In this worksheet, we study the control of a flexible rod considered in H. Mounier, Propriétés structurelles des systèmes linéaires à retards: aspects théoriques et pratiques, PhD thesis, University of Orsay, France, 1995. See also H. Mounier, J. Rudolph, M. Petitot, M. Fliess, A flexible rod as a linear delay systems, in the proceedings of the 3rd European Control Conference, Rome (Italy), 1995.

```
> with(Ore_algebra):
> with(OreModules):
```

We define the Ore Algebra $A l g$ as follows.

```
> Alg := DefineOreAlgebra(diff=[Dt,t], dual_shift=[delta,s],
> polynom=[t,s], shift_action=[delta,t,h]):
```

We enter the matrix which defines the system of the flexible rod:
$>\mathrm{R}:=$ evalm([[Dt, -Dt*delta, -1], [2*Dt*delta, -Dt-Dt*delta^2, 0]]);

$$
R:=\left[\begin{array}{ccc}
D t & -D t \delta & -1 \\
2 D t \delta & -D t-D t \delta^{2} & 0
\end{array}\right]
$$

Let us define the adjoint of R :

```
> R_adj := Involution(R, Alg):
```

Compute the first extension module ext^1 with values in $A l g$ of the left $A l g$-module N associated with R_adj:

```
    > Ext := Exti(R_adj, Alg, 1);
```

$$
E x t:=\left[\left[\begin{array}{ccc}
D t & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccc}
-2 \delta & 1+\delta^{2} & 0 \\
-D t & D t \delta & 1 \\
D t \delta & -D t & \delta
\end{array}\right],\left[\begin{array}{c}
1+\delta^{2} \\
2 \delta \\
-D t \delta^{2}+D t
\end{array}\right]\right]
$$

The torsion submodule $\mathrm{t}(M)$ of the module M, which is associated with R, is generated by the row of Ext[1] with first entry Dt. That means that $r:=\left[-2 \delta, 1+\delta^{\wedge} 2,0\right]$ generates the torsion submodule $\mathrm{t}(M)$ of M and r is killed by the operator $D t$, i.e., $D t r=0$ in M. More precisely, if we denote by $y 1, y 2$ and u the system variables, then the torsion element is defined by:

```
> TorsionElements(R, [y1(t),y2(t),u(t)], Alg);
    [[ D ( }\mp@subsup{1}{1}{\prime})(t)=0],[ (\mp@subsup{0}{1}{}(t)=-2 y1(t-h)+\textrm{y}2(t)+\textrm{y}2(t-2h)]
```

Let us point out that Ext[3] is a parametrization of the torsion-free module $M / \mathrm{t}(M)$, i.e., of the controllable part of the system which is defined by Ext[2].

We compute the second extension module ext ${ }^{\wedge} 2$ with values in $A l g$ of N :

```
> Exti(R_adj, Alg, 2);
```

$$
[[1],[1], \operatorname{SURJ}(1)]
$$

Hence, ext $^{\wedge} 2$ is the zero module.
Let us check wether or not $\operatorname{Ext}[3]$ admits a left-inverse:
$>$ L := LeftInverse(Ext[3], Alg);

$$
L:=\left[\begin{array}{lll}
1 & -\frac{\delta}{2} & 0
\end{array}\right]
$$

$>\operatorname{Mult}(L, \operatorname{Ext}[3], A l g) ;$

Therefore, we obtain that $M / \mathrm{t}(M)$ is a free Alg-module and a basis of $M / \mathrm{t}(M)$ is defined by $\xi=L(y 1: y 2: u)^{T}$, where $(y 1: y 2: u)^{T}=\operatorname{Ext1}[3] z$. In particular, ξ is a flat output of the system defined by the matrix $E x t[2]$, i.e., of the controllable part of the flexible rod. More precisely, we have:

$$
\begin{aligned}
& >\operatorname{xi}(\mathrm{t})=\operatorname{ApplyMatrix}(\mathrm{L}, \quad[\mathrm{y} 1(\mathrm{t}), \mathrm{y} 2(\mathrm{t}), \mathrm{u}(\mathrm{t})], \operatorname{Alg})[1,1] ; \\
& \xi(\mathrm{t})=\mathrm{y} 1(t)-\frac{1}{2} \mathrm{y} 2(t-h) \\
& >\operatorname{evalm}([[\mathrm{y} 1(\mathrm{t})],[\mathrm{y} 2(\mathrm{t})],[\mathrm{u}(\mathrm{t})]])=\operatorname{ApplyMatrix}(\operatorname{Ext}[3], \quad[\mathrm{xi}(\mathrm{t})], \operatorname{Alg}) ; \\
& \qquad\left[\begin{array}{c}
\mathrm{y} 1(t) \\
\mathrm{y} 2(t) \\
\mathrm{u}(t)
\end{array}\right]=\left[\begin{array}{c}
\xi(t)+\xi(t-2 h) \\
2 \xi(t-h) \\
-\mathrm{D}(\xi)(t-2 h)+\mathrm{D}(\xi)(t)
\end{array}\right]
\end{aligned}
$$

