References

 


  • Abramowitz, M. and Stegun, I. A.,
    Handbook of mathematical functions with formulas, graphs, and mathematical tables.
    Volume 55 of National Bureau of Standards Applied Mathematics Series, 1964.

  • Benoit, A., Chyzak, F., Darrasse, A., Gerhold, S., Mezzarobba, M. and Salvy, B.,
    The Dynamic Dictionary of Mathematical Functions (DDMF).
    The Third International Congress on Mathematical Software (ICMS 2010), Lecture Notes in Computer Science 6327, 35-41, 2010.

  • Benoit, A., Chyzak, F., Darrasse, A., Gerhold, S., Mezzarobba, M. and Salvy, B.,
    The Dynamic Dictionary of Mathematical Functions (DDMF) project, http://ddmf.msr-inria.inria.fr/1.9.1/ddmf

  • Chyzak, F. and Salvy, B.,
    Non-commutative elimination in Ore algebras proves multivariate identities.
    J. Symbolic Computation, vol. 26 (1998), 187-227.

  • Chyzak, F., Quadrat, A. and Robertz, D.,
    Effective algorithms for parametrizing linear control systems over Ore algebras.
    Appl. Algebra Engrg. Comm. Comput., 16 (2005), 319-376.

  • Chyzak, F., Quadrat, A. and Robertz, D.,
    OreModules: A symbolic package for the study of multidimensional linear systems.
    Applications of Time-Delay Systems, J. Chiasson and J.-J.Loiseau (Eds.), Lecture Notes in Control and Information Sciences (LNCIS) 352, Springer, 233-264.

  • Chyzak, F., Quadrat, A. and Robertz, D.,
    OreModules project.

  • Fliess, M. and Sira-Ramírez, M.,
    An algebraic framework for linear identification.
    ESAIM Control Optim. Calc. Variat., 9 (2003), 151-168.

  • Fliess, M., Join C. and Mboup, M.,
    Algebraic change-point detection.
    AAECC, 21 (2010), 131-143.

  • Mboup, M., Join, C. and Fliess, M.,
    Numerical differentiation with annihilators in noisy environment.
    Numerical Algorithms, 50 (2009), 439-467.

  • Quadrat, A.,
    Towards an effective study of the algebraic parameter estimation problem.
    hal-01415300, to appear in the proceedings of IFAC 2017 Workshop Congress, Toulouse (France), 09-14/07/2017.

  • Quadrat, A. and Robertz, D.,
    Computation of bases of free modules over the Weyl algebras.
    Journal of Symbolic Computation, 42 (2007), 1113-1141.

  • Quadrat, A. and Robertz, D.,
    A constructive study of the module structure of rings of partial differential operators.
    Acta Applicandae Mathematicae, 133 (2014), 187-234.

  • Quadrat, A. and Robertz, D.,
    Stafford project.

  • Stafford, J. T.,
    Module structure of the Weyl algebra.
    J. London Math. Soc., 18 (1978), 429-442.

  • Ushirobira, R. and Quadrat, A.,
    Algebraic estimation of a biased and noisy continuous signal via orthogonal polynomials.
    Proceedings of the 55th IEEE Conference on Decision and Control, Las Vegas (USA), 12-14/12/2016.

  • Ushirobira, R., Perruquetti, W., Mboup, M. and Fliess, M.,
    Algebraic parameter estimation of a biased sinusoidal waveform signal from noisy data.
    Proceedings of SysId 2012, 2012.

  • Ushirobira, R., Perruquetti, W., Mboup, M. and Fliess, M.,
    Algebraic parameter estimation of a multi-sinusoidal waveform signal from noisy data.
    Proceedings of ECC 2013, Zürich, Switzerland, 14-19/07/2013.