The purpose of this Maple worksheet is to show how to use OreModules in order to check some well-known identities of differential operators appearing in mathematical physics.

For instance, see pages 163-164 of A Mathematical Introduction to Fluid Mechanics, A. J. Chorin, J. E. Marsden, 3rd edition, Texts in Applied Mathematics 4, Springer, 1993.

In order to do that, we first define the Weyl algebra A_{3} of differential operators with polynomial coefficients.

```
> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], diff=[D3,x3],
> polynom=[x1,x2,x3]):
```

Let us define the gradient, the curl and the divergence operators in \mathbb{R}^{3}.

```
> grad := evalm([[D1], [D2], [D3]]);
```

```
    \(\operatorname{grad}:=\left[\begin{array}{l}\mathrm{D} 1 \\ \mathrm{D} 2 \\ \mathrm{D} 3\end{array}\right]\)
```

 \(\operatorname{grad}:=\left[\begin{array}{l}\mathrm{D} 1 \\ \mathrm{D} 2 \\ \mathrm{D} 3\end{array}\right]\)
 $>$ curl := evalm([[0, -D3, D2], [D3, 0, -D1], [-D2, D1, 0]]);
$>$ curl := evalm([[0, -D3, D2], [D3, 0, -D1], [-D2, D1, 0]]);
curl $:=\left[\begin{array}{ccc}0 & -\mathrm{D} 3 & \mathrm{D} 2 \\ \mathrm{D} 3 & 0 & -\mathrm{D} 1 \\ -\mathrm{D} 2 & \mathrm{D} 1 & 0\end{array}\right]$
curl $:=\left[\begin{array}{ccc}0 & -\mathrm{D} 3 & \mathrm{D} 2 \\ \mathrm{D} 3 & 0 & -\mathrm{D} 1 \\ -\mathrm{D} 2 & \mathrm{D} 1 & 0\end{array}\right]$
$>$ div := evalm([[D1, D2, D3]]);
$>$ div := evalm([[D1, D2, D3]]);
$d i v:=\left[\begin{array}{lll}\text { D1 } & \text { D2 } & \text { D3 }\end{array}\right]$

```
    \(d i v:=\left[\begin{array}{lll}\text { D1 } & \text { D2 } & \text { D3 }\end{array}\right]\)
```

In order to deal simultaneously with these three differential operators, we put them into a list.

```
> DiffOps := [grad, curl, div];
    DiffOps := [grad, curl, div]
```

We compute the rank of these differential operators by using OreRank:

```
> map(OreRank, DiffOps, Alg);
```

$$
[0,1,2]
$$

This means that the smooth solutions of these differential operators in \mathbb{R}^{3} depend respectively on 0,1 and 2 arbitrary functions in x_{1}, x_{2}, x_{3}.

Now, we can check whether or not these differential operators are parametrizable, i.e., whether or not we can parametrize all their smooth functions in an open convex subset of \mathbb{R}^{3} by means of arbitrary functions in x_{1}, x_{2}, x_{3}. As it is explained in the literature, we first need to compute the formal adjoints of these differential operators.

$$
\begin{aligned}
&>\operatorname{Adj}:=\operatorname{map}(\text { Involution, DiffOps, Alg); } \\
& \text { Adj }:=\left[\left[\begin{array}{lll}
-\mathrm{D} 1 & -\mathrm{D} 2 & -\mathrm{D} 3
\end{array}\right],\left[\begin{array}{ccc}
0 & -\mathrm{D} 3 & \mathrm{D} 2 \\
\mathrm{D} 3 & 0 & -\mathrm{D} 1 \\
-\mathrm{D} 2 & \mathrm{D} 1 & 0
\end{array}\right],\left[\begin{array}{l}
-\mathrm{D} 1 \\
-\mathrm{D} 2 \\
-\mathrm{D} 3
\end{array}\right]\right.
\end{aligned}
$$

