References 


  • Belikov, J.,Kotta, Ü, Tõnso, M.,
    NLControl: Symbolic package for study of nonlinear control systems.
    IEEE Multi-conference on Systems and Control, Aug. 28-30, Hyderabad, India, Piscataway, NJ, IEEE, 322-327, 2013, NLControl project, NLControl.

  • Bender, C. M., Dunne, G. V. and Mead, L. R.,
    Underdetermined systems of partial differential equations.
    Journal of Mathematical Physics, vol. 41 (2000), 6388-6398.

  • Brockett, R. W.,
    Finite Dimensional Linear Systems.
    Decision & Control, Wiley, 1970.
  • Califano, C., Li, S., Moog, C.,
    Controllability of driftless nonlinear time-delay systems
    Systems and Control Letters, 62 (2013), 294-301.
  • Chyzak, F., Quadrat, A. and Robertz, D.,
    Effective algorithms for parametrizing linear control systems over Ore algebras.
    Appl. Algebra Engrg. Comm. Comput., 16 (2005), 319-376.
  • Chyzak, F., Quadrat, A. and Robertz, D.,
    OreModules: A symbolic package for the study of multidimensional linear systems.
    Applications of Time-Delay Systems, J. Chiasson and J.-J.Loiseau (Eds.), Lecture Notes in Control and Information Sciences (LNCIS) 352, Springer, 233-264.
    OreModules project, OreModules.
  • Cluzeau, T. and Quadrat, A.,
    Using morphism computations for factoring and decomposing general linear functional systems.
    In the proceedings of Mathematical Theory of Networks and Systems (MTNS), Kyoto (Japan), 20-24/07/06.
  • Cluzeau, T. and Quadrat, A.,
    OreMorphisms: A homological algebraic package for factoring, reducing and decomposing linear functional systems.
    Topics in Time-Delay Systems: Analysis, Algorithms and Control}, J.-J. Loiseau, W. Michiels, S.-I. Niculescu, R. Sipahi (Eds.), Lecture Notes in Control and Inform. Sci. (LNCIS), Springer (2008), OreMorphisms project, OreMorphisms, OreMorphisms.
  • Courant, R. and Hilbert, D.,
    Methods of Mathematical Physics.
    Wiley Classics Library, Wiley, 1989.

  • Dubois, F., Petit, N. and Rouchon, P.,
    Motion planning and nonlinear simulations for a tank containing a fluid.
    Proceedings of the 5th European Control Conference, Karlsruhe (Germany), 1999.

  • Fliess, M. and Mounier, H.,
    Controllability and observability of linear delay systems: an algebraic approach.
    ESAIM: Control, Optimisation and Calculus of Variations, 3 (1998), 301-314.
  • Kotta, Ü.,
    Inversion Method in the Discrete-time Nonlinear Control Systems Synthesis Problems.
    Lecture Notes in Control and Information Sciences, Springer, 1995.
  • Kwakernaak, H. and Sivan, R.,
    Linear Optimal Control Systems.
    Wiley-Interscience, 1972.
  • Landau, L. and Lifschitz, E.,
    Physique théorique, Tome 7: Elasticité,
    second edition, MIR, 1990.
  • Manitius, A.,
    Feedback controllers for a wind tunnel model involving a delay: analytical design and numerical simulations.
    IEEE Trans. Autom. Contr., 29 (1984), 1058-1068.
  • Marquez-Martinez, L. A.,
    A note on the accessibility for nonlinear time-delay systems
    C.R. Acad-.Sci. Paris, 329 (1999), serie 1, 545-550.
  • Martin, P., Murray, R. M., Rouchon, P.,
    Flat systems, equivalence and trajectory generation,
    Technical Report, 2003.
  • Mounier, H.,
    Propriétés structurelles des systèmes linéaires à retards : aspects théoriques et pratiques
    PhD Thesis, University of Orsay, 1995.
  • Mounier, H., Rudolph, J., Petitot, M. and Fliess, M.,
    A flexible rod as a linear delay system.
    Proccedings of 3rd European Control Conference, Rome (Italy), 1995.
  • Petit, N. and Rouchon, P.,
    Dynamics and solutions to some control problems for water-tank systems.
    IEEE Trans. Automatic Control, 47 (2002), 595-609.
  • Polderman, J. W. and Willems, J. C.,
    Introduction to Mathematical Systems Theory. A Behavioral Approach,
    TAM 26, Springer, 1998.
  • Polyanin, A. D. and Manzhirov, A. V.,
    Handbook of Mathematics for Engineers and Scientists,
    Chapman, 2007.
  • Pommaret, J.-F.,
    Einstein equations do not admit a generic potential,
    Differential Geometry and Applications, Proc. Conf. Aug. 28 - Sept. 1, 1995, Brno, Czech Republic, 449-454.

  • Pommaret, J.-F.,
    Dualité différentielle et applications,
    C.R. Acad. Sci. Paris, Série I 320 (1995), 1225-1230.

  • Pommaret, J.-F.,
    Partial Differential Control Theory,
    Kluwer Academic Publishers, Mathematics and Its Applications, 2001.
  • Sontag, E. D.,
    Mathematical Control Theory: Deterministic Finite Dimensional Systems,
    Springer, 1990.
  • Weyl, H.,
    Space Time Matter,
    Fourth edition, Dover, 1952.