We study a bipendulum, namely a system composed of a bar where two pendula are fixed, one of length $l 1$ and one of length $l 2$. See J.-F. Pommaret, Partial Differential Control Theory, Kluwer, 2001, p. 569 .

```
> with(Ore_algebra):
> with(OreModules):
```

The appropriate Ore algebra for this example is the Weyl algebra $A l g=A_{1}$, where D is the differential operator w.r.t. time t :

```
> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t], comm=[g, l1, l2]):
```

Note that we have to declare all constants appearing in the system equations (the gravitational constant g, and the lengths $l 1, l 2)$ as variables that "comm" ute with D and t. Next we enter the system matrix:

$$
\begin{aligned}
& >R:=e v a l m\left(\left[\left[D^{\wedge} 2+g / l 1,0,-g / l 1\right],\left[0, D^{\wedge} 2+g / 12,-g / l 2\right]\right]\right) ; \\
& R:=\left[\begin{array}{ccc}
\mathrm{D}^{2}+\frac{g}{l 1} & 0 & -\frac{g}{l 1} \\
0 & \mathrm{D}^{2}+\frac{g}{l 2} & -\frac{g}{l 2}
\end{array}\right]
\end{aligned}
$$

In terms of equations, the bipendulum is defined by:

```
> ApplyMatrix(R, [x1(t),x2(t),u(t)], Alg) = evalm([[0],[0]]);
```

$$
\left[\begin{array}{c}
\frac{g \mathrm{x} 1(t)}{l 1}+\left(\frac{d^{2}}{d t^{2}} \mathrm{x} 1(t)\right)-\frac{g \mathrm{u}(t)}{l 1} \\
\frac{g \times 2(t)}{l 2}+\left(\frac{d^{2}}{d t^{2}} \times 2(t)\right)-\frac{g \mathrm{u}(t)}{l 2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

We compute the formal adjoint of R :

$$
\begin{aligned}
& >\text { R_adj := Involution(R, Alg) ; } \\
& \qquad R_{-} a d j:=\left[\begin{array}{cc}
\mathrm{D}^{2}+\frac{g}{l 1} & 0 \\
0 & \mathrm{D}^{2}+\frac{g}{l 2} \\
-\frac{g}{l 1} & -\frac{g}{l 2}
\end{array}\right]
\end{aligned}
$$

By computing the first extension module ext^1 with values in $A l g$ of the module associated with the formal adjoint of R, we check controllability and, equivalently, parametrizability of the bipendulum:

$$
\begin{aligned}
>\text { Ext } & :=\text { Exti }(\text { R_adj, Alg, 1); } \\
E \text { Ext } & :=\left[\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ccc}
\mathrm{D}^{2} l 1+g & 0 & -g \\
0 & \mathrm{D}^{2} l 2+g & -g
\end{array}\right],\left[\begin{array}{c}
l 2 g \mathrm{D}^{2}+g^{2} \\
g^{2}+\mathrm{D}^{2} l 1 g \\
l 2 g \mathrm{D}^{2}+l 2 \mathrm{D}^{4} l 1+\mathrm{D}^{2} l 1 g+g^{2}
\end{array}\right]\right.
\end{aligned}
$$

From the output of Exti, we see that the system is generically controllable because Ext[1] is the identity matrix which means that there are no torsion elements in the Alg-module M which is associated with the system. The interpretation of this structural fact is that the system has no autonomous elements in the generic case. There may be configurations of the constants $g, l 1, l 2$, in which the bipendulum is not controllable. We shall actually find the only configuration where it is not controllable below. Let us write down the generic parametrization $E x t[3]$ in a more familiar way with a free function ξ_{1} :

```
> P := Parametrization(R, Alg);
```

$$
\begin{aligned}
& P:=\left[\begin{array}{c}
g\left(g \xi_{1}(t)+l 2 \% 1\right) \\
g\left(g \xi_{1}(t)+l 1 \% 1\right) \\
g^{2} \xi_{1}(t)+g l 2 \% 1+g l 1 \% 1+l 1 l 2\left(\frac{d^{4}}{d t^{4}} \xi_{1}(t)\right)
\end{array}\right] \\
& \% 1:=\frac{d^{2}}{d t^{2}} \xi_{1}(t)
\end{aligned}
$$

Therefore, all solutions of the system are parametrized by P, i.e.,

$$
R(x 1: x 2: u)^{T}=0 \Longleftrightarrow(x 1: x 2: u)^{T}=\operatorname{Ext}[3] \xi_{1}
$$

