}{2} \mathrm{v} 2(t+\sqrt{L C})+\frac{1}{2} \frac{\left(C 2+C 2 R 2 \sqrt{\frac{C}{L}}\right) \mathrm{D}(v 2)(t+\sqrt{L C})}{\sqrt{\frac{C}{L}}}
$$

```
> eta2(t)=subs(alpha=sqrt(C/L), ApplyMatrix(F,[v1(t),v2(t),eta1(t),eta2(t),E(t)],
> Alg) [4,1]);
```

$$
\eta 2(t)=\frac{1}{2} \mathrm{v} 2(t)+\frac{1}{2} \frac{\left(-C 2+C 2 R 2 \sqrt{\frac{C}{L}}\right) \mathrm{D}(v 2)(t)}{\sqrt{\frac{C}{L}}}
$$

Finally, after having expressed E in terms of $v 1$, we can substitute the expression of $v 1$ in terms of $v 2$ in order to obtain the following parametrization of E :

$$
\begin{aligned}
& >E(t)=\text { subs (alpha=sqrt (C/L), ApplyMatrix (F[5,2], [v2(t)], Alg) [1] } \\
& >\text { +R1*f1(ApplyMatrix(F[1,2], [v2(t)], Alg)[1])); } \\
& \mathrm{E}(t)=-\frac{1}{2} \text { C2 R2 R1 C1 }\left(\mathrm{D}^{(2)}\right)(v 2)(t+\sqrt{L C})+\frac{1}{2} C 2 \text { R1 } \% 1-\frac{1}{2} C 2 \text { R2 } \% 2 \\
& -\frac{1}{2} \frac{C 2 R 1 C 1\left(\mathrm{D}^{(2)}\right)(v 2)(t+\sqrt{L C})}{\sqrt{\frac{C}{L}}}-\frac{1}{2} \mathrm{v} 2(t+\sqrt{L C})+\frac{3}{2} \sqrt{\frac{C}{L}} R 1 \mathrm{v} 2(t-\sqrt{L C}) \\
& -\frac{1}{2} \sqrt{\frac{C}{L}} R 1 \mathrm{v} 2(t+\sqrt{L C})-\frac{1}{2} \frac{C 2 \% 2}{\sqrt{\frac{C}{L}}}-\frac{1}{2} R 1 C 1 \% 2-\frac{1}{2} C 2 R 2 \sqrt{\frac{C}{L}} R 1 \% 2 \\
& -\frac{1}{2} C 2 R 1 \% 2+\frac{1}{2} \frac{C 2 \% 1}{\sqrt{\frac{C}{L}}}-\frac{1}{2} \mathrm{v} 2(t-\sqrt{L C})+\frac{1}{2} \frac{C 2 R 1 C 1\left(\mathrm{D}^{(2)}\right)(v 2)(t-\sqrt{L C})}{\sqrt{\frac{C}{L}}} \\
& -\frac{1}{2} C \text { 2 R2 } \% 1-\frac{1}{2} \text { C2 R2 } \sqrt{\frac{C}{L}} \text { R1 \%1- } \frac{1}{2} \text { C2 R2 R1 C1 }\left(\mathrm{D}^{(2)}\right)(v 2)(t-\sqrt{L C}) \\
& -\frac{1}{2} R 1 C 1 \% 1+R 1 \mathrm{f} 1\left(\frac{1}{2} \frac{C 2 \% 2}{\sqrt{\frac{C}{L}}}+\frac{1}{2} \text { C2 R2 } \% 2+\frac{1}{2} \mathrm{v} 2(t+\sqrt{L C})-\frac{1}{2} \frac{C 2 \% 1}{\sqrt{\frac{C}{L}}}\right. \\
& \left.+\frac{1}{2} C 2 R 2 \% 1+\frac{1}{2} \mathrm{v} 2(t-\sqrt{L C})\right) \\
& \% 1:=\mathrm{D}(v 2)(t-\sqrt{L C}) \\
& \% 2:=\mathrm{D}(v 2)(t+\sqrt{L C})
\end{aligned}
$$