Let us compute a free resolution of the module over Alg which is generated by the rows of Ext [3]:
$>$ FreeResolution(Ext[3], Alg);

$$
\operatorname{table}\left(\left[1=\left[\begin{array}{c}
1+\delta^{2} \\
2 \delta \\
-D t \delta^{2}+D t
\end{array}\right], 2=\left[\begin{array}{ccc}
-2 \delta & 1+\delta^{2} & 0 \\
-D t & D t \delta & 1 \\
D t \delta & -D t & \delta
\end{array}\right], 3=\left[\begin{array}{lll}
D t & -\delta & 1
\end{array}\right], 4=\operatorname{INJ}(1)\right]\right)
$$

We find that the second entry of this table, i.e., the first syzygy module of $E x t[3]$ is $E x t[2]$ again, which is another confirmation for the fact that $\operatorname{Ext}[3]$ gives a parametrization of the torsion-free part which is defined by Ext[2]. Moreover, the third module in the free resolution gives the relation that the rows of Ext[2] satisfy. In particular, the matrix $\operatorname{Ext}[2]$ does not have full row rank. We remember that the torsion-free part $M / \mathrm{t}(M)$ is free, and thus, projective. A simple criterion for projectiveness of a module associated with a full row rank matrix R is that R must have a right-inverse with entries in Alg. As Ext[2] does not have full row rank, this criterion is not applicable. Indeed, although $M / \mathrm{t}(M)$ is projective, we have:

```
> RightInverse(Ext[2], Alg);
```

But the fact the $A l g$-module $M / \mathrm{t}(M)$, associated with non-full row rank matrix $E x t[2]$, is projective is equivalent to the existence of a generalized inverse S which fulfills $\operatorname{Ext}[2] S E x t[2]=E x t[2]$. Let us check whether or not a generalized inverse exists for $\operatorname{Ext}[2]$:

$$
\begin{aligned}
& >\mathrm{S}:=\text { GeneralizedInverse }(\operatorname{Ext}[2], \text { Alg); } \\
& \qquad S:=\left[\begin{array}{ccc}
\frac{\delta}{2} & 0 & 0 \\
1 & 0 & 0 \\
-\frac{D t \delta}{2} & 1 & 0
\end{array}\right] \\
& >\operatorname{Mult}(\operatorname{Ext}[2], \mathrm{S}, \operatorname{Ext}[2], \operatorname{Alg})-\operatorname{Ext}[2] ;
\end{aligned}
$$

Let us consider the example of a flexible rod with a mass considered in H. Mounier, Propriétés structurelles des systèmes linéaires à retards: aspects théoriques et pratiques, PhD thesis, University of Orsay, France, 1995. See also M. Fliess, H. Mounier, P. Rouchon, J. Rudolph, Controllability and motion planning for linear delay systems with an application to a flexible rod, in the proceedings of the 34th Conference on Decision \& Control, New Orleans, 1995. We enter the matrix which defines the system:

```
> R2 := evalm([[Dt^2+Dt^2*delta^2+Dt-Dt*delta^2, -delta]]);
    R2 :=[ Dt }\mp@subsup{}{}{2}+D\mp@subsup{t}{}{2}\mp@subsup{\delta}{}{2}+Dt-Dt\mp@subsup{\delta}{}{2}-\delta
```

Let us check whether or not the $A l g$-module associated with $R 2$ is torsion-free.

```
> ext1 := Exti(Involution(R2, Alg), Alg, 1);
    ext1:=[[ 1 ],[Dt'2}+D\mp@subsup{t}{}{2}\mp@subsup{\delta}{}{2}+Dt-Dt\mp@subsup{\delta}{}{2}-\delta],[\begin{array}{c}{\delta}\\{D\mp@subsup{t}{}{2}+D\mp@subsup{t}{}{2}\mp@subsup{\delta}{}{2}+Dt-Dt\mp@subsup{\delta}{}{2}}\end{array}]
```

We obtain that the Alg-module associated with R2 is torsion-free, and thus, the system is controllable and parametrizable. A parametrization of the system is defined by ext1[3] or, equivalently, by:
> Parametrization(R2, Alg);

$$
\left[\begin{array}{c}
\xi_{1}(t-h) \\
\left(\mathrm{D}^{(2)}\right)\left(\xi_{1}\right)(t)+\left(\mathrm{D}^{(2)}\right)\left(\xi_{1}\right)(t-2 h)+\mathrm{D}\left(\xi_{1}\right)(t)-\mathrm{D}\left(\xi_{1}\right)(t-2 h)
\end{array}\right]
$$