Since $A l g$ is a principal ideal domain, torsion-free modules are free modules. Hence, the bipendulum is also generically a flat system. A flat output of the system can be obtained by computing as a left-inverse of the parametrization $\operatorname{Ext}[3]$:

$$
\begin{aligned}
& >\mathrm{S}:=\text { LeftInverse }(\text { Ext [3], Alg); } \\
& \qquad S:=\left[\begin{array}{lll}
\frac{l 1}{g^{2}(-l 2+l 1)} & -\frac{l 2}{g^{2}(-l 2+l 1)} & 0
\end{array}\right]
\end{aligned}
$$

Then, a flat output of the system is defined by $\xi_{1}=S(x 1: x 2: u)^{T}$, namely:

```
> ApplyMatrix(S, [x1(t),x2(t),u(t)], Alg);
```

$$
\left[\frac{l 1 \times 1(t)}{g^{2}(-l 2+l 1)}-\frac{l 2 \times 2(t)}{g^{2}(-l 2+l 1)}\right]
$$

We remark that this flat output is defined only if $l 1-l 2 \neq 0$. Moreover, $l 1=12$ describes the only case in which the bipendulum may be uncontrollable.

Let us compute the Brunovský canonical form of the system in the case where $l 1 \neq l 2$.
> $\mathrm{B}:=$ Brunovsky (R, Alg);

$$
B:=\left[\begin{array}{ccc}
\frac{l 1}{g^{2}(-l 2+l 1)} & -\frac{l 2}{g^{2}(-l 2+l 1)} & 0 \\
\frac{\mathrm{D} l 1}{g^{2}(-l 2+l 1)} & -\frac{\mathrm{D} l 2}{g^{2}(-l 2+l 1)} & 0 \\
-\frac{1}{g(-l 2+l 1)} & \frac{1}{g(-l 2+l 1)} & 0 \\
-\frac{\mathrm{D}}{g(-l 2+l 1)} & \frac{\mathrm{D}}{g(-l 2+l 1)} & 0 \\
\frac{1}{(-l 2+l 1) l 1} & -\frac{1}{(-l 2+l 1) l 2} & \frac{1}{l 1 l 2}
\end{array}\right]
$$

In other words, we have the following transformation between the system variables $x 1, x 2$ and u and the Brunovský variables $z[i]$ and v :

```
> evalm([seq([z[i](t)],i=1..4),[v(t)]])=ApplyMatrix(B, [x1(t),x2(t),u(t)], Alg);
```

$$
\left[\begin{array}{c}
z_{1}(t) \\
z_{2}(t) \\
z_{3}(t) \\
z_{4}(t) \\
\mathrm{v}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{l 1 \mathrm{x} 1(t)}{g^{2}(-l 2+l 1)}-\frac{l 2 \times 2(t)}{g^{2}(-l 2+l 1)} \\
\frac{l 1\left(\frac{d}{d t} \mathrm{x} 1(t)\right)}{g^{2}(-l 2+l 1)}-\frac{l 2\left(\frac{d}{d t} \times 2(t)\right)}{g^{2}(-l 2+l 1)} \\
-\frac{\mathrm{x} 1(t)}{g(-l 2+l 1)}+\frac{\mathrm{x} 2(t)}{g(-l 2+l 1)} \\
-\frac{\frac{d}{d t} \times 1(t)}{g(-l 2+l 1)}+\frac{\frac{d}{d t} \times 2(t)}{g(-l 2+l 1)} \\
\frac{\mathrm{x} 1(t)}{(-l 2+l 1) l 1}-\frac{\mathrm{x} 2(t)}{(-l 2+l 1) l 2}+\frac{\mathrm{u}(t)}{l 1 l 2}
\end{array}\right]
$$

Let us check that the new variables $z[i]$ and v satisfy a Brunovský canonical form:

```
> F := Elimination(linalg[stackmatrix](B, R), [x1,x2,u],
> [seq(z[i],i=1..4),v,0,0], Alg):
> ApplyMatrix(F[1], [x1(t),x2(t),u(t)], Alg)=
> ApplyMatrix(F[2], [seq(z[i](t),i=1..4),v(t)], Alg);
\[
\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
\mathrm{u}(t) \\
\mathrm{x} 2(t) \\
\mathrm{x} 1(t)
\end{array}\right]=\left[\begin{array}{c}
-\left(\frac{d}{d t} z_{4}(t)\right)+\mathrm{v}(t) \\
-\left(\frac{d t}{d t} z_{3}(t)\right)+z_{4}(t) \\
-\left(\frac{d}{d t} z_{2}(t)\right)+z_{3}(t) \\
-\left(\frac{d}{d t} z_{1}(t)\right)+z_{2}(t) \\
g^{2} z_{1}(t)+(g l 2+g l 1) z_{3}(t)+l 1 l 2 \mathrm{v}(t) \\
g^{2} z_{1}(t)+g l 1 z_{3}(t) \\
g^{2} z_{1}(t)+g l 2 z_{3}(t)
\end{array}\right]
\]
```

