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Baer’s extension problem
for multidimensional
linear systems

Alban Quadrat∗ and Daniel Robertz†

Abstract. Within an algebraic analysis approach, the purpose of this paper is to
constructively solve the following problem: given two fixed multidimensional linear
systems B1 and B2, parametrize the multidimensional linear systems B which con-
tain B1 as a subsystem and satisfy that B/B1 is isomorphic to B2. In particular,
we parametrize the equivalence classes of multidimensional linear systems B which
admit a fixed parametrizable subsystem Bp and satisfy that B/Bp is isomorphic to
a fixed autonomous system Ba.

Keywords. Multidimensional linear systems, behavioural approach, Baer exten-
sions, differential time-delay systems, constructive algebra, module theory.

1 Introduction
A well-known result due to R. E. Kalman states that any time-invariant 1-D linear
system defined by a state-space representation can be decomposed into the direct
sum of its controllable (i.e., parametrizable) and autonomous subsystems ([11]).
Within the behavioural approach, this result was extended by J. C. Willems to time-
invariant polynomial linear systems ([16]). Using an algebraic analysis approach,
M. Fliess generalized this result in [10] to time-varying linear systems of ordinary
differential equations whose coefficients belong to a differential field. However, it
is well-known that this result does not admit a generalization for multidimensional
linear systems.

In the recent works [20, 21], we constructively characterized when a mul-
∗INRIA Sophia Antipolis, APICS project, 2004 Route des Lucioles BP 93, 06902 Sophia An-

tipolis Cedex, France, Alban.Quadrat@sophia.inria.fr.
†Lehrstuhl B für Mathematik, RWTH - Aachen, Templergraben 64, 52056 Aachen, Germany,

daniel@momo.math.rwth-aachen.de.



“BaerExtension3”
2008/5/14
pagei

i
i

i

i
i

i
i

tidimensional linear system decomposed into a direct sum of its parametrizable
subsystem and the system formed by its autonomous elements. The corresponding
algorithm was implemented in the library OreModules ([6, 7]) and illustrated by
different explicit examples. Moreover, we applied these results to the Monge problem
which questions the existence of parametrizations of the solutions of multidimen-
sional linear systems and to optimal control and variational problems ([20, 21]).

Within an algebraic analysis approach, we constructively solve here the more
general problem consisting in parametrizing all the multidimensional linear sys-
tems C whose parametrizable subsystems are isomorphic to a given parametrizable
system Bp and such that C/Bp are isomorphic to a given autonomous system Ba,
i.e., C/Bp

∼= Ba. In particular, Bp (resp., Ba) can be chosen as the parametrizable
subsystem (resp., the system formed by the autonomous elements) of a multidi-
mensional linear system B. Solving this last problem allows us to parametrize all
the multidimensional linear systems which have the same parametrizable subsystem
and autonomous system as B. We then show how that result allows us to find again
those obtained in [20, 21]. Our results are based on the important concept of Baer
extensions developed in homological algebra and its connections with the extension
abelian group ext1D(M,N) ([5, 12, 23]). This problem was pointed out to us by
S. Shankar (Chennai Mathematical Institute) ([24]). We would like to thank him.

The plan of the paper is the following one: In Section 2, we recall Baer’s inter-
pretation of the elements of the abelian group ext1D(M,N) in terms of equivalence
classes of extensions of N by M . In Section 3, we explicitly characterize ext1D(M,N)
as an abelian group, which allows us in Section 4 to parametrize the equivalence
classes of multidimensional linear systems B which admit as a subsystem the system
B1 defined by M and satisfy that B/B1 are isomorphic to the system B2 defined by
N . In Section 5, the previous results are applied to the particular situation where
N = t(P ) is the torsion left D-submodule of a given finitely presented left D-module
P and M = P/t(P ). We finally explain how to find again the results of [20, 21].

In what follows, we refer to [6, 13, 18, 25] and the references therein for the
concepts relevant to the module-theoretic approach to systems theory.

2 Baer extensions and Baer sums
We refer to [5, 12, 23] for the classical definitions of an exact sequence and a complex.

Let us first introduce the concept of Baer extensions which will play an im-
portant role in what follows.

