Tank model 1

Let us introduce the following Ore algebra A of differential time-delay operators

A = OreAlgebra[Der[t], S[t]]

 $\mathbb{K}(t) [D_t; 1, D_t] [S_t; S_t, 0]$

and the matrix R of ordinary differential time-delay operators which defines a tank model described in Dubois, F., Petit, N. and Rouchon, P.,

Motion planning and nonlinear simulations for a tank containing a fluid, Proceedings of the 5th European Control Conference, Karlsruhe (Germany), 1999.

MatrixForm[

```
R = ToOrePolynomial [ \{ \{ S[t]^2, 1, -2 Der[t] S[t] \}, \{ 1, S[t]^2, -2 Der[t] S[t] \} \}, A ] ]\begin{pmatrix} S_t^2 & 1 & -2 D_t S_t \\ 1 & S_t^2 & -2 D_t S_t \end{pmatrix}
```

and the left A-module, finitely presented by R, defined by $M = A^{1\times3} / A^{1\times2} R$.

Let us check whether or not M can be decomposed. We first compute the endomorphisms of M defined a constant matrix P:

```
MatrixForm[P = Morphisms[R, R, {0, 0}, p, A]]
```

Solve::svars : Equations may not give solutions for all "solve" variables. \gg

 $\begin{pmatrix} p[1][1] & p[2][1] & 0 \\ p[2][1] & p[1][1] & 0 \\ 0 & 0 & p[1][1] + p[2][1] \end{pmatrix}$

From this P, let us try to compute idempotent endomorphisms of M:

MatrixForm /@ (PAll = IdempotentMorphisms[P, R, p, A])

{	0	0 0	0 0),	$\left(\begin{array}{c} \frac{1}{2}\\ -\frac{1}{2}\end{array}\right)$	$-\frac{1}{2}$ $\frac{1}{2}$	0	,	$\begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$	$\frac{1}{2}$ $\frac{1}{2}$	0	,	$\begin{pmatrix} 1\\0\\0 \end{pmatrix}$	0 1 0	0 0 1	}
	0	0	0)	2	2			2	2			0	0	1)'
					0	0	0.	/	0	0	1 /	1				

Considering the nontrivial idempotent endomorphism PAII[[2]], we obtain the following decomposition:

MatrixForm[Decomposition[R, PAll[[2]], A]]

 $\left(\begin{array}{ccc} -4 \ D_t \ S_t & S_t^2 + 1 & 0 \\ 0 & 0 & S_t^2 - 1 \end{array} \right)$