Then, we need to compute the first extension module with values in $A l g$ of their formal adjoints:

```
> Ext1 := map(Exti, Adj, Alg, 1);
```

$$
\begin{aligned}
& \text { Ext1 }:=\left[\left[\left[\begin{array}{l}
\mathrm{D} 3 \\
\mathrm{D} 2 \\
\mathrm{D} 1
\end{array}\right],[1], \operatorname{SURJ}(1)\right],\left[\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccc}
-\mathrm{D} 3 & 0 & \mathrm{D} 1 \\
-\mathrm{D} 2 & \mathrm{D} 1 & 0 \\
0 & -\mathrm{D} 3 & \mathrm{D} 2
\end{array}\right],\left[\begin{array}{l}
-\mathrm{D} 1 \\
-\mathrm{D} 2 \\
-\mathrm{D} 3
\end{array}\right]\right],\right. \\
& {\left.\left[[1],\left[\begin{array}{lll}
\mathrm{D} 1 & \mathrm{D} 2 & \mathrm{D} 3
\end{array}\right],\left[\begin{array}{ccc}
\mathrm{D} 3 & \mathrm{D} 2 & 0 \\
0 & -\mathrm{D} 1 & \mathrm{D} 3 \\
-\mathrm{D} 1 & 0 & -\mathrm{D} 2
\end{array}\right]\right]\right] } \\
> & \operatorname{Ext} 1[1][1] ;
\end{aligned}
$$

As the first matrix Ext1[1][1] of Ext1[1] is not the identity matrix, we obtain that the gradient is not parametrizable. Equivalently, we know that the gradient operator defines a torsion A_{3}-module. The torsion elements of the system grad $\theta_{1}=0$ can be directly computed by using TorsionElements:

$$
\begin{aligned}
& >\text { TorsionElements (DiffOps [1], }[\mathrm{xi}(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3)], \mathrm{Alg}) \text {; } \\
& \qquad\left[\left[\begin{array}{c}
\frac{\partial}{\partial x^{3}} \theta_{1}(x 1, x 2, x 3)=0 \\
\frac{x^{2}}{\partial x^{2}} \theta_{1}(x 1, x 2, x 3)=0 \\
\frac{\partial}{\partial x 1} \theta_{1}(x 1, x 2, x 3)=0
\end{array}\right],\left[\theta_{1}(x 1, x 2, x 3)=\xi(x 1, x 2, x 3)\right]\right]
\end{aligned}
$$

Therefore, we obtain that θ_{1} is killed by the differential operators D1, D2 and D3, which is clear from the definition of the gradient operator. Therefore, the solutions of the gradient operator are locally constant.

As the first matrix Ext1[2][1] (resp., Ext1[3][1]) is the identity matrix, we see that the curl and the divergence operators are parametrizable and they define torsion-free A_{3}-modules. This last point can be easily checked by computing the torsion elements of their corresponding modules.

```
> TorsionElements(DiffOps[2], [seq(eta[i](x1,x2,x3), i=1..3)], Alg);
> TorsionElements(DiffOps[3], [seq(eta[i](x1,x2,x3), i=1..3)], Alg);
    ]
    ]
```

Using the fact that the curl and the divergence operators define two torsion-free A_{3}-modules, we obtain that Ext1 [2][3] (resp., Ext1[3][3]) is a parametrization of the curl (resp., divergence) operator. This result can be checked directly by using Parametrization:
$>$ map(Parametrization, [curl, div], Alg);

$$
\left[\left[\begin{array}{l}
-\left(\frac{\partial}{\partial x^{1}} \xi_{1}(x 1, x 2, x 3)\right) \\
-\left(\frac{\partial}{\partial x^{2}} \xi_{1}(x 1, x \mathcal{2}, x 3)\right) \\
-\left(\frac{\partial}{\partial x^{3}} \xi_{1}(x 1, x 2, x 3)\right)
\end{array}\right],\left[\begin{array}{c}
\left(\frac{\partial}{\partial x_{3}} \xi_{1}(x 1, x \mathcal{2}, x 3)\right)+\left(\frac{\partial}{\partial x^{2}} \xi_{2}(x 1, x \mathcal{}, x 3)\right) \\
-\left(\frac{\partial}{\partial x^{1}} \xi_{2}(x 1, x \mathcal{2}, x 3)\right)+\left(\frac{\partial}{\partial x^{3}} \xi_{3}(x 1, x \mathcal{2}, x 3)\right) \\
-\left(\frac{\partial}{\partial x_{1}} \xi_{1}(x 1, x \mathcal{2}, x 3)\right)-\left(\frac{\partial}{\partial x^{2}} \xi_{3}(x 1, x 2, x 3)\right)
\end{array}\right]\right]
$$