Definition 1 ([5, 12, 23]). We have the following definitions:

1. Let M and N be two left D-modules. An extension of N by M is an exact
sequence e of left D-modules of the form:

e : 0 −→ N
f−→ E

g−→M −→ 0. (1)
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2. Two extensions of N by M , ei : 0 −→ N
fi−→ Ei

gi−→ M −→ 0, i = 1, 2,
are said to be equivalent, denoted by e1 ∼ e2, if there exists a D-isomorphism
φ : E1 −→ E2 such that we have the commutative exact diagram

0 −→ N
f1−→ E1

g1−→ M −→ 0
‖ ↓ φ ‖

0 −→ N
f2−→ E2

g2−→ M −→ 0,

or, equivalently, such that f2 = φ ◦ f1 and g1 = g2 ◦ φ hold.

3. We denote by [e] the equivalence class of the extension e for the equivalence
relation ∼. The set of all equivalence classes of extensions of N by M is
denoted by eD(M,N).

4. A short exact sequence of the form (1) is said to split if E ∼= M ⊕N , where ⊕
(resp., ∼=) denotes the direct sum (resp., that two modules are isomorphic).

Let us introduce the concept of Baer sum of two extensions ([5, 12, 23]).

Definition 2 ([5]). Let ei : 0 −→ N
fi−→ Ei

gi−→ M −→ 0, i = 1, 2, be two
extensions of N by M and let us define the following two D-morphisms:

−f1 ⊕ f2 : N −→ E1 ⊕ E2

n 7−→ (−f1(n), f2(n))
(g1,−g2) : E1 ⊕ E2 −→ M

(a1, a2) 7−→ g1(a1)− g2(a2).

Then, the Baer sum of the extensions e1 and e2, denoted by e1 + e2, is defined by
the left D-module E3 = ker(g1,−g2)/im (−f1⊕f2), i.e., by the short exact sequence

0 −→ N
f3−→ E3

g3−→ M −→ 0,

n 7−→ $(f1(n), 0) = $(0, f2(n))
$(a1, a2) 7−→ g1(a1) = g2(a2)

where $ : ker(g1,−g2) −→ E3 denotes the canonical projection onto E3.

We have the following classical but important result on extensions.

Theorem 3 ([5, 12, 23]). The set eD(M,N) equipped with the Baer sum forms
an abelian group: the equivalence class of the split short exact sequence

0 −→ N
i2−→M ⊕N

p1−→M −→ 0

defines the zero element of eD(M,N) and the inverse of the equivalence class [e] of
(1) is defined by the equivalence class of the following two equivalent extensions:

0 −→ N
−f−→ E

g−→M −→ 0, 0 −→ N
f−→ E

−g−→M −→ 0.
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3 Computing extensions of finitely presented modules
In this section, we show how to compute the abelian group ext1D(M,N), when M
and N are two finitely generated left D-modules over a noetherian domain D ([23]).

By assumption, the left D-module M admits the finite free resolution

. . .
.R3−−→ D1×p2 .R2−−→ D1×p1 .R1−−→ D1×p0 π−→M −→ 0, (2)

namely, (2) is an exact sequence of left D-modules where Ri ∈ Dpi×pi−1 and
(.Ri)(λ) = λ Ri, for all λ ∈ D1×pi . Applying the contravariant left exact func-
tor homD( · , N) to the complex . . .

.R3−−→ D1×p2
.R2−−→ D1×p1

.R1−−→ D1×p0 −→ 0, we
obtain the following complex of abelian groups

. . .
R3.←−− Np2 R2.←−− Np1 R1.←−− Np0 ←− 0, (3)

where (Ri.)(η) = Ri η, for all η ∈ Npi−1 . For more details, see, e.g., [5, 12, 19, 23].

Applying the covariant right exact functor Dm ⊗D · to the finite presentation
(i.e., to the exact sequence) D1×t .S−→ D1×s δ−→ N −→ 0 of the left D-module
N , and using the fact that Dm is a free right D-module, and thus, a flat right
D-module, we obtain the following exact sequence:

Dm×t .S−→ Dm×s idm⊗δ−−−−→ Nm −→ 0. (4)

For more details, see, e.g., [5, 12, 19, 23].