We now turn to the case where the lengths of the pendula are equal:

$$
\begin{aligned}
& >\text { R_mod }:=\operatorname{subs}(12=l 1, \operatorname{evalm}(\mathrm{R})) ; \\
& \qquad R_{-} \bmod :=\left[\begin{array}{ccc}
\mathrm{D}^{2}+\frac{g}{l 1} & 0 & -\frac{g}{l 1} \\
0 & \mathrm{D}^{2}+\frac{g}{l 1} & -\frac{g}{l 1}
\end{array}\right] \\
& >\text { Ext_mod }:=\text { Exti (Involution(R_mod, Alg), Alg, 1); } \\
& \text { Ext_mod }:=\left[\left[\begin{array}{ccc}
\mathrm{D}^{2} l 1+g & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & \mathrm{D}^{2} l 1+g & -g
\end{array}\right],\left[\begin{array}{c}
g \\
g \\
\mathrm{D}^{2} l 1+g
\end{array}\right]\right]
\end{aligned}
$$

The computation of the first extension module ext^1 with values in $A l g$ of the module defined by the formal adjoint of $R_{-} \bmod$ gives the torsion submodule $\mathrm{t}(M)$ of M : it is generated by the row r of Ext_mod[2] which corresponds to the row with entry $l 1 \mathrm{D}^{2}+g$ in Ext_mod [1]. This means that $\left(l 1 D^{2}+g\right) r=0$ in M, and the difference $x 1-x 2$ of the positions of the pendula (relative to the bar) is an autonomous element of the system. We conclude that the bipendulum is controllable if and only if $l 1 \neq l 2$.

Let us point out that we can directly obtain the torsion elements of M as follows:

$$
\begin{aligned}
& >\text { TorsionElements }(\text { R_mod, }[\mathrm{x} 1(\mathrm{t}), \mathrm{x} 2(\mathrm{t}), \mathrm{u}(\mathrm{t})], \mathrm{Alg}) ; \\
& \\
& \qquad\left[\left[g \theta_{1}(t)+l 1\left(\frac{d^{2}}{d t^{2}} \theta_{1}(t)\right)=0\right],\left[\theta_{1}(t)=\mathrm{x} 1(t)-\mathrm{x} 2(t)\right]\right]
\end{aligned}
$$

We can explicitly integrate this torsion element of M :

```
> AutonomousElements(R_mod, [x1(t),x2(t),u(t)], Alg)[2];
```

$$
\left[\theta_{1}={ }_{-} C 1 \sin \left(\frac{\sqrt{g} t}{\sqrt{l 1}}\right)+{ }_{-} C 2 \cos \left(\frac{\sqrt{g} t}{\sqrt{l 1}}\right)\right]
$$

The fact that there exists an autonomous element in the system is equivalent to the existence of a first integral of motion in the system. Indeed, let us recall that there exists a one-to-one correspondence between the torsion elements and the first integrals of motion (for more details, see J.-F. Pommaret, A. Quadrat, Localization and parametrization of linear multidimensional control systems, Systems \& Control Letters, 37 (1999), pp. 247-260). We can compute this first integral of motion by using the command FirstIntegral:

$$
\begin{aligned}
& >\mathrm{V}:=\text { FirstIntegral (R_mod, }[\mathrm{x} 1(\mathrm{t}), \mathrm{x} 2(\mathrm{t}), \mathrm{u}(\mathrm{t})], \mathrm{Alg}) ; \\
& \\
& \qquad \begin{aligned}
V & :=-\left(-\left(\frac{d}{d t} \mathrm{x} 1(t)\right) _C 1 \sin \left(\frac{\sqrt{g} t}{\sqrt{l 1}}\right) \sqrt{l 1}-\left(\frac{d}{d t} \mathrm{x} 1(t)\right) _C 2 \cos \left(\frac{\sqrt{g} t}{\sqrt{l 1}}\right) \sqrt{l 1}\right. \\
& +\mathrm{x} 1(t))_{-} C 1 \cos \left(\frac{\sqrt{g} t}{\sqrt{l 1}}\right) \sqrt{g}-\mathrm{x} 1(t) _C 2 \sin \left(\frac{\sqrt{g} t}{\sqrt{l 1}}\right) \sqrt{g} \\
& +\left(\frac{d}{d t} \mathrm{x} 2(t)\right) _C 1 \sin \left(\frac{\sqrt{g} t}{\sqrt{l 1}}\right) \sqrt{l 1}+\left(\frac{d}{d t} \mathrm{x} 2(t)\right) __{-} 2 \cos \left(\frac{\sqrt{g} t}{\sqrt{l 1}}\right) \sqrt{l 1} \\
& \left.-\mathrm{x} 2(t) _C 1 \cos \left(\frac{\sqrt{g} t}{\sqrt{l 1}}\right) \sqrt{g}+\mathrm{x} 2(t) _C 2 \sin \left(\frac{\sqrt{g} t}{\sqrt{l 1}}\right) \sqrt{g}\right) / \sqrt{l 1}
\end{aligned}
\end{aligned}
$$

