Let us consider the example of a two reflector antenna. See H. Mounier, Propriétés structurelles des systèmes linéaires à retards: aspects théoriques et pratiques, PhD Thesis, University of Orsay, France, 1995.

```
> with(Ore_algebra):
> with(OreModules):
```

After loading the required Maple packages, the first step is to define the Ore algebra.
Let us define an Ore algebra with a differential operator $D t$ w.r.t. time t and a time-delay operator δ. Note also that the constants $K 1, K 2, T e, K p, K c$ have to be declared in the definition of the Ore algebra.

```
> Alg := DefineOreAlgebra(diff=[Dt,t], dual_shift=[delta,s], polynom=[t,s],
> comm=[K1,K2,Te,Kp,Kc], shift_action=[delta,t]):
```

Enter the matrix R of the linear differential time-delay system:

$$
\begin{aligned}
& >\mathrm{R}:=\text { evalm([[Dt, }-\mathrm{K} 1,0,0,0,0,0,0,0] \text {, } \\
& >\quad[0, \mathrm{Dt}+\mathrm{K} 2 / \mathrm{Te}, 0,0,0,0,-\mathrm{Kp} / \mathrm{Te} * d e l t a,-\mathrm{Kc} / \mathrm{Te} \text { delta, }-\mathrm{Kc} / \mathrm{Te} * d e l \mathrm{ta} \text {], } \\
& >\quad[0,0, \mathrm{Dt},-\mathrm{K} 1,0,0,0,0,0] \text {, } \\
& >\quad[0,0,0, \mathrm{Dt}+\mathrm{K} 2 / \mathrm{Te}, 0,0,-\mathrm{Kc} / \mathrm{Te} * d e l t a,-K p / T e * d e l t a,-K c / T e * d e l t a], \\
& >[0,0,0,0, \mathrm{Dt},-\mathrm{K} 1,0,0,0] \text {, } \\
& >[0,0,0,0,0, \mathrm{Dt}+\mathrm{K} 2 / \mathrm{Te},-\mathrm{Kc} / \mathrm{Te} * \text { delta, }-\mathrm{Kc} / \mathrm{Te} * d e l t a,-K p / T e * d e l t a]]) \text {; } \\
& R:=\left[\begin{array}{ccccccccc}
D t & -K 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & D t+\frac{K 2}{T e} & 0 & 0 & 0 & 0 & -\frac{K p \delta}{T e} & -\frac{K c \delta}{T e} & -\frac{K c \delta}{T e} \\
0 & 0 & D t & -K 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & D t+\frac{K 2}{T e} & 0 & 0 & -\frac{K c \delta}{T e} & -\frac{K p \delta}{T e} & -\frac{K c \delta}{T e} \\
0 & 0 & 0 & 0 & D t & -K 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & D t+\frac{K 2}{T e} & -\frac{K c \delta}{T e} & -\frac{K c \delta}{T e} & -\frac{K p \delta}{T e}
\end{array}\right]
\end{aligned}
$$

Then, we use an involution θ of $A l g$ in order to obtain $\theta(R)$:

```
> R_adj := Involution(R, Alg):
```

By means of the next command, we compute the torsion-free part (if Ext1[1] is not the identity matrix, then the torsion part is given by Ext1[2]) and a parametrization of the torsion-free part in Ext1[3]. Equivalently, we check whether or not the two reflector antenna is controllable:

```
> st := time(): Ext1 := Exti(R_adj, Alg, 1): time() - st;
                                    0.920
> Ext1[1];
```

$\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$

We conclude that the first extension module ext ${ }^{\wedge} 1$ with values in $A l g$ of the $A l g$-module N associated with $R_{-} a d j$ is the zero module. Hence, the module defined by R is torsion-free. Equivalently, R is parametrizable and Ext1[3] gives a parametrization of R which involves three free parameters:

```
> Ext1[3];
```

$$
\left[\begin{array}{ccc}
K 1 \delta K c & K 1 \delta K c & K p K 1 \delta \\
D t \delta K c & D t \delta K c & K p \delta D t \\
K 1 \delta K c & K p K 1 \delta & K 1 \delta K c \\
D t \delta K c & K p \delta D t & D t \delta K c \\
K p K 1 \delta & K 1 \delta K c & K 1 \delta K c \\
K p \delta D t & D t \delta K c & D t \delta K c \\
0 & 0 & D t^{2} T e+D t K 2 \\
0 & D t^{2} T e+D t K 2 & 0 \\
D t^{2} T e+D t K 2 & 0 & 0
\end{array}\right]
$$