Using the notations p = p0, q = p1, r = p2, R = R1 and combining (3) and
(4), we obtain the following commutative diagram of abelian groups with exact
columns:

0 0 0

Nr

OO

Nq
R2.oo

OO

NpR.oo

OO

Dr×s

idr⊗δ

OO

Dq×s
R2.oo

idq⊗δ

OO

Dp×sR.oo

idp⊗δ

OO

Dr×t

.S

OO

Dq×t
R2.oo

.S

OO

Dp×t.
R.oo

.S

OO

(5)

Let us now introduce the abelian group ext1D(M,N) = kerN (R2.)/imN (R.), where:

kerN (R2.) = {η ∈ Nq | R2 η = 0} = {η = (idq ⊗ δ)(A) | A ∈ Dq×s : R2 η = 0},

imN (R.) = R Np = {η = (idq ⊗ δ)(A) | ∃ B ∈ Dp×s : η = R ((idp ⊗ δ)(B))}.

From (5), we get (R2.)◦(idq⊗δ) = (idr⊗δ)◦(R2.) and (R.)◦(idp⊗δ) = (idq⊗δ)◦(R.).
Hence, using the exactness of the columns of (5), we obtain:

R2((idq ⊗ δ)(A)) = (idr ⊗ δ)(R2 A) = 0 ⇔ ∃ B ∈ Dr×t : R2 A = B S.
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(idq ⊗ δ)(A) = R ((idp ⊗ δ)(X)) = (idq ⊗ δ)(R X)
⇔ (idq ⊗ δ)(A−R X) = 0 ⇔ ∃ Y ∈ Dq×t : A = R X + Y S.

Hence, we obtain the following results.

Lemma 4. With the previous notations, we have:

kerN (R2.) = {(idq ⊗ δ)(A) | A ∈ Dq×s, ∃ B ∈ Dr×t : R2 A = B S}, (6)
imN (R.) = {(idq ⊗ δ)(A) | ∃ X ∈ Dp×s, ∃ Y ∈ Dq×t : A = R X + Y S}

= (R Dp×s + Dq×t S)/(Dq×t S). (7)

Moreover, if we define the abelian group

Ω = {A ∈ Dq×s | ∃ B ∈ Dr×t : R2 A = B S}, (8)

then we have the following isomorphism of abelian groups

ext1D(M,N) = kerN (R2.)/imN (R.) ι−→ Ω/(R Dp×s + Dq×t S),
ρ((idq ⊗ δ)(A)) 7−→ ε(A),

(9)

where ρ : kerN (R2.) −→ ext1D(M,N) (resp., ε : Ω −→ Ω/(R Dp×s + Dq×t S))
denotes the canonical projection onto ext1D(M,N) (resp., Ω/(R Dp×s + Dq×t S)).

We let the reader check that ι is well-defined and bijective ([22]).

We recall that the abelian group ext1D(M,N) characterizes the obstructions for
the existence of ξ ∈ Nq satisfying the inhomogeneous linear system R ξ = ζ, where
ζ ∈ Np satisfies the compatibility condition R2 ζ = 0. In particular, the vanishing
of ext1D(M,N) implies that R2 ζ = 0 is a necessary and sufficient condition for the
existence of ξ ∈ Nq satisfying R ξ = ζ. For more details, see [6, 7, 18, 19].

If kerD(.R) = 0, i.e., R2 = 0, we then get Ω = Dq×s. Another simple case is
N = D1×s, i.e., S = 0, for which we have Ω = {A ∈ Dq×s | R2 A = 0} (see [4]).

If D is a commutative ring and ⊗ denotes the Kronecker product, then using
the identity U V W = row(V ) (UT⊗W ), where row(V ) is obtained by concatenating
the rows of V , we have Ω/(R Dp×s + Dq×t S) ∼= D1×u Z/(D1×(p s+q t) X), where

X =

(
RT ⊗ Is

Iq ⊗ S

)
∈ D(p s+q t)×q s, Y =

(
RT

2 ⊗ Is

Ir ⊗ S

)
∈ D(q s+r t)×r s,

and Z ∈ Du×q s is defined by kerD(.Y ) = D1×u (Z − T ) and T ∈ Du×r t. More-
over, if D is a polynomial ring over a computable field k (e.g., k = Q, Fp), then,
using Gröbner or Janet bases, we can explicitly describe the D-module ext1D(M,N)
by means of generators and relations ([3, 8]). For the implementations of the cor-
responding algorithms, see the packages homalg ([2, 3]) and OreMorphisms ([9]).