Up to a sign, we obtain that the curl (resp., divergence) operator is parametrized by the gradient (resp., curl) operator. We check that the divergence operator is parametrized by means of 3 arbitrary functions ξ_{1}, ξ_{2} and ξ_{3} whereas it is defined by 1 equation in 3 unknowns. Therefore, we can wonder if there exist some minimal parametrizations of the divergence operator, i.e., parametrizations depending only on 2 arbitrary functions. We know that it is possible as the divergence defines a torsion-free module (see J.F. Pommaret, A. Quadrat, Localization and parametrization of linear multidimensional systems, Systems \& Control Letters, 37 (1999), pp. 247-260). Minimal parametrizations of the divergence operator can be obtained using MimimalParametrizations.

```
> Ps := MinimalParametrizations(div, Alg);
```

$$
P s:=\left[\left[\begin{array}{cc}
\mathrm{D} 3 & \mathrm{D} 2 \\
0 & -\mathrm{D} 1 \\
-\mathrm{D} 1 & 0
\end{array}\right],\left[\begin{array}{cc}
\mathrm{D} 3 & 0 \\
0 & \mathrm{D} 3 \\
-\mathrm{D} 1 & -\mathrm{D} 2
\end{array}\right],\left[\begin{array}{cc}
\mathrm{D} 2 & 0 \\
-\mathrm{D} 1 & \mathrm{D} 3 \\
0 & -\mathrm{D} 2
\end{array}\right]\right]
$$

Therefore, we obtain

$$
\begin{aligned}
& \operatorname{div} z=0 \Longleftrightarrow \\
& \operatorname{div} z=0 \Longleftrightarrow \\
& \operatorname{div} z=0 \Longleftrightarrow \\
& \operatorname{div}[1]\left(\xi_{1}, \xi_{2}\right)^{T}, \\
&, z=\operatorname{Ps}[3]\left(\xi_{1}, \xi_{2}\right)^{T},\left(\xi_{1}, \xi_{2}\right)^{T},
\end{aligned}
$$

where z and $\left(\xi_{1}, \xi_{2}\right)^{T}$ are two smooth vectors in an open convex subset of \mathbb{R}^{3}.
Finally, let us define the Laplacian Δ.

$$
\begin{aligned}
&>\text { Delta }:=\text { Mult(div, grad, } \mathrm{Alg}) \\
& \qquad \Delta:=\left[\mathrm{D} 1^{2}+\mathrm{D} 2^{2}+\mathrm{D} 3^{2}\right]
\end{aligned}
$$

Now, let us check the classical identity curl curl $=$ grad div $-\Delta I_{3}$. We first compute the composition curl curl:

```
> curlcurl := Mult(curl, curl, Alg);
```

$$
\text { curlcurl }:=\left[\begin{array}{ccc}
-\mathrm{D} 3^{2}-\mathrm{D} 2^{2} & \text { D2 D1 } & \text { D3 D1 } \\
\text { D2 D1 } & -\mathrm{D} 3^{2}-\mathrm{D} 1^{2} & \text { D3 D2 } \\
\text { D3 D1 } & \text { D3 D2 } & -\mathrm{D} 2^{2}-\mathrm{D} 1^{2}
\end{array}\right]
$$

Then, we compute the composition grad div:

$$
\begin{aligned}
& >\text { graddiv }:=\text { Mult(grad, div, Alg) } ; \\
& \qquad \text { graddiv }:=\left[\begin{array}{ccc}
\text { D1 } 2^{2} & \text { D2 D1 } & \text { D3 D1 } \\
\text { D2 D1 } & \text { D2 } 2^{2} & \text { D3 D2 } \\
\text { D3 D1 } & \text { D3 D2 } & \text { D3 }^{2}
\end{array}\right]
\end{aligned}
$$

Finally, let us define ΔI_{3} :

```
> nablaI3 := linalg[diag](Delta$3);
```

$$
\text { nablaI3 }:=\left[\begin{array}{ccc}
\mathrm{D} 1^{2}+\mathrm{D} 2^{2}+\mathrm{D} 3^{2} & 0 & 0 \\
0 & \mathrm{D} 1^{2}+\mathrm{D} 2^{2}+\mathrm{D} 3^{2} & 0 \\
0 & 0 & \mathrm{D} 1^{2}+\mathrm{D} 2^{2}+\mathrm{D} 3^{2}
\end{array}\right]
$$

Then, curl curl - grad div $+\Delta I_{3}$ gives

```
    > evalm(curlcurl-graddiv+nablaI3);
```

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

which proves the identity.
Let us prove the identity $\Delta(f g)=\mathrm{f} \Delta g+g \Delta f+2(\operatorname{grad} f) .(\operatorname{grad} g)$, where f and g are two functions of x_{1}, x_{2} and x_{3} and "." denotes the standard inner product in \mathbb{R}^{3}.