The same parametrization can be obtained by using Parametrization. The result involves three free functions $\xi_{1}, \xi_{2}, \xi_{3}$:
> Parametrization(R, Alg);

$$
\left[\begin{array}{c}
K 1 K c \xi_{1}(t-1)+K 1 K c \xi_{2}(t-1)+K p K 1 \xi_{3}(t-1) \\
K c \mathrm{D}\left(\xi_{1}\right)(t-1)+K c \mathrm{D}\left(\xi_{2}\right)(t-1)+K p \mathrm{D}\left(\xi_{3}\right)(t-1) \\
K 1 K c \xi_{1}(t-1)+K p K 1 \xi_{2}(t-1)+K 1 K c \xi_{3}(t-1) \\
K c \mathrm{D}\left(\xi_{1}\right)(t-1)+K p \mathrm{D}\left(\xi_{2}\right)(t-1)+K c \mathrm{D}\left(\xi_{3}\right)(t-1) \\
K p K 1 \xi_{1}(t-1)+K 1 K c \xi_{2}(t-1)+K 1 K c \xi_{3}(t-1) \\
K p \mathrm{D}\left(\xi_{1}\right)(t-1)+K c \mathrm{D}\left(\xi_{2}\right)(t-1)+K c \mathrm{D}\left(\xi_{3}\right)(t-1) \\
T e\left(\mathrm{D}^{(2)}\right)\left(\xi_{3}\right)(t)+K 2 \mathrm{D}\left(\xi_{3}\right)(t) \\
T e\left(\mathrm{D}^{(2)}\right)\left(\xi_{2}\right)(t)+K 2 \mathrm{D}\left(\xi_{2}\right)(t) \\
T e\left(\mathrm{D}^{(2)}\right)\left(\xi_{1}\right)(t)+K 2 \mathrm{D}\left(\xi_{1}\right)(t)
\end{array}\right]
$$

The two reflector antenna is not a flat system because the second extension module ext 2 with values in Alg of the Alg-module N is different from zero, as shown next:

```
> st := time(): Ext2 := Exti(R_adj, Alg, 2): time() - st;
                                    0.750
> Ext2[1];
```

$\left[\begin{array}{ccc}\delta & 0 & 0 \\ D t^{2} T e+D t K 2 & 0 & 0 \\ 0 & \delta & 0 \\ 0 & D t^{2} T e+D t K 2 & 0 \\ 0 & 0 & \delta \\ 0 & 0 & D t^{2} T e+D t K 2\end{array}\right]$

Since the torsion-free degree $\mathrm{i}(M)$ of M is equal to 1 (i.e., M is a torsion-free but not a free Alg-module), we can find a polynomial π in the variable δ such that the system is π-free:

```
> PiPolynomial(R, Alg, [delta]);
```

By definition of the π-polynomial (Mounier, 1995), this means that if we introduce the time-advance operator in the system of the two reflector antenna, then it becomes a flat system. Hence, the module associated with this system is a free module (over the Ore algebra which is obtained by adjoining the advance operator δ^{-1} to Alg). We shall find a basis for this module below.

Let us remark that the fact that the two reflector antenna is not a flat system (without advance operator) is coherent with the fact that the full row-rank matrix R does not admit a right-inverse. We remember that a full row-rank matrix R admits a right-inverse if and only if the module which is associated
with it is projective. By the theorem of Quillen-Suslin, for modules over commutative polynomial rings, projectiveness is the same as freeness. This remark applies to our situation as we have:

```
> SyzygyModule(R, Alg); RightInverse(R, Alg);
INJ(6)
    []
```

The fact that the system is not flat is also coherent with the fact that its parametrization Ext1 [3] does not admit a left-inverse: a linear system is flat if and only if it is parametrizable and one of its parametrization admits a left-inverse.

```
> LeftInverse(Ext1[3], Alg);
```