Example 5. Let us consider the commutative polynomial ring D = Q(α) [∂, δ] of
differential time-delay operators, where α ∈ R, and the following two matrices:

R =

(
1 1 0
0 1 + δ2 −α ∂ δ

)
∈ D2×3, S =

(
∂ −∂

∂ δ2 −∂

)
∈ D2×2. (10)
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Let us define the D-modules M = D1×3/(D1×2 R) and N = D1×2/(D1×2 S). We
have R2 = 0, and thus, Ω = D2×2, ext1D(M,N) ∼= D2×2/(R D3×2 + D2×2 S) and:

ext1D(M,N) ∼= D1×4/

(
D1×10

(
RT ⊗ I2

I2 ⊗ S

))
. (11)

We denote by L the matrix appearing in (11) and ε : D1×4 −→ P = D1×4/(D1×10 L)
the canonical projection onto P . Denoting by vi = ε(gi) the residue class in P of
the ith vector of the standard basis {gi}1≤i≤4 of D1×4, we obtain:

vi = 0, i = 1, 2, (1 + δ2) vi = 0, i = 3, 4, ∂ vi = 0, i = 3, 4.

Hence, the D-module P is generated by v3 = ε((0, 0, 1, 0)) and v4 = ε((0, 0, 0, 1)).
Transforming back the row vectors g3 and g4 into 2 × 2 matrices, we obtain that
the D-module D2×2/(R D3×2 + D2×2 S) is generated by ε(A1) and ε(A2), where:

A1 =
(

0 0
1 0

)
, A2 =

(
0 0
0 1

)
. (12)

It is a torsion D-module as we have (1+δ2) ε(Ai) = 0 and ∂ ε(Ai) = 0, i = 1, 2. Us-
ing (9), we obtain that the ρ((id2⊗ δ)(Ai))’s generate the D-module ext1D(M,N) =
N2/(R N3) and satisfy (1+ δ2) ρ((id2⊗ δ)(Ai)) = 0, ∂ ρ((id2⊗ δ)(Ai)) = 0, i = 1, 2.

If D is a non-commutative ring, then ext1D(M,N) is an abelian group, but not
a left D-module. If D is a k-algebra, where k is a field contained in the center of D,
then ext1D(M,N) is a k-vector space. If M and N are two finite-dimensional k-vector
spaces or two holonomic left modules over the k-algebra of differential operators with
k-polynomial (resp., k-rational) coefficients (the so-called Weyl algebras An(k) and
Bn(k)), then we can compute a k-basis of ext1D(M,N) (see [8] and the references
therein). However, ext1D(M,N) is generally an infinite-dimensional k-vector space.
If D is a non-commutative polynomial ring over which Gröbner or Janet bases exist
(e.g., the Weyl algebras, certain classes of Ore algebras [6]), then we can compute the
k-vector space formed by the matrices A ∈ Dq×s with a fixed order in the functional
operators and a fixed degree (resp., fixed degrees) in the polynomial (resp., rational)
coefficients which satisfy R2 A ∈ Dr×t S. See [8] for more details and the package
OreMorphisms ([9]) for an implementation.

4 An explicit description of ext1
D(M, N)

The following theorem is an important result in homological algebra which can be
traced back to the pioneering work of R. Baer ([1]).

Theorem 6 ([5, 12, 23]). Let M and N be two left D-modules. Then, the abelian
groups ext1D(M,N) and eD(M,N) are isomorphic.