Let us check whether or not the system is flat. In order to do that, we check whether or not the Alg-module associated with $R 2$ is projective.
> ext2 := Exti(Involution(R2, Alg), Alg, 2);

$$
\text { ext2 } \left.:=\left[\begin{array}{c}
\delta \\
D t^{2}+D t
\end{array}\right],[1], \operatorname{SURJ}(1)\right]
$$

We obtain that ext ${ }^{\wedge} 2$ is not zero, and thus, the system is not flat. Let us compute the obstruction of flatness as a polynomial in the time-delay operator δ.
> PiPolynomial(R2, Alg, [delta]);

Therefore, if we invert the operator δ, i.e., if we use the time-advance operator, then the $A l g\left[\delta^{-1}\right]$-module associated with $R 2$ becomes free. In particular, a basis of the $\operatorname{Alg}\left[\delta^{-1}\right]$-module associated with $R 2$ is defined by $\xi=S(y: v)^{T}$, where y and v are the system variables and S is a left-inverse of the parametrization ext1 [3], namely:

$$
\begin{aligned}
>S:=\text { LocalLeftInverse(ext1[3], } & \text { [delta], Alg); } \\
& S:=\left[\begin{array}{cc}
\frac{1}{\delta} & 0
\end{array}\right]
\end{aligned}
$$

Therefore, we have:

```
\(>\operatorname{xi}(\mathrm{t})=\operatorname{ApplyMatrix}(\mathrm{S},[\mathrm{y}(\mathrm{t}), \mathrm{v}(\mathrm{t})], \operatorname{Alg})[1,1]\);
    \(\xi(t)=\mathrm{y}(t+h)\)
> evalm([[y(t)],[v(t)]])=ApplyMatrix(ext1[3], [xi(t)], Alg);
```

$$
\left[\begin{array}{c}
\mathrm{y}(t) \\
\mathrm{v}(t)
\end{array}\right]=\left[\begin{array}{c}
\xi(t-h) \\
\left(\mathrm{D}^{(2)}\right)(\xi)(t)+\left(\mathrm{D}^{(2)}\right)(\xi)(t-2 h)+\mathrm{D}(\xi)(t)-\mathrm{D}(\xi)(t-2 h)
\end{array}\right]
$$

Moreover, we can substitute the flat output $\xi=S(y: v)^{T}$ into the parametrization of the system $(y: v)^{T}=\operatorname{ext} 1[3] \xi$, in order to obtain $(y: v)^{T}=Q(y: v)^{T}$, where Q is the following matrix:

$$
\begin{aligned}
& >\mathrm{Q}:=\operatorname{simplify}(\text { evalm }(\operatorname{ext1}[3] \& * \mathrm{~S})) ; \\
& \qquad Q:=\left[\begin{array}{cc}
1 & 0 \\
\frac{D t\left(D t+D t \delta^{2}+1-\delta^{2}\right)}{\delta} & 0
\end{array}\right]
\end{aligned}
$$

From the matrix Q, we easily see that we can also use $\xi=y$ as a flat output of the system as we have:

$$
>\operatorname{evalm}([[y(t)],[v(t)]])=A p p l y M a t r i x(Q,[y(t), v(t)], \operatorname{Alg}) ;
$$

$$
\left[\begin{array}{c}
\mathrm{y}(t) \\
\mathrm{v}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{y}(t) \\
\left(\mathrm{D}^{(2)}\right)(y)(t+h)+\left(\mathrm{D}^{(2)}\right)(y)(t-h)+\mathrm{D}(y)(t+h)-\mathrm{D}(y)(t-h)
\end{array}\right]
$$

In particular, we have obtained the input $v(t)$ in terms of the output $y(t)$ and an advance operator δ^{-1}. Therefore, we can do some motion planning as it is shown in H. Mounier, Propriétés structurelles des systèmes linéaires à retards: aspects théoriques et pratiques, PhD thesis, University of Orsay, France, 1995, and M. Fliess, H. Mounier, P. Rouchon, J. Rudolph, Controllability and motion planning for linear delay systems with an application to a flexible rod, in the proceedings of the 34th Conference on Decision \& Control, New Orleans, 1995. Let also point out that one of the main difficulty is to stabilize the openloop system by means of a suitable stabilizing controller. As we know from the theory of stabilization problems, this problem is generally a difficult one, especially for neutral differential time-delay systems.

