This worksheet deals with the linearized FEuler equations for an incompressible fluid. See J.-F. Pom-
maret, Partial Differential Equations and Group Theory: New Perspectives for Applications, Kluwer,
1994, p. 671.

> with(Ore_algebra):
> with(OreModules):

We define the Ore algebra Alg to be the Weyl algebra, where x1, 22, 8 are the spatial variables and z/
is the time variable, and Di acts as differential operator w.r.t. xi:

> Alg := DefineOreAlgebra(diff=[D1,x1], diff=[D2,x2], diff=[D3,x3], diff=[D4,x4],
> polynom=[x1,x2,x3,x4]):

The linearized Euler equations are given by the following matrix. The first row stands for the divergence
of the speed of the fluid and the three remaining rows give the sum of the partial derivative of the speed
w.r.t. time and the gradient of the pressure of the fluid.

> R := evalm([[D1,D2,D3,0], [D4,0,0,D1], [0,D4,0,D2], [0,0,D4,D3]1]1);

D1 D2 D3 O

D4 0 0 D1
0 D4 0 D2
0 0 D4 D3

R :=

The linearized Euler equations are defined by:

> ApplyMatrix(R, [seq(v[i](x1,x2,x3,x4),i=1..3),p(x1,x2,x3,x4)], Alg)=
> evalm([[0]1$4]);
(52 vi(al, 22, gé’, 24)) + (325 va (21, 22, gé’, 24)) + (3% vs(21, 22, 23, 24))
(@ vi(zl, 22, 28, 4)) + (@ p(z1, 22, 3, x4))
(@ vo(zl, 22, 23, x4)) + (@ p(al, 22, 3, ©4))
(ga7 va(al, 22, 13, 24)) + (555 P(2l, 22, 23, 24))

o O oo

We compute the formal adjoint of R:

> R_adj := Involution(R, Alg);

-D1 -D4 0 0

—-D2 0 -D4 0

-D3 0 0 -D4
0 -D1 -D2 -D3

R_adj :=

> Extl := Exti(R_adj, Alg, 1);

D22D4+D4D1%2 +D3?D4, 0,0, 0 1 00 0

|| 0,D2?D4 +D4D1?> +D3°D4, 0,0 0100
Brtl =11 00 D22Da+DaDI12+D32D4. 0 || 0 0 1 o | SURI@

0,0, 0, D1%2 + D2? + D32 00 01

We see that the Alg-module M which is associated with the system of linearized Euler equations is torsion,
i.e., every element of M is a torsion element, because the generating set for t(M) which is given by the
rows of Ext1[2] generates M. On the diagonal of Ext![1] we find the operators that kill the corresponding
torsion elements, more precisely, the entry Di in the ith column of Fzt1[1] kills the ith torsion element
0;, i=1, ..., 4, i.e., Di §; = 0 in M. This information can be displayed in a more familiar way by using
TorsionElements (here [vz, vy, vz] is the speed and p the pressure of the fluid):



> TorsionElements(R,
> [vx(x1,x2,x3,x4),vy(x1,x2,x3,x4) ,vz(x1,x2,x3,x4) ,p(x1,x2,x3,x4)], Alg);

(g "o4) & (o e %64) + Cofees 704) =0 1 7 044 = vx(at, 02, a5, 2f)
<W% )+ (8z48m32 %3) + (32532 46z22 %3)=0 %03 = vy(zl, 22, 23, 24)
(W% )+(3m48132% )+(8148x22% )=0 ’ %2 = va(al, 22, 35, 54)

(3m22% )+(3132% )Jr(aﬂz% ) =0 %1 = p(xl, 22, 28, 24)

%1 = 04(x1, 22, 28, z4)
%2 :=03(z1, 22, 3, z4)

(z1, 22, 23, x4)
%4 = 01(x1, z2, 28, ©4)

Summarizing, we note that Fati provides a way to find the relations that every element of the system
satisfies on its own, i.e., the relations of the autonomous elements.

We now consider the Boussinesq stationary system for the Benard problem as it is described in J.-F.
Pommaret, Partial Differential Equations and Group Theory: New Perspectives for Applications, Kluwer,
1994, p. 671-672.

First of all, let us define the Laplacian operator.

> Laplacian := D172+D272+D372;
Laplacian := D2% + D1? + D3?