Let us verify that the time derivative of V is zero modulo the system. Therefore, we first write the system in terms of the unknown functions $\mathrm{x} 1(t), \mathrm{x} 2(t), \mathrm{u}(t)$:

```
> S_mod := ApplyMatrix(R_mod, [x1(t),x2(t),u(t)], Alg);
```

$$
S _\bmod :=\left[\begin{array}{l}
\frac{g \times 1(t)}{l 1}+\left(\frac{d^{2}}{d t^{2}} \times 1(t)\right)-\frac{g \mathrm{u}(t)}{l 1} \\
\frac{g \times 2(t)}{l 1}+\left(\frac{d^{2}}{d t^{2}} \times 2(t)\right)-\frac{g \mathrm{u}(t)}{l 1}
\end{array}\right]
$$

We find that the time derivative of V is a linear combination of the rows of $S _m o d$:

$$
0
$$

Finally, even if we have an autonomous element in the system, we can parametrize all solutions of the system in terms of one arbitrary function ξ_{1} and two arbitrary constants $\quad C 1,{ }_{-} C 2$ these constants can easily be computed in terms of the initial conditions of the system):

```
> P := Parametrization(R_mod, Alg);
```

$$
\begin{aligned}
& >\text { L : = expand (evalm([coeff(diff(V, t), diff(x1(t),'\$'(t,2))), } \\
& \left.\left.>-\operatorname{coeff}(\operatorname{diff}(V, t), \operatorname{diff}(x 1(t), ' \$ '(t, 2)))] \& * S _m o d\right)[1]\right) ; \\
& L:=\frac{\mathrm{x} 1(t) _C 1 \sin \left(\frac{\sqrt{g} t}{\sqrt{l 1}}\right) g}{l 1}+\left(\frac{d^{2}}{d t^{2}} \mathrm{x} 1(t)\right)_{-} C 1 \sin \left(\frac{\sqrt{g} t}{\sqrt{l 1}}\right)+\frac{\mathrm{x} 1(t) _C 2 \cos \left(\frac{\sqrt{g} t}{\sqrt{l 1}}\right) g}{l 1} \\
& +\left(\frac{d^{2}}{d t^{2}} \times 1(t)\right)_{-} C 2 \cos \left(\frac{\sqrt{g} t}{\sqrt{l 1}}\right)-\frac{\mathrm{x} 2(t))_{-} C 1 \sin \left(\frac{\sqrt{g} t}{\sqrt{l 1}}\right) g}{l 1}-\left(\frac{d^{2}}{d t^{2}} \times 2(t)\right)-C 1 \sin \left(\frac{\sqrt{g} t}{\sqrt{l 1}}\right) \\
& -\frac{\mathrm{x} 2(t) _C 2 \cos \left(\frac{\sqrt{g} t}{\sqrt{l 1}}\right) g}{l 1}-\left(\frac{d^{2}}{d t^{2}} \mathrm{x} 2(t)\right)-C 2 \cos \left(\frac{\sqrt{g} t}{\sqrt{l 1}}\right) \\
& \text { > simplify (diff(V, t)-L); }
\end{aligned}
$$

$$
P:=\left[\begin{array}{c}
-C 1 \sin \left(\frac{\sqrt{g} t}{\sqrt{l 1}}\right)+{ }_{-} C 2 \cos \left(\frac{\sqrt{g} t}{\sqrt{l 1}}\right)+g \xi_{1}(t) \\
g \xi_{1}(t) \\
g \xi_{1}(t)+l 1\left(\frac{d^{2}}{d t^{2}} \xi_{1}(t)\right)
\end{array}\right]
$$

We can easily check that P gives a parametrization of some solutions of the system as we have:
> simplify(ApplyMatrix(R_mod, P, Alg));
$\left[\begin{array}{l}0 \\ 0\end{array}\right]$

We can prove that we parametrize all the C^{∞} solutions of the system. For more details, see A. Quadrat, D. Robertz, On Monge problem for uncontrollable linear systems, to appear.