We first define grad f and grad g.

```
> gradf := ApplyMatrix(grad, [f(x1,x2,x3)], Alg);
```

$$
\operatorname{gradf}:=\left[\begin{array}{c}
\frac{\partial}{\partial x^{1}} \mathrm{f}(x 1, x 2, x 3) \\
\frac{\partial}{\partial x^{2}} \mathrm{f}(x 1, x 2, x 3) \\
\frac{2}{\partial x 3} \mathrm{f}(x 1, x 2, x 3)
\end{array}\right]
$$

$>$ gradg := ApplyMatrix (grad, $[\mathrm{g}(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3)]$, Alg);

$$
\operatorname{gradg}:=\left[\begin{array}{c}
\frac{\partial}{\partial x^{1}} \mathrm{~g}(x 1, x 2, x 3) \\
\frac{\partial}{\partial x^{2}} \mathrm{~g}(x 1, x 2, x 3) \\
\frac{\partial}{\partial x 3} \mathrm{~g}(x 1, x 2, x 3)
\end{array}\right]
$$

Then, let us compute $(\operatorname{grad} f) \cdot(\operatorname{grad} g)$:
$>$ gradfgradg := linalg[innerprod] (
$>$ convert(ApplyMatrix(grad, [f(x1,x2,x3)], Alg), vector),
$>$ convert(ApplyMatrix(grad, $[\mathrm{g}(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3)], \mathrm{Alg})$, vector));

$$
\begin{aligned}
& \text { gradfgradg }:=\left(\frac{\partial}{\partial x 1} \mathrm{f}(x 1, x 2, x 3)\right)\left(\frac{\partial}{\partial x 1} \mathrm{~g}(x 1, x 2, x 3)\right) \\
& +\left(\frac{\partial}{\partial x 2} \mathrm{f}(x 1, x 2, x 3)\right)\left(\frac{\partial}{\partial x^{2}} \mathrm{~g}(x 1, x 2, x 3)\right)+\left(\frac{\partial}{\partial x 3} \mathrm{f}(x 1, x 2, x 3)\right)\left(\frac{\partial}{\partial x_{3}} \mathrm{~g}(x 1, x 2, x 3)\right)
\end{aligned}
$$

We compute $\Delta(f g)$:

```
> Deltafg := ApplyMatrix(Delta, [f(x1,x2,x3)*g(x1,x2,x3)], Alg);
```

$$
\begin{aligned}
& \text { Deltafg }:= \\
& {\left[\left(\frac{\partial^{2}}{\partial x 1^{2}} \mathrm{f}(x 1, x 2, x 3)\right) \mathrm{g}(x 1, x 2, x 3)+2\left(\frac{\partial}{\partial x 1} \mathrm{f}(x 1, x 2, x 3)\right)\left(\frac{\partial}{\partial x 1} \mathrm{~g}(x 1, x 2, x 3)\right)\right.} \\
& +\mathrm{f}(x 1, x 2, x 3)\left(\frac{\partial^{2}}{\partial x 1^{2}} \mathrm{~g}(x 1, x 2, x 3)\right)+\left(\frac{\partial^{2}}{\partial x 2^{2}} \mathrm{f}(x 1, x 2, x 3)\right) \mathrm{g}(x 1, x 2, x 3) \\
& +2\left(\frac{\partial}{\partial x 2} \mathrm{f}(x 1, x 2, x 3)\right)\left(\frac{\partial}{\partial x 2} \mathrm{~g}(x 1, x 2, x 3)\right)+\mathrm{f}(x 1, x 2, x 3)\left(\frac{\partial^{2}}{\partial x 2^{2}} \mathrm{~g}(x 1, x 2, x 3)\right) \\
& +\left(\frac{\partial^{2}}{\partial x 3^{2}} \mathrm{f}(x 1, x 2, x 3)\right) \mathrm{g}(x 1, x 2, x 3)+2\left(\frac{\partial}{\partial x 3} \mathrm{f}(x 1, x 2, x 3)\right)\left(\frac{\partial}{\partial x 3} \mathrm{~g}(x 1, x 2, x 3)\right) \\
& \left.+\mathrm{f}(x 1, x 2, x 3)\left(\frac{\partial^{2}}{\partial x 3^{2}} \mathrm{~g}(x 1, x 2, x 3)\right)\right]
\end{aligned}
$$

