References
Belikov, J.,Kotta, Ü, Tõnso, M.,
NLControl: Symbolic package for study of nonlinear control systems.
IEEE Multi-conference on Systems and Control, Aug. 28-30, Hyderabad,
India, Piscataway, NJ, IEEE, 322-327, 2013, NLControl project, NLControl.
Bender, C. M., Dunne, G. V. and Mead, L. R.,
Underdetermined systems of partial differential
equations.
Journal of Mathematical Physics, vol. 41 (2000), 6388-6398.
Brockett, R. W.,
Finite Dimensional Linear Systems.
Decision & Control, Wiley, 1970.
Califano, C., Li, S., Moog, C.,
Controllability of driftless nonlinear time-delay systems
Systems and Control Letters, 62 (2013), 294-301.
Chyzak, F., Quadrat, A. and Robertz, D.,
Effective algorithms for parametrizing linear control systems
over Ore algebras.
Appl. Algebra Engrg. Comm. Comput., 16 (2005), 319-376.
Chyzak, F., Quadrat, A. and Robertz, D.,
OreModules: A symbolic package for the study of multidimensional
linear systems.
Applications of Time-Delay Systems, J. Chiasson and J.-J.Loiseau
(Eds.), Lecture Notes in Control and Information Sciences (LNCIS) 352,
Springer, 233-264.
OreModules project,
OreModules.
Cluzeau, T. and Quadrat, A.,
Using morphism computations for factoring and decomposing general
linear functional systems.
In the proceedings of Mathematical Theory of Networks and Systems
(MTNS), Kyoto (Japan), 20-24/07/06.
Cluzeau, T. and Quadrat, A.,
OreMorphisms: A homological algebraic package for factoring,
reducing and decomposing linear functional systems.
Topics in Time-Delay Systems: Analysis, Algorithms and Control}, J.-J.
Loiseau, W. Michiels, S.-I. Niculescu, R. Sipahi (Eds.), Lecture Notes
in Control and Inform. Sci. (LNCIS), Springer (2008),
OreMorphisms project, OreMorphisms, OreMorphisms.
Courant, R. and Hilbert, D.,
Methods of Mathematical Physics.
Wiley Classics Library, Wiley, 1989.
Dubois, F., Petit, N. and Rouchon, P.,
Motion planning and nonlinear simulations for a tank containing
a fluid.
Proceedings of the 5th European Control Conference, Karlsruhe (Germany), 1999.
Fliess, M. and Mounier, H.,
Controllability and observability of linear delay systems: an
algebraic approach.
ESAIM: Control, Optimisation and Calculus of Variations, 3 (1998),
301-314.
Kotta, Ü.,
Inversion Method in the Discrete-time Nonlinear Control Systems
Synthesis Problems.
Lecture Notes in Control and Information Sciences, Springer, 1995.
Kwakernaak, H. and Sivan, R.,
Linear Optimal Control Systems.
Wiley-Interscience, 1972.
Landau, L. and Lifschitz, E.,
Physique théorique, Tome 7: Elasticité,
second edition, MIR, 1990.
Manitius, A.,
Feedback controllers for a wind tunnel model involving a delay:
analytical design and numerical simulations.
IEEE Trans. Autom. Contr., 29 (1984), 1058-1068.
Marquez-Martinez, L. A.,
A note on the accessibility for nonlinear time-delay systems
C.R. Acad-.Sci. Paris, 329 (1999), serie 1, 545-550.
Martin, P., Murray, R. M., Rouchon, P.,
Flat systems, equivalence and trajectory generation,
Technical Report, 2003.
Mounier, H.,
Propriétés structurelles des systèmes linéaires
à retards : aspects théoriques et pratiques
PhD Thesis, University of Orsay, 1995.
Mounier, H., Rudolph, J., Petitot, M. and Fliess, M.,
A flexible rod as a linear delay system.
Proccedings of 3rd European Control Conference, Rome
(Italy), 1995.
Petit, N. and Rouchon, P.,
Dynamics and solutions to some control problems for water-tank
systems.
IEEE Trans. Automatic Control, 47 (2002), 595-609.
Polderman, J. W. and Willems, J. C.,
Introduction to Mathematical Systems Theory. A Behavioral Approach,
TAM 26, Springer, 1998.
Polyanin, A. D. and Manzhirov, A. V.,
Handbook of Mathematics for Engineers and Scientists,
Chapman, 2007.
Pommaret, J.-F.,
Einstein equations do not admit a generic potential,
Differential Geometry and Applications, Proc. Conf. Aug. 28 - Sept. 1,
1995, Brno, Czech Republic, 449-454.
Pommaret, J.-F.,
Dualité différentielle et applications,
C.R. Acad. Sci. Paris, Série I 320
(1995), 1225-1230.
Pommaret, J.-F.,
Partial Differential Control Theory,
Kluwer Academic Publishers, Mathematics and Its Applications, 2001.
Sontag, E. D.,
Mathematical Control Theory: Deterministic Finite Dimensional Systems,
Springer, 1990.
Weyl, H.,
Space Time Matter,
Fourth edition, Dover, 1952.