We study a bipendulum, namely a system composed of a bar where two pendula are fixed, one of
length /1 and one of length (2. See J.-F. Pommaret, Partial Differential Control Theory, Kluwer, 2001,
p. 569.

> with(Ore_algebra):
> with(OreModules):

The appropriate Ore algebra for this example is the Weyl algebra Alg = Ay, where D is the differential
operator w.r.t. time t:

> Alg := DefineOreAlgebra(diff=[D,t], polynom=[t], comm=[g, 11, 12]):

Note that we have to declare all constants appearing in the system equations (the gravitational constant
g, and the lengths 17, [2) as variables that ”comm”ute with D and ¢. Next we enter the system matrix:

> R := evalm([[D"2+g/11, O, -g/11]1, [0, D~2+g/12, -g/12]11);
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In terms of equations, the bipendulum is defined by:

> ApplyMatrix(R, [x1(t),x2(t),u(t)], Alg) = evalm([[0],[0]1);

gxli(t) () gu(t)

| [
g9x2(t) & _gu@)

2 2
We compute the formal adjoint of R:
> R_adj := Involution(R, Alg);
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By computing the first extension module ext”1 with values in Alg of the module associated with the
formal adjoint of R, we check controllability and, equivalently, parametrizability of the bipendulum:

> Ext := Exti(R_adj, Alg, 1);
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From the output of Exti, we see that the system is generically controllable because Ezxt[1] is the identity
matrix which means that there are no torsion elements in the Alg-module M which is associated with
the system. The interpretation of this structural fact is that the system has no autonomous elements
in the generic case. There may be configurations of the constants g, I1, {2, in which the bipendulum is
not controllable. We shall actually find the only configuration where it is not controllable below. Let us
write down the generic parametrization Ext[3] in a more familiar way with a free function &;:



> P := Parametrization(R, Alg);
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Therefore, all solutions of the system are parametrized by P, i.e.,
R(zl:22:u)T =0 < (21:22:u)" = BEat[3] &.
Since Alg is a principal ideal domain, torsion-free modules are free modules. Hence, the bipendulum is

also generically a flat system. A flat output of the system can be obtained by computing as a left-inverse
of the parametrization Ext[3]:

> 8 := LeftInverse(Ext[3], Alg);
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Then, a flat output of the system is defined by &; = S (21 : 22 : )T, namely:

> ApplyMatrix(S, [x1(t),x2(t),u(t)], Alg);
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We remark that this flat output is defined only if 1 — [2 # 0. Moreover, {1 = [2 describes the only case
in which the bipendulum may be uncontrollable.

Let us compute the Brunovsky canonical form of the system in the case where [1 # [2.

> B := Brunovsky(R, Alg);
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In other words, we have the following transformation between the system variables z1, 2 and v and the
Brunovsky variables z[i] and v:

> evalm([seq([z[i] (t)],i=1..4),[v(t)]])=ApplyMatrix(B, [x1(t),x2(t),u(t)], Alg);
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Let us check that the new variables z[i] and v satisfy a Brunovsky canonical form:

> F := Elimination(linalg[stackmatrix] (B, R), [x1,x2,ul,
> [seq(z[i],i=1..4),v,0,0], Alg):
>  ApplyMatrix(F[1], [x1(t),x2(t),u(t)], Alg)=
> ApplyMatrix(F[2], [seq(z[i](t),i=1..4),v(t)], Alg);
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We now turn to the case where the lengths of the pendula are equal:

> R_mod := subs(12=11, evalm(R));
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> Ext_mod := Exti(Involution(R_mod, Alg), Alg,
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The computation of the first extension module ext”1 with values in Alg of the module defined by the
formal adjoint of R_mod gives the torsion submodule t(
which corresponds to the row with entry 11 D? + g in Ext_mod[1].
in M, and the difference 21 - 22 of the positions of the pendula (relative to the bar) is an autonomous
element of the system. We conclude that the bipendulum is controllable if and only if 1 # (2.

Let us point out that we can directly obtain the torsion elements of M as follows:

> TorsionElements(R_mod,
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We can explicitly integrate this torsion element of M:

>

AutonomousElements (R_mod,

[x1(t),x2(t) ,ult)],
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M) of M: it is generated by the row r of Ext_mod|2]
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The fact that there exists an autonomous element in the system is equivalent to the existence of a first
integral of motion in the system. Indeed, let us recall that there exists a one-to-one correspondence
between the torsion elements and the first integrals of motion (for more details, see J.-F. Pommaret, A.
Quadrat, Localization and parametrization of linear multidimensional control systems, Systems & Control
Letters, 37 (1999), pp. 247-260). We can compute this first integral of motion by using the command
FirstIntegral:
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> V := FirstIntegral(R_mod, [x1(t),x2(t),u(t)], Alg);
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Let us verify that the time derivative of V' is zero modulo the system. Therefore, we first write the system
in terms of the unknown functions x1(¢), x2(t), u(t):

> S_mod := ApplyMatrix(R_mod, [x1(t),x2(t),u(t)], Alg);

gXl(t) (51:2 Xl(t)) _ gu(t)

i ()
gx 2 u
T (e x2) - Y

We find that the time derivative of V is a linear combination of the rows of S_mod:

> L := expand(evalm([coeff(diff(V, t), diff(x1(t),‘$‘(t,2))),
> -—coeff(diff(V, t), diff(x1(t),‘$(t,2)))] &* S_mod) [1]);
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> simplify(diff(V, t)-L);

Finally, even if we have an autonomous element in the system, we can parametrize all solutions of the
system in terms of one arbitrary function & and two arbitrary constants -C1, _C2 these constants can
easily be computed in terms of the initial conditions of the system):

> P := Parametrization(R_mod, Alg);
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We can easily check that P gives a parametrization of some solutions of the system as we have:
> simplify(ApplyMatrix(R_mod, P, Alg));
0
0

We can prove that we parametrize all the C°° solutions of the system. For more details, see A. Quadrat,
D. Robertz, On Monge problem for uncontrollable linear systems, to appear.