Finally, we compute $f \Delta g$ and $g \Delta f$:

$$
\begin{aligned}
& >\mathrm{fDeltag}:=\mathrm{f}(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3) * \operatorname{ApplyMatrix}(\operatorname{Delta}, \quad[\mathrm{~g}(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3)], \text { Alg }) ; \\
& \text { fDeltag }:=\mathrm{f}(x 1, x 2, x 3)\left[\left(\frac{\partial^{2}}{\partial x 1^{2}} \mathrm{~g}(x 1, x 2, x 3)\right)+\left(\frac{\partial^{2}}{\partial x 2^{2}} \mathrm{~g}(x 1, x 2, x 3)\right)+\left(\frac{\partial^{2}}{\partial x 3^{2}} \mathrm{~g}(x 1, x 2, x 3)\right)\right] \\
& >\quad \mathrm{gDeltaf}:=\mathrm{g}(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3) * \operatorname{ApplyMatrix}(\operatorname{Delta}, \quad[\mathrm{f}(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3)], \text { Alg }) ; \\
& g \text { Deltaf }:=\mathrm{g}(x 1, x 2, x 3)\left[\left(\frac{\partial^{2}}{\partial x 1^{2}} \mathrm{f}(x 1, x 2, x 3)\right)+\left(\frac{\partial^{2}}{\partial x 2^{2}} \mathrm{f}(x 1, x 2, x 3)\right)+\left(\frac{\partial^{2}}{\partial x 3^{2}} \mathrm{f}(x 1, x 2, x 3)\right)\right]
\end{aligned}
$$

Then, the identity directly follows from:

```
> simplify(evalm(Deltafg-fDeltag-gDeltaf-2*gradfgradg));
```

 [0]
 Let f be a function of $x=(x 1, x 2, x 3)$ and $F(x)=\left(F_{1}(x), F_{2}(x), F_{3}(x)\right)^{T}$ a vector of functions. Then, let us prove the identity $\operatorname{curl}(f F)=f \operatorname{curlF}+\operatorname{grad} f \wedge F$.

Let us first define the vector F and $\operatorname{grad} f$:

```
> vecF := evalm([seq([F[i](x1,x2,x3)], i=1..3)]);
```

$$
\begin{aligned}
& \operatorname{vec} F:=\left[\begin{array}{l}
F_{1}(x 1, x 2, x 3) \\
F_{2}(x 1, x 2, x 3) \\
F_{3}(x 1, x 2, x 3)
\end{array}\right] \\
&>\text { gradf }:=\text { ApplyMatrix }(\operatorname{grad}, \text { evalm }([\mathrm{f}(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3)]]), \mathrm{Alg}) ; \\
& \operatorname{gradf}::\left[\begin{array}{c}
\frac{\partial}{\partial x 1} \mathrm{f}(x 1, x 2, x 3) \\
\frac{\partial}{\partial x_{2}} \mathrm{f}(x 1, x 2, x 3) \\
\frac{\partial}{\partial x 3} \mathrm{f}(x 1, x 2, x 3)
\end{array}\right]
\end{aligned}
$$

Then, we compute $\operatorname{curl}(f F)$ and $f \operatorname{curl} F$:

Finally, let us compute $\operatorname{grad} \wedge F$:
$>$ DeltafxF := convert(linalg[crossprod](convert(gradf, vector),
$>$ convert(vecF, vector)), matrix);

$$
\text { Deltafx } F:=\left[\begin{array}{c}
\left(\frac{\partial}{\partial x^{2}} \mathrm{f}(x 1, x 2, x 3)\right) F_{3}(x 1, x 2, x 3)-\left(\frac{\partial}{\partial x^{3}} \mathrm{f}(x 1, x 2, x 3)\right) F_{2}(x 1, x 2, x 3) \\
\left(\frac{\partial}{\partial x^{2}} \mathrm{f}(x 1, x 2, x 3)\right) F_{1}(x 1, x 2, x 3)-\left(\frac{\partial}{\partial x^{1}} \mathrm{f}(x 1, x 2, x 3)\right) F_{3}(x 1, x 2, x 3) \\
\left(\frac{3}{\partial x 1} \mathrm{f}(x 1, x 2, x 3)\right) F_{2}(x 1, x 2, x 3)-\left(\frac{\partial}{\partial x 2} \mathrm{f}(x 1, x 2, x 3)\right) F_{1}(x 1, x 2, x 3)
\end{array}\right]
$$