Then, the Boussinesq stationary system for the Benard problem is defined by means of the following
matrix:

> R2 := evalm([[D1,D2,D3,0,0], [Laplacian,0,0,-D1,0], [0,Laplacian,0,-D2,0],
> [0,0,Laplacian,-D3,gl,[0,0,g,0,Laplacian]]);

D1 D2 D3 0 0
%1 0 0 -D1 0
0 %1 0 -D2 0
0 0 %l -D3 g
0 0 g 0 %l

%1 := D2%? + D12 + D3

R2:

If we denote by (v[1], v[2], v[3]) the speed of the viscous fluid, 7 and 6 the perturbations of the pressure
and temperature around the steady state, then the system is defined by:

> ApplyMatrix(R2, [seq(v[i](x1,x2,x3),i=1..3),pi(x1,x2,x3), theta(x1,x2,x3)], Alg)
> =evalm([[0]$5]);



(52 vi(21, 22, 23)) + (325 va(al, 22, 23)) + (525 v3(z1, 22, 23))|

{(ai; v (x1, 22, z3)) + (%; vy (xl, 22, £3)) + (%jz vy (1, 22, ©3))
— (3% m(zl, z2, xé’))}
{(ai; vo(zl, 22, 3)) + (%;2 vo(zl, 22, 3)) + (%jz vo(zl, 22, 13))

- (% m(zl, z2, xé’))}

(%Zg vy(zl, 22, z3)) + (%; v3(xl, 22, £3)) + (%jz v3(zl, 22, ©3))

— (5% (el 2, 23)) + g6(x1, 12, ©3)

-g’Ug(l'J, z2, £3) + (8‘2—22 0(z1, 22, 23)) + (a‘z—; 0(z1, 22, 28)) + (ag—jz O(x1, 22, xé’))]

I
coococo

Let us compute the rank of the Alg-module associated with R2.

> OreRank(R2, Alg);
0

Therefore, the Alg-module associated with R2 is torsion, meaning that the system variables v[i], 7 and
0 satisfy partial differential equations by themselves. Let us decouple the system variables by computing
the torsion module using OreModules. We first need to define the formal adjoint R2_ adj of R2.

> R2_adj := Involution(R2, Alg);

-D1 %1 0 0 0

-D2 0 %1 0 0

R2.adj:=| -D3 0 0 %l g
0 D1 D2 D3 0

0 0 0 g %l

%1 := D2? + D12 + D3?

Let us compute ext”1 of the Alg-module associated with R2_ adj.

> st := time(): extl := Exti(R2_adj, Alg, 1); time()-st;



ext] =

[D1® —2¢2D12D2% — ¢2D1* — 2 D2* — o2 D32 D1?% — 42 D3 D2?
+12D1*D3%2D2? + 6D1*D3* + 6 D1* D2* + 4D1°D3% + 4D1°D2? + D3®
+4D12D2% +12D1° D22 D3* + 12D12D2* D3? + 6 D2 D3* + 4 D2° D3?
+4D12D3% +4D22D3% + D25, 0,0, 0, 0]

[0,D1% —2¢2D12D2? — ¢2D1* — 2 D2* — ¢>D3?D1? — ¢2 D3% D2?
+12D1*D3?D2%? + 6D1*D3* + 6 D1* D2* + 4D1°D3% + 4D1°D2? 4+ D3®
+4D1%2D2° +12D12D22D3* + 12D12 D2* D32 + 6 D2 D3* + 4 D26 D3
+4D12D3% +4D22D3% + D28, 0, 0, 0]

0,0,%1,0,0]

[0,0,0, %1, 0]
10000
01000

0,0,0,0,%1], |0 0 1 0 0 |,SURJ®5)
00010
0000 1

%1 :=D1° +3D1*D2% + 3D1*D3? + 6 D12 D3> D2% + 3D1? D3* + 3D12D2* — D12 ¢2
+3D2'D3? +3D22D3* + D2% — 2 D22 + D3°
2.220
We find againthat the Alg-module associated with the Boussinesq system is torsion. Moreover, the
differential operators on the diagonal of the first matrix exzt1[1] are the operators that kill respectively

v[1], v[2], v[3], ™ and 6.

More precisely, the first component of the speed v[l] satisfies the equation PI v[l] = 0, where P! is
defined by:

> P1 := collect(ext1[1][1,1], g, distributed, factor);
P1:= (D3? 4+ D1? + D2%)* — (D3% + D1% + D2?) (D1? 4 D2%) ¢°

The second component of the speed v[2] satisfies the equation P2 v[2] = 0, where P[2] is defined by:

> P2 := collect(ext1[1][2,2], g, distributed, factor);
P2 := (D3% + D1 + D2%)* — (D3? + D1? 4+ D2?) (D1? 4 D2?) ¢?

The third component of the speed v[3] satisfies the equation P3v[3] = 0, where P|[3] is defined by:

> P3 := collect(ext1[1][3,3], g, distributed, factor);
P3 := (D3% + D1 + D2%)3 + (-D1* — D2?) ¢

The perturbation of the pressure m satisfy the equation P4 m = 0, where P/ is defined by:

> P4 := collect(ext1[1][4,4], g, distributed, factor);
Pj := (D3%> 4+ D1? + D2%)3 + (-D1* — D2?) ¢?

Finally, the perturbation of the temperature 6 satisfies P56 = 0, where P5 is defined by:



P5 := collect(ext1[1][5,5], g, distributed, factor);
P5 := (D3? + D1? 4 D2%)3 + (-D1? — D2%) ¢°