We finish by computing a basis of the free module M_{2} which is associated to the system of the two reflector antenna, when introducing the time-advance operator in the Ore algebra Alg. In the terminology of control, such a basis is called a flat output. We apply LocalLeftInverse to the parametrization Ext1 [3] of the system and allow the algorithm to invert δ :

```
> S := LocalLeftInverse(Ext1[3], [delta], Alg);
```

$$
\begin{aligned}
& S:=\left[\begin{array}{ccccccccc}
-\frac{K c}{\delta K 1 \% 1} & 0 & -\frac{K c}{\delta K 1 \% 1} & 0 & \frac{K p+K c}{\delta K 1 \% 1} & 0 & 0 & 0 & 0 \\
-\frac{K c}{\delta K 1 \% 1} & 0 & \frac{K p+K c}{\delta K 1 \% 1} & 0 & -\frac{K c}{\delta K 1 \% 1} & 0 & 0 & 0 & 0 \\
\frac{K p+K c}{\delta K 1 \% 1} & 0 & -\frac{K c}{\delta K 1 \% 1} & 0 & -\frac{K c}{\delta K 1 \% 1} & 0 & 0 & 0 & 0
\end{array}\right] \\
& \% 1:=K p^{2}-2 K c^{2}+K p K c
\end{aligned}
$$

By construction, the matrix S is a left-inverse of Ext1[3]:

```
> simplify(evalm(S &* Ext1[3]));
\[
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\]
```

Therefore, $\left(z_{1}: z_{2}: z_{3}\right)^{T}=S\left(x_{1}: \ldots: x_{6}: u_{1}: u_{2}: u_{3}\right)^{T}$ is a basis of the $A l g\left[\delta^{-1}\right]$-module M_{2} associated with R, and thus, a flat output of the two reflector antenna, when we introduce the time-advance operator. More precisely, a flat output $\left(z_{1}: z_{2}: z_{3}\right)^{T}$ of the system is defined by:

```
> evalm([seq([z[i](t)],i=1..3)])=ApplyMatrix(S,[seq(x[i](t),i=1..6),
> seq(u[i](t),i=1..3)],Alg);
```

$$
\begin{aligned}
& {\left[\begin{array}{l}
z_{1}(t) \\
z_{2}(t) \\
z_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{K c x_{1}(t+1)}{K 1 \% 1}-\frac{K c x_{3}(t+1)}{K 1 \% 1}+\frac{(K c+K p) x_{5}(t+1)}{K 1 \%_{1}} \\
-\frac{K c x_{1}(t+1)}{K 1 \% 1}+\frac{(K c+K p) x_{3}(t+1)}{K 1 \% 1}-\frac{K c x_{5}(t+1)}{K 1 \% 1} \\
\frac{(K c+K p) x_{1}(t+1)}{K 1 \% 1}-\frac{K c x_{3}(t+1)}{K 1 \% 1}-\frac{K c x_{5}(t+1)}{K 1 \% 1}
\end{array}\right]} \\
& \% 1:=K p K c-2 K c^{2}+K p^{2}
\end{aligned}
$$

Finally, if we substitute $\left(z_{1}: z_{2}: z_{3}\right)^{T}$ into the parametrization Ext1[3] of the system, we obtain $\left(x_{1}: \ldots: x_{6}: u_{1}: u_{2}: u_{3}\right)^{T}=T\left(x_{1}: \ldots: x_{6}: u_{1}: u_{2}: u_{3}\right)^{T}$, where the matrix T is defined by:

$$
\begin{aligned}
& T:=\left[\begin{array}{c}
1,0,0,0,0,0,0,0,0 \\
\frac{D t}{K 1}, 0,0,0,0,0,0,0,0 \\
0,0,1,0,0,0,0,0,0 \\
0,0, \frac{D t}{K 1}, 0,0,0,0,0,0 \\
0,0,0,0,1,0,0,0,0 \\
0,0,0,0, \frac{D t}{K 1}, 0,0,0,0 \\
\frac{D t(D t T e+K 2)(K p+K c)}{\delta K 1 \% 1}, 0, \% 2,0, \% 2,0,0,0,0 \\
\% 2,0, \frac{D t(D t T e+K 2)(K p+K c)}{\delta K 1 \% 1}, 0, \% 2,0,0,0,0 \\
\% 2,0, \% 2,0, \frac{D t(D t T e+K 2)(K p+K c)}{\delta K 1 \% 1}, 0,0,0,0
\end{array}\right] \\
& \% 1:=K p^{2}-2 K c^{2}+K p K c \\
& \% 2:=-\frac{D t(D t T e+K 2) K c}{\delta K 1 \% 1}
\end{aligned}
$$