Then, we easily check the previous identity by computing:

```
> map(simplify, evalm(curlfF-fcurlF-DeltafxF));
```

$$
\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Finally, let $x=(x 1, x 2, x 3)$ and $F(x)=\left(F_{1}(x), F_{2}(x), F_{3}(x)\right)^{T}$ and $G(x)=\left(G_{1}(x), G_{2}(x), G_{3}(x)\right)^{T}$ be two vectors of \mathbb{R}^{3}. Let us prove the identity $\operatorname{curl}(F \times G)=F \operatorname{div} G-G \operatorname{div} F+(G . \operatorname{grad}) F-(F . \operatorname{grad})$ G, where "." denotes the standard inner product in \mathbb{R}^{3}.

```
> Alg2 := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], diff=[D3,x3],
> func=[F[1],F[2],F[3],G[1],G[2],G[3]]):
```

Let us first define the two vectors F and G.
$>\operatorname{vecF}:=\operatorname{evalm}([\operatorname{seq}([F[i](x 1, x 2, x 3)], i=1 . .3)])$;

$$
v e c F:=\left[\begin{array}{l}
F_{1}(x 1, x 2, x 3) \\
F_{2}(x 1, x 2, x 3) \\
F_{3}(x 1, x 2, x 3)
\end{array}\right]
$$

$>\operatorname{vecG}:=\operatorname{evalm}([\operatorname{seq}([G[i](x 1, x 2, x 3)], i=1 . .3)]) ;$

$$
v e c G:=\left[\begin{array}{l}
G_{1}(x 1, x 2, x 3) \\
G_{2}(x 1, x 2, x 3) \\
G_{3}(x 1, x 2, x 3)
\end{array}\right]
$$

Then, let us compute the wedge product $F \wedge G$ and $\operatorname{curl}(F \wedge G)$:

```
> vecFxvecG := convert(linalg[crossprod](convert(vecF, vector),
```

$>$ convert(vecG, vector)), matrix);

$$
\text { vecFxvec } G:=\left[\begin{array}{l}
F_{2}(x 1, x 2, x 3) G_{3}(x 1, x 2, x 3)-F_{3}(x 1, x 2, x 3) G_{2}(x 1, x 2, x 3) \\
F_{3}(x 1, x 2, x 3) G_{1}(x 1, x 2, x 3)-F_{1}(x 1, x 2, x 3) G_{3}(x 1, x 2, x 3) \\
F_{1}(x 1, x 2, x 3) G_{2}(x 1, x 2, x 3)-F_{2}(x 1, x 2, x 3) G_{1}(x 1, x 2, x 3)
\end{array}\right]
$$

> curlFxG := ApplyMatrix(curl, vecFxvecG, Alg2);