The explicit description of ext1D(M,N) − being proved by making Theorem 6
constructive for the interesting class of modules in systems theory − can be given
now. For the sake of brevity, we refer to [22, Theorem 3] for the proof.
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Theorem 7. Let R ∈ Dq×p and S ∈ Dt×s be two matrices with entries in D and
M = D1×p/(D1×q R) and N = D1×s/(D1×t S) the left D-modules finitely presented
by R resp. S. Let us denote by R2 ∈ Dr×q a matrix satisfying kerD(.R) = D1×r R2.
Then, every equivalence class of extensions of N by M is represented by

e : 0 −→ N
α−→ E

β−→M −→ 0, (13)

where the left D-module E is defined by

D1×(q+t) .Q−→ D1×(p+s) %−→ E −→ 0, Q =
(

R −T
0 S

)
∈ D(q+t)×(p+s), (14)

and T is a certain element of Ω = {A ∈ Dq×s | ∃ B ∈ Dr×t : R2 A = B S}.
Finally, the equivalence class [e] only depends on the residue class ε(T ) of

T ∈ Ω in Ω/(R Dp×s + Dq×t S) = ι−1(ext1D(M,N)), where ι is defined in (9).

Example 8. Let us consider again Example 5. Theorem 7 says there exist two
non-trivial equivalence classes of extensions of N by M respectively defined by

Ei = D1×5/

(
D1×4

(
R −Ti

0 S

))
, where the matrices R and S are given by (10)

and the matrices T1 = A1 and T2 = A2 by (12). Finally, the trivial extension of N
by M (i.e., the split extension) is defined by the D-module E0 where T0 = 0.

Let F be a left D-module. Applying the contravariant left exact functor
homD( · ,F) to (13), we obtain the following results [22, Corollary 1].

Corollary 9. With the previous notations, we have the following results:

1. kerF (S.) α?

←−− kerF (Q.)
β?

←− kerF (R.)←− 0 is an exact sequence, where the D-
morphism β? (resp., α?) is defined by β?(ξ) = (ξT 0T )T , for all ξ ∈ kerF (R.)
(resp., α?(η) = η2, for all η = (ηT

1 ηT
2 )T , η1 ∈ Fp and η2 ∈ Fs).

2. If F is an injective left D-module ([23]), then we have the exact sequence:

0←− kerF (S.) α?

←−− kerF (Q.)
β?

←− kerF (R.)←− 0. (15)

Moreover, if F is cogenerator ([23]), then (15) is exact if and only if (13) is.

5 Applications to multidimensional systems theory
The purpose of this section is to parametrize all equivalence classes of multidimen-
sional linear systems which have fixed parametrizable subsystem and autonomous
system. Let R ∈ Dq×p be a matrix with entries in a noetherian domain D. If
M = D1×p/(D1×q R) denotes the left D-module finitely presented by R, then
t(M) = {m ∈ M | ∃ 0 6= a ∈ D : am = 0} is a left D-submodule of M and
we have the following canonical short exact sequence (see, e.g., [5, 12, 23]):

0 −→ t(M) ι−→M
τ−→M/t(M) −→ 0. (16)
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An element of t(M) is called a torsion element of M and M is said to be torsion-
free if t(M) = 0 and torsion if t(M) = M (see, e.g., [23]). Constructive results
developed in [6, 7, 18] show that there exists a matrix R′ ∈ Dq′×p satisfying:

t(M) = (D1×q′ R′)/(D1×q R), M/t(M) = D1×p/(D1×q′ R′).

If F is an injective left D-module, applying the exact functor homD( · ,F) to
the exact sequence (16), we then get the exact sequence of abelian groups:

0←− homD(t(M),F) ι?

←− homD(M,F) τ?

←− homD(M/t(M),F)←− 0.

The linear system kerF (R′.) = {ζ ∈ Fp | R′ ζ = 0} ∼= homD(M/t(M),F) is the
parametrizable subsystem of kerF (R.) = {η ∈ Fp | R η = 0} ∼= homD(M,F) as there
always exists a matrix Q′ ∈ Dp×m such that kerF (R′.) = Q′ Fm, i.e., any solution
η ∈ Fp of the system R′ η = 0 has the form η = Q′ ξ for a certain ξ ∈ Fm. For more
details, see [6, 15, 18, 25]. For certain classes of multidimensional systems, kerF (R′.)
is also called the controllable subsystem of kerF (R.) (see, e.g., [6, 15, 17, 25]).

