
In this worksheet, we study the control of a flexible rod considered in H. Mounier, Propriétés struc-
turelles des systèmes linéaires à retards: aspects théoriques et pratiques, PhD thesis, University of Orsay,
France, 1995. See also H. Mounier, J. Rudolph, M. Petitot, M. Fliess, A flexible rod as a linear delay
systems, in the proceedings of the 3rd European Control Conference, Rome (Italy), 1995.

> with(Ore_algebra):

> with(OreModules):

We define the Ore Algebra Alg as follows.

> Alg := DefineOreAlgebra(diff=[Dt,t], dual_shift=[delta,s],
> polynom=[t,s], shift_action=[delta,t,h]):

We enter the matrix which defines the system of the flexible rod:

> R := evalm([[Dt, -Dt*delta, -1], [2*Dt*delta, -Dt-Dt*delta^2, 0]]);

R :=
[

Dt −Dt δ −1
2Dt δ −Dt −Dt δ2 0

]
Let us define the adjoint of R:

> R_adj := Involution(R, Alg):

Compute the first extension module extˆ1 with values in Alg of the left Alg-module N associated with
R adj :

> Ext := Exti(R_adj, Alg, 1);

Ext :=

 Dt 0 0
0 1 0
0 0 1

 ,

 −2 δ 1 + δ2 0
−Dt Dt δ 1
Dt δ −Dt δ

 ,

 1 + δ2

2 δ
−Dt δ2 + Dt


The torsion submodule t(M) of the module M , which is associated with R, is generated by the row of
Ext [1] with first entry Dt . That means that r := [-2 δ, 1 + δˆ2, 0] generates the torsion submodule
t(M) of M and r is killed by the operator Dt , i.e., Dt r = 0 in M . More precisely, if we denote by y1, y2
and u the system variables, then the torsion element is defined by:

> TorsionElements(R, [y1(t),y2(t),u(t)], Alg);

[
[

D(θ1)(t) = 0
]
,
[

θ1(t) = −2 y1(t− h) + y2(t) + y2(t− 2 h)
]
]

Let us point out that Ext [3] is a parametrization of the torsion-free module M / t(M), i.e., of the
controllable part of the system which is defined by Ext [2].

We compute the second extension module extˆ2 with values in Alg of N :

> Exti(R_adj, Alg, 2);

[
[

1
]
,
[

1
]
, SURJ(1)]

Hence, extˆ2 is the zero module.

Let us check wether or not Ext [3] admits a left-inverse:

> L := LeftInverse(Ext[3], Alg);

1

L :=
[

1 −δ

2
0

]
> Mult(L, Ext[3], Alg); [

1
]

Therefore, we obtain that M / t(M) is a free Alg-module and a basis of M / t(M) is defined by
ξ = L (y1 : y2 : u)T , where (y1 : y2 : u)T = Ext1 [3] z. In particular, ξ is a flat output of the system
defined by the matrix Ext [2], i.e., of the controllable part of the flexible rod. More precisely, we have:

> xi(t)=ApplyMatrix(L, [y1(t),y2(t),u(t)], Alg)[1,1];

ξ(t) = y1(t)− 1
2

y2(t− h)

> evalm([[y1(t)],[y2(t)],[u(t)]])=ApplyMatrix(Ext[3], [xi(t)], Alg); y1(t)
y2(t)
u(t)

 =

 ξ(t) + ξ(t− 2 h)
2 ξ(t− h)

−D(ξ)(t− 2 h) + D(ξ)(t)


Let us compute a free resolution of the module over Alg which is generated by the rows of Ext [3]:

> FreeResolution(Ext[3], Alg);

table([1 =

 1 + δ2

2 δ
−Dt δ2 + Dt

 , 2 =

 −2 δ 1 + δ2 0
−Dt Dt δ 1
Dt δ −Dt δ

 , 3 =
[

Dt −δ 1
]
, 4 = INJ(1)])

We find that the second entry of this table, i.e., the first syzygy module of Ext [3] is Ext [2] again, which
is another confirmation for the fact that Ext [3] gives a parametrization of the torsion-free part which
is defined by Ext [2]. Moreover, the third module in the free resolution gives the relation that the rows
of Ext [2] satisfy. In particular, the matrix Ext [2] does not have full row rank. We remember that the
torsion-free part M / t(M) is free, and thus, projective. A simple criterion for projectiveness of a module
associated with a full row rank matrix R is that R must have a right-inverse with entries in Alg . As Ext [2]
does not have full row rank, this criterion is not applicable. Indeed, although M / t(M) is projective, we
have:

> RightInverse(Ext[2], Alg);

[]

But the fact the Alg-module M / t(M), associated with non-full row rank matrix Ext [2], is projective is
equivalent to the existence of a generalized inverse S which fulfills Ext [2] S Ext [2] = Ext [2]. Let us check
whether or not a generalized inverse exists for Ext [2]:

> S := GeneralizedInverse(Ext[2], Alg);

S :=


δ

2
0 0

1 0 0

−Dt δ

2
1 0


> Mult(Ext[2], S, Ext[2], Alg)-Ext[2];

0

2

Let us consider the example of a flexible rod with a mass considered in H. Mounier, Propriétés
structurelles des systèmes linéaires à retards: aspects théoriques et pratiques, PhD thesis, University of
Orsay, France, 1995. See also M. Fliess, H. Mounier, P. Rouchon, J. Rudolph, Controllability and motion
planning for linear delay systems with an application to a flexible rod, in the proceedings of the 34th
Conference on Decision & Control, New Orleans, 1995. We enter the matrix which defines the system:

> R2 := evalm([[Dt^2+Dt^2*delta^2+Dt-Dt*delta^2, -delta]]);

R2 :=
[

Dt2 + Dt2 δ2 + Dt −Dt δ2 −δ
]

Let us check whether or not the Alg-module associated with R2 is torsion-free.

> ext1 := Exti(Involution(R2, Alg), Alg, 1);

ext1 := [
[

1
]
,
[

Dt2 + Dt2 δ2 + Dt −Dt δ2 −δ
]
,

[
δ

Dt2 + Dt2 δ2 + Dt −Dt δ2

]
]

We obtain that the Alg-module associated with R2 is torsion-free, and thus, the system is controllable
and parametrizable. A parametrization of the system is defined by ext1 [3] or, equivalently, by:

> Parametrization(R2, Alg);[
ξ1(t− h)

(D(2))(ξ1)(t) + (D(2))(ξ1)(t− 2 h) + D(ξ1)(t)−D(ξ1)(t− 2 h)

]
Let us check whether or not the system is flat. In order to do that, we check whether or not the Alg-module
associated with R2 is projective.

> ext2 := Exti(Involution(R2, Alg), Alg, 2);

ext2 := [
[

δ
Dt2 + Dt

]
,
[

1
]
, SURJ(1)]

We obtain that extˆ2 is not zero, and thus, the system is not flat. Let us compute the obstruction of
flatness as a polynomial in the time-delay operator δ.

> PiPolynomial(R2, Alg, [delta]);

[δ]

Therefore, if we invert the operator δ, i.e., if we use the time-advance operator, then the Alg[δ−1]-module
associated with R2 becomes free. In particular, a basis of the Alg[δ−1]-module associated with R2
is defined by ξ = S (y : v)T , where y and v are the system variables and S is a left-inverse of the
parametrization ext1 [3], namely:

> S := LocalLeftInverse(ext1[3], [delta], Alg);

S :=
[

1
δ

0
]

Therefore, we have:

> xi(t)=ApplyMatrix(S, [y(t),v(t)], Alg)[1,1];

ξ(t) = y(t + h)
> evalm([[y(t)],[v(t)]])=ApplyMatrix(ext1[3], [xi(t)], Alg);

3

[
y(t)
v(t)

]
=

[
ξ(t− h)

(D(2))(ξ)(t) + (D(2))(ξ)(t− 2 h) + D(ξ)(t)−D(ξ)(t− 2 h)

]
Moreover, we can substitute the flat output ξ = S (y : v)T into the parametrization of the system
(y : v)T = ext1[3] ξ, in order to obtain (y : v)T = Q (y : v)T , where Q is the following matrix:

> Q := simplify(evalm(ext1[3] &* S));

Q :=

 1 0
Dt (Dt + Dt δ2 + 1− δ2)

δ
0


From the matrix Q, we easily see that we can also use ξ = y as a flat output of the system as we have:

> evalm([[y(t)],[v(t)]])=ApplyMatrix(Q, [y(t),v(t)], Alg);[
y(t)
v(t)

]
=

[
y(t)

(D(2))(y)(t + h) + (D(2))(y)(t− h) + D(y)(t + h)−D(y)(t− h)

]
In particular, we have obtained the input v(t) in terms of the output y(t) and an advance operator δ−1.
Therefore, we can do some motion planning as it is shown in H. Mounier, Propriétés structurelles des
systèmes linéaires à retards: aspects théoriques et pratiques, PhD thesis, University of Orsay, France,
1995, and M. Fliess, H. Mounier, P. Rouchon, J. Rudolph, Controllability and motion planning for linear
delay systems with an application to a flexible rod, in the proceedings of the 34th Conference on Decision
& Control, New Orleans, 1995. Let also point out that one of the main difficulty is to stabilize the open-
loop system by means of a suitable stabilizing controller. As we know from the theory of stabilization
problems, this problem is generally a difficult one, especially for neutral differential time-delay systems.

4