$$
\begin{aligned}
& \text { curlFxG:= } \\
& {\left[-\left(\frac{\partial}{\partial x 3} F_{3}(x 1, x 2, x 3)\right) G_{1}(x 1, x 2, x 3)-F_{3}(x 1, x 2, x 3)\left(\frac{\partial}{\partial x 3} G_{1}(x 1, x 2, x 3)\right)\right.} \\
& +\left(\frac{\partial}{\partial x 3} F_{1}(x 1, x 2, x 3)\right) G_{3}(x 1, x 2, x 3)+F_{1}(x 1, x 2, x 3)\left(\frac{\partial}{\partial x 3} G_{3}(x 1, x 2, x 3)\right) \\
& +\left(\frac{\partial}{\partial x 2} F_{1}(x 1, x 2, x 3)\right) G_{2}(x 1, x 2, x 3)+F_{1}(x 1, x 2, x 3)\left(\frac{\partial}{\partial x 2} G_{2}(x 1, x 2, x 3)\right) \\
& \left.-\left(\frac{\partial}{\partial x 2} F_{2}(x 1, x 2, x 3)\right) G_{1}(x 1, x 2, x 3)-F_{2}(x 1, x 2, x 3)\left(\frac{\partial}{\partial x 2} G_{1}(x 1, x 2, x 3)\right)\right] \\
& {\left[\left(\frac{\partial}{\partial x 3} F_{2}(x 1, x 2, x 3)\right) G_{3}(x 1, x 2, x 3)+F_{2}(x 1, x 2, x 3)\left(\frac{\partial}{\partial x 3} G_{3}(x 1, x 2, x 3)\right)\right.} \\
& -\left(\frac{\partial}{\partial x^{3}} F_{3}(x 1, x 2, x 3)\right) G_{2}(x 1, x 2, x 3)-F_{3}(x 1, x 2, x 3)\left(\frac{\partial}{\partial x^{3}} G_{2}(x 1, x 2, x 3)\right) \\
& -\left(\frac{\partial}{\partial x 1} F_{1}(x 1, x 2, x 3)\right) G_{2}(x 1, x 2, x 3)-F_{1}(x 1, x 2, x 3)\left(\frac{\partial}{\partial x 1} G_{2}(x 1, x 2, x 3)\right) \\
& \left.+\left(\frac{\partial}{\partial x 1} F_{2}(x 1, x 2, x 3)\right) G_{1}(x 1, x 2, x 3)+F_{2}(x 1, x 2, x 3)\left(\frac{\partial}{\partial x 1} G_{1}(x 1, x 2, x 3)\right)\right] \\
& {\left[-\left(\frac{\partial}{\partial x^{2}} F_{2}(x 1, x 2, x 3)\right) G_{3}(x 1, x 2, x 3)-F_{2}(x 1, x 2, x 3)\left(\frac{\partial}{\partial x 2} G_{3}(x 1, x 2, x 3)\right)\right.} \\
& +\left(\frac{\partial}{\partial x 2} F_{3}(x 1, x 2, x 3)\right) G_{2}(x 1, x 2, x 3)+F_{3}(x 1, x 2, x 3)\left(\frac{\partial}{\partial x 2} G_{2}(x 1, x 2, x 3)\right) \\
& +\left(\frac{\partial}{\partial x 1} F_{3}(x 1, x 2, x 3)\right) G_{1}(x 1, x 2, x 3)+F_{3}(x 1, x 2, x 3)\left(\frac{\partial}{\partial x 1} G_{1}(x 1, x 2, x 3)\right) \\
& \left.-\left(\frac{\partial}{\partial x 1} F_{1}(x 1, x 2, x 3)\right) G_{3}(x 1, x 2, x 3)-F_{1}(x 1, x 2, x 3)\left(\frac{\partial}{\partial x 1} G_{3}(x 1, x 2, x 3)\right)\right]
\end{aligned}
$$

Let us compute $F \operatorname{div} G$ and $G \operatorname{div} F$:

```
> FdivG := evalm(vecF*ApplyMatrix(div, vecG, Alg2)[1,1]);
```

$$
\begin{gathered}
F \operatorname{div} G:=\left[\begin{array}{l}
\% 1 F_{1}(x 1, x 2, x 3) \\
\% 1 F_{2}(x 1, x 2, x 3) \\
\% 1 F_{3}(x 1, x 2, x 3)
\end{array}\right] \\
\quad \% 1:=\left(\frac{\partial}{\partial x 1} G_{1}(x 1, x 2, x 3)\right)+\left(\frac{\partial}{\partial x 2} G_{2}(x 1, x 2, x 3)\right)+\left(\frac{\partial}{\partial x 3} G_{3}(x 1, x 2, x 3)\right) \\
>\operatorname{GdivF}:=\text { evalm(vecG*ApplyMatrix(div, vecF, Alg2) }[1,1]) ;
\end{gathered}
$$

$$
\begin{aligned}
& G \operatorname{div} F:=\left[\begin{array}{l}
\% 1 G_{1}(x 1, x 2, x 3) \\
\% 1 G_{2}(x 1, x 2, x 3) \\
\% 1 G_{3}(x 1, x 2, x 3)
\end{array}\right] \\
& \% 1:=\left(\frac{\partial}{\partial x 1} F_{1}(x 1, x 2, x 3)\right)+\left(\frac{\partial}{\partial x 2} F_{2}(x 1, x 2, x 3)\right)+\left(\frac{\partial}{\partial x 3} F_{3}(x 1, x 2, x 3)\right)
\end{aligned}
$$