If we denote by R′′ ∈ Dq×q′ (resp., R′2 ∈ Dr′×q′) a matrix satisfying R = R′′R′

(resp., kerD(.R′) = D1×r′ R′2), then we have the following D-isomorphism ([8, 21]):

t(M) ∼= D1×q′/

(
D1×(q+r′)

(
R′′

R′2

))
. (17)

The autonomous system defined by kerF ((R′′T R′T2 )T .) ∼= homD(t(M),F) satisfies:

kerF ((R′′T R′T2 )T .) ∼= kerF (R.)/τ?(kerF (R′.)).

This last system will be called the autonomous quotient of the system kerF (R.).

If M and N are respectively a torsion-free and a torsion left D-module de-
fined by two finite presentations, Theorem 7 parametrizes the equivalence classes
of extensions of N by M . Moreover, if F is an injective left D-module, by Corol-
lary 9, we then obtain the equivalence classes of systems admitting homD(M,F)
as a parametrizable subsystem and homD(N,F) as autonomous quotient. If we
consider the left D-module P = M ⊕N , we then have t(P ) ∼= N and P/t(P ) ∼= M
and the previous problem can be reduced to the case where we only consider the
extensions of t(P ) by P/t(P ) for a finitely presented left D-module P .

Let L ∈ Dm×l be a matrix with entries in a noetherian domain D and let
us consider the finitely presented left D-module P = D1×l/(D1×m L). As shown
in [6, 18] and implemented in [7], computing the left D-module ext1D(N,D), where
N = Dm/(LDl), gives us a matrix L′ ∈ Dm′×l satisfying:{

t(P ) = (D1×m′
L′)/(D1×m L),

P/t(P ) = D1×l/(D1×m′
L′).

(18)

We denote by ε : D1×m −→ P (resp., ε′ : D1×m −→ P/t(P )) the canonical
projection onto P (resp., P/t(P )). In particular, we have the relation ε′ = τ ◦ ε,
where τ denotes the canonical projection P −→ P/t(P ) (see (16) with M = P ).
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Corollary 10. Every class of extensions of t(P ) by P/t(P ) is defined by means of
the left D-module E = D1×(l+m′)/(D1×(m′+m+n′) Q), where the matrix Q has the
form

Q =

 L′ −T
0 L′′

0 L′2

 ∈ D(m′+m+n′)×(l+m′) (19)

(with L′′ (resp., L′2) playing the role of R′′ (resp., R′2) in (17)) and T is an element
of the abelian group:

Ω =
{

A ∈ Dm′×m′
| ∃ B ∈ Dn′×(m+n′) : L′2 A = B

(
L′′

L′2

)}
. (20)

Finally, the equivalence classes of the extensions of t(P ) by P/t(P ) only depend on
the residue classes ε(T ) in the abelian group (with ι as defined in (9)):

Ω/

(
L′Dl×m′

+ Dm′×(m+n′)

(
L′′

L′2

))
= ι−1(ext1D(P/t(P ), t(P ))). (21)

If F is an injective left D-module and kerF (L.) ∼= homD(P,F), then Corol-
laries 9 and 10 give a parametrization of the equivalence classes of linear systems
kerF (Q.) ∼= homD(E,F) which admit kerF (L′.) as a parametrizable subsystem and
kerF ((L′′T L′T2 )T .) as an autonomous quotient.

Example 11. Let us consider the differential time-delay system ([14]){
ẏ1(t)− ẏ2(t− 2 h) + α ÿ3(t− h) = 0,

ẏ1(t− 2 h)− ẏ2(t) + α ÿ3(t− h) = 0,
(22)

where α ∈ R and h is a strictly positive real number. We denote by D = Q(α) [∂, δ]
the commutative polynomial ring of differential time-delay operators, the matrix