We notice that $\left(x_{2}: x_{4}: x_{6}: u_{1}: u_{2}: u_{3}\right)^{T}$ is expressed in terms of x_{1}, x_{3} and x_{5} only. Thus, $\left(x_{1}: x_{3}: x_{5}\right)$ is also a basis of the $\operatorname{Alg}\left[\delta^{-1}\right]$-module M_{2} (compare with (Mounier, 1995)). More precisely, we have:

```
> evalm([seq([x[i](t)=ApplyMatrix(T, [seq(x[j](t), j=1..6),seq(u[j](t), j=1..3)],
> Alg)[i,1]], i=1..6)]);
```

$$
\left[\begin{array}{c}
x_{1}(t)=x_{1}(t) \\
x_{2}(t)=\frac{\mathrm{D}\left(x_{1}\right)(t)}{K 1} \\
x_{3}(t)=x_{3}(t) \\
x_{4}(t)=\frac{\mathrm{D}\left(x_{3}\right)(t)}{K 1} \\
x_{5}(t)=x_{5}(t) \\
x_{6}(t)=\frac{\mathrm{D}\left(x_{5}\right)(t)}{K 1}
\end{array}\right]
$$

$>$ evalm([seq([u[i] (t)=ApplyMatrix(T, [seq(x[j](t), j=1..6), seq(u[j](t), j=1..3)], $>$ Alg) $[6+i, 1]], i=1 . .3)]$);

$$
\begin{aligned}
& {\left[u_{1}(t)=\frac{K 2(K c+K p) \mathrm{D}\left(x_{1}\right)(t+1)}{K 1 \% 1}+\frac{T e(K c+K p)\left(\mathrm{D}^{(2)}\right)\left(x_{1}\right)(t+1)}{K 1 \% 1}\right.} \\
& -\frac{K 2 K c \mathrm{D}\left(x_{3}\right)(t+1)}{K 1 \% 1}-\frac{T e K c\left(\mathrm{D}^{(2)}\right)\left(x_{3}\right)(t+1)}{K 1 \% 1}-\frac{K 2 K c \mathrm{D}\left(x_{5}\right)(t+1)}{K 1 \% 1} \\
& \left.-\frac{T e K c\left(\mathrm{D}^{(2)}\right)\left(x_{5}\right)(t+1)}{K 1 \% 1}\right] \\
& {\left[u_{2}(t)=-\frac{K 2 K c \mathrm{D}\left(x_{1}\right)(t+1)}{K 1 \% 1}-\frac{T e K c\left(\mathrm{D}^{(2)}\right)\left(x_{1}\right)(t+1)}{K 1 \% 1}+\frac{K 2(K c+K p) \mathrm{D}\left(x_{3}\right)(t+1)}{K 1 \% 1}\right.} \\
& \left.+\frac{T e(K c+K p)\left(\mathrm{D}^{(2)}\right)\left(x_{3}\right)(t+1)}{K 1 \% 1}-\frac{K 2 K c \mathrm{D}\left(x_{5}\right)(t+1)}{K 1 \% 1}-\frac{T e K c\left(\mathrm{D}^{(2)}\right)\left(x_{5}\right)(t+1)}{K 1 \% 1}\right] \\
& {\left[u_{3}(t)=-\frac{K 2 K c \mathrm{D}\left(x_{1}\right)(t+1)}{K 1 \% 1}-\frac{T e K c\left(\mathrm{D}^{(2)}\right)\left(x_{1}\right)(t+1)}{K 1 \% 1}-\frac{K 2 K c \mathrm{D}\left(x_{3}\right)(t+1)}{K 1 \% 1}\right.} \\
& -\frac{T e K c\left(\mathrm{D}^{(2)}\right)\left(x_{3}\right)(t+1)}{K 1 \% 1}+\frac{K 2(K c+K p) \mathrm{D}\left(x_{5}\right)(t+1)}{K 1 \% 1} \\
& \left.+\frac{T e(K c+K p)\left(\mathrm{D}^{(2)}\right)\left(x_{5}\right)(t+1)}{K 1 \% 1}\right] \\
& \% 1:=K p K c-2 K c^{2}+K p^{2}
\end{aligned}
$$