Finally, let us compute (G. grad) F and (F. grad) G :

```
> DiagG := linalg[diag](linalg[innerprod](convert(vecG, vector),
> convert(div, vector))$3);
\[
\operatorname{Diag} G:=\left[\begin{array}{ccc}
\% 1 & 0 & 0 \\
0 & \% 1 & 0 \\
0 & 0 & \% 1
\end{array}\right]
\]
\[
\% 1:=G_{1}(x 1, x 2, x 3) \mathrm{D} 1+G_{2}(x 1, x 2, x 3) \mathrm{D} 2+G_{3}(x 1, x 2, x 3) \mathrm{D} 3
\]
> DiagF := linalg[diag](linalg[innerprod](convert(vecF, vector),
> convert(div, vector))$3);
```

$$
\begin{gathered}
\text { DiagF }:=\left[\begin{array}{ccc}
\% 1 & 0 & 0 \\
0 & \% 1 & 0 \\
0 & 0 & \% 1
\end{array}\right] \\
\% 1:=F_{1}(x 1, x 2, x 3) \mathrm{D} 1+F_{2}(x 1, x 2, x 3) \mathrm{D} 2+F_{3}(x 1, x 2, x 3) \mathrm{D} 3 \\
>\text { GNablaF }:=\text { ApplyMatrix(DiagG, vecF, Alg2); }
\end{gathered}
$$

GNablaF :=

$$
\left[G_{1}(x 1, x 2, x 3)\left(\frac{\partial}{\partial x 1} F_{1}(x 1, x 2, x 3)\right)+\left(\frac{\partial}{\partial x^{2}} F_{1}(x 1, x 2, x 3)\right) G_{2}(x 1, x 2, x 3)\right.
$$

$$
\left.+\left(\frac{\partial}{\partial x 3} F_{1}(x 1, x 2, x 3)\right) G_{3}(x 1, x 2, x 3)\right]
$$

$$
\left[\left(\frac{\partial}{\partial x 1} F_{2}(x 1, x 2, x 3)\right) G_{1}(x 1, x 2, x 3)+G_{2}(x 1, x 2, x 3)\left(\frac{\partial}{\partial x 2} F_{2}(x 1, x 2, x 3)\right)\right.
$$

$$
\left.+\left(\frac{\partial}{\partial x 3} F_{2}(x 1, x 2, x 3)\right) G_{3}(x 1, x 2, x 3)\right]
$$

$$
\left[\left(\frac{\partial}{\partial x 1} F_{3}(x 1, x 2, x 3)\right) G_{1}(x 1, x 2, x 3)+\left(\frac{\partial}{\partial x 2} F_{3}(x 1, x 2, x 3)\right) G_{2}(x 1, x 2, x 3)\right.
$$

$$
\left.+G_{3}(x 1, x 2, x 3)\left(\frac{\partial}{\partial x 3} F_{3}(x 1, x 2, x 3)\right)\right]
$$

> FNablaG := ApplyMatrix(DiagF, vecG, Alg2);
FNablaG:=
$\left[F_{1}(x 1, x \mathcal{2}, x 3)\left(\frac{\partial}{\partial x 1} G_{1}(x 1, x 2, x 3)\right)+F_{2}(x 1, x 2, x 3)\left(\frac{\partial}{\partial x 2} G_{1}(x 1, x \mathcal{2}, x 3)\right)\right.$
$\left.+F_{3}(x 1, x 2, x 3)\left(\frac{\partial}{\partial x 3} G_{1}(x 1, x 2, x 3)\right)\right]$
$\left[F_{1}(x 1, x 2, x 3)\left(\frac{\partial}{\partial x 1} G_{2}(x 1, x 2, x 3)\right)+F_{2}(x 1, x 2, x 3)\left(\frac{\partial}{\partial x 2} G_{2}(x 1, x 2, x 3)\right)\right.$
$\left.+F_{3}(x 1, x 2, x 3)\left(\frac{\partial}{\partial x 3} G_{2}(x 1, x 2, x 3)\right)\right]$
$\left[F_{1}(x 1, x 2, x 3)\left(\frac{\partial}{\partial x 1} G_{3}(x 1, x 2, x 3)\right)+F_{2}(x 1, x 2, x 3)\left(\frac{\partial}{\partial x 2} G_{3}(x 1, x 2, x 3)\right)\right.$
$\left.+F_{3}(x 1, x 2, x 3)\left(\frac{\partial}{\partial x 3} G_{3}(x 1, x 2, x 3)\right)\right]$

Finally, we check the previous identity by computing:

```
> simplify(evalm(curlFxG-map(expand, FdivG)+
> map(expand, GdivF)-GNablaF+FNablaG));
```

$\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

More classical identities of differential operators can be checked similarly.