L =

(
∂ −∂ δ2 α ∂2 δ

∂ δ2 −∂ α ∂2 δ

)
∈ D2×3,

and the D-module P = D1×3/(D1×2 L). Using a constructive algorithm developed
in [6, 19] and implemented in [7], we get L′ = R ∈ D2×3 defined by (10). We
can check that kerD(.L′) = 0 and L = L′′ L′, where L′′ = S ∈ D2×2 is defined by
(10). Hence, we obtain t(P ) ∼= D1×2/(D1×2 L′′). Now, the equivalence classes of
extensions of t(P ) by P/t(P ) are in 1-1 correspondence with the elements of the
D-module ext1D(P/t(P ), t(P )). Using Examples 5 and 8, we obtain that the two
non-trivial equivalence classes of extensions are defined by the D-modules E1 and
E2 given in Example 8. They respectively correspond to the following systems:

z1(t) + z2(t) = 0,

z2(t) + z2(t− 2 h)
−(α ż3(t− h) + z4(t)) = 0,

ż4(t)− ż5(t) = 0,

ż4(t− 2 h)− ż5(t) = 0,



z1(t) + z2(t) = 0,

z2(t) + z2(t− 2 h)
−(α ż3(t− h) + z5(t)) = 0,

ż4(t)− ż5(t) = 0,

ż4(t− 2 h)− ż5(t) = 0.
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The trivial class of extensions of t(P ) by P/t(P ) can be defined by the system:
z1(t) + z2(t) = 0,

z2(t) + z2(t− 2 h)− α ż3(t− h) = 0,

ż4(t)− ż5(t) = 0,

ż4(t− 2 h)− ż5(t) = 0.

Hence, the three systems admit the same parametrizable subsystem and the same
autonomous quotient as (22).

Remark 12. The matrix Q defined by (19) with T = Im′ was used in [20, 21] to
parametrize the F-solutions of the system kerF (L.) in terms of the F-solutions of
kerF (L′.) and kerF ((L′′T L′T2 )T .). We first need to solve the following autonomous
homogeneous linear system kerF ((L′′T L′T2 )T .) corresponding to homD(t(P ),F):{

L′′ θ = 0,

L′2 θ = 0.
(23)

Then, we need to solve the inhomogeneous system L′ η = θ, i.e., find a particular
solution η? ∈ F l of L′ η? = θ and the general solution of the homogeneous system
L′ η = 0 associated with homD(P/t(P ),F). As the subsystem homD(P/t(P ),F)
of homD(P,F) is parametrizable, we can compute a matrix Q′ ∈ Dl×k′ satisfying
kerF (L′.) = Q′ Fk′ whenever F is an injective left D-module ([6, 15, 19, 25]). Then,
the solution of Lη = 0 has the form η = η? + Q′ ξ, for arbitrary ξ ∈ Fk′ . We refer
to [21] for applications to variational and optimal control problems.

Next, we have a direct consequence of Remark 12. For more details, see [22].

Proposition 13. The exact sequence 0 −→ t(P ) ι−→ P
τ−→ P/t(P ) −→ 0 splits iff

ε(Im′) = 0, i.e., iff there exist X ∈ Dl×m′
, Y ∈ Dm′×m and Z ∈ Dm′×n′ satisfying:

Im′ = L′X + Y L′′ + Z L′2 ⇔ L′ − L′X L′ = Y L. (24)

Remark 14. As shown in [20, 21], Proposition 13 gives a particular solution
η? ∈ F l of the inhomogeneous system L′ η = θ, where θ ∈ Fq′ is a general solution
of the system (23): using (24), we get θ = L′X θ + Y L′′ θ + Z ′ L′2 θ = L′ (X θ) as θ
satisfies (23). If F is an injective left D-module, using Remark 12, we then obtain
that the elements of kerF (L.) have the form η = X θ + Q′ ξ, for all ξ ∈ Fk′ .

The left D-module P/t(P ) = D1×l/(D1×m′
L′) is stably free, i.e., satisfies

P/t(P ) ⊕ D1×s ∼= D1×r for non-negative integers r and s ([23]), iff there exists
X ∈ Dl×m′

such that L′X L′ = L′ ([17]). Hence, if P/t(P ) is stably free, the
equivalent statements of Proposition 13 hold. In particular, if D = k[t] [∂] is the
Weyl algebra (k a field of characteristic 0) or a left principal ideal domain (e.g.,
K [∂], K a differential field), then every torsion-free left D-module is stably free
and, in particular, P/t(P ) for any left D-module P . Hence, we find again Kalman’s
result ([11]) and its different generalizations ([10, 16]) described in the introduction.
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