
THÈSE DE DOCTORAT DU
CONSERVATOIRE NATIONAL DES ARTS ET MÉTIERS

Spécialité

Informatique

École doctorale Informatique, Télécommunications et Électronique (Paris)

Présentée par

Raphaël Cauderlier

Pour obtenir le grade de

DOCTEUR du CONSERVATOIRE NATIONAL DES ARTS ET MÉTIERS

Sujet de la thèse :

Object-Oriented Mechanisms for Interoperability between Proof

Systems

Contents

I Background 10

1 First-Order Logic and First-Order Rewriting 12
1.1 First-Order Logic . 12

1.1.1 Syntax . 13
1.1.2 A Proof System for First-Order Logic: Natural Deduction 16
1.1.3 Polymorphic First-Order Logic . 18

1.2 Term Rewriting . 19
1.3 Deduction Modulo . 22

1.3.1 Presentation . 22
1.3.2 Extending First-Order Logic . 22
1.3.3 Termination and Consistency . 23

1.4 Zenon Modulo . 24

2 λ-Calculus and Type Theory 25
2.1 λ-Calculus . 25
2.2 Simple Types . 28
2.3 Polymorphism . 29

2.3.1 Damas-Hindley-Milner Type System . 30
2.3.2 HOL . 30

2.4 Dependent Types . 33
2.4.1 Martin-Löf Type Theory . 33
2.4.2 Curry-Howard Correspondence for Natural Deduction 36
2.4.3 The Calculus of Inductive Constructions . 37

2.5 Logical Frameworks . 38
2.5.1 Representing Binding . 38
2.5.2 Edinburgh Logical Framework . 39
2.5.3 Martin-Löf's Logical Framework . 39
2.5.4 Internal vs. External Conversion . 41
2.5.5 Proposition-as-Type vs. Judgment-as-Type 43

3 Dedukti: a Universal Proof Checker 44
3.1 Higher-Order Rewriting . 44
3.2 The λΠ-Calculus Modulo . 45
3.3 Dedukti . 46

3.3.1 Syntax . 47

2

3.3.2 Commands . 47
3.3.3 Con�uence Checking . 48

3.4 Proving and Programming in Dedukti . 49
3.4.1 Smart Constructors . 49
3.4.2 Partial Functions . 49
3.4.3 Encoding Polymorphism . 51
3.4.4 Overfull De�nitions . 52
3.4.5 Meta-Programming . 54

3.5 Translating Logical Systems in Dedukti . 55
3.5.1 First-Order Logic in Dedukti . 55
3.5.2 Coqine . 61
3.5.3 Holide . 62

II Object Calculi in Dedukti 65

4 Simply-Typed ς-Calculus in Dedukti 68
4.1 Simply-Typed ς-Calculus . 68

4.1.1 Syntax . 68
4.1.2 Typing . 69
4.1.3 Operational Semantics . 69
4.1.4 Examples . 70

4.2 Translation of Types in Dedukti . 70
4.3 Membership as an Inductive Relation . 72
4.4 Terminating Translation of Terms . 73

4.4.1 Objects, Methods, and Preobjects . 73
4.4.2 Method Selection and Update . 74
4.4.3 Translation Function for Terms . 75
4.4.4 Typing Preservation . 77

4.5 Shallow Embedding . 78

5 Object Subtyping in Dedukti 80
5.1 Simply-Typed ς-Calculus with Subtyping . 80
5.2 Example . 81
5.3 Translation of the Subtyping Relation . 81
5.4 Explicit Coercions . 82
5.5 Reverse Translation . 83
5.6 Canonicity . 84

6 The Implementation Sigmaid 86
6.1 Initiating Objects . 86
6.2 Decidability . 89
6.3 E�ciency . 90
6.4 Optimization at the Meta-Level . 91

3

III From FoCaLiZe to Dedukti 94

7 FoCaLiZe 97
7.1 FoCaLiZe Computational Language . 97

7.1.1 Types . 97
7.1.2 Expressions . 98

7.2 Logical Language: FOL . 103
7.2.1 Formulae . 105
7.2.2 Proofs . 106

7.3 Object-Oriented Mechanisms . 108
7.3.1 Species . 109
7.3.2 Methods . 109
7.3.3 Inheritance . 109
7.3.4 Unde�ned methods . 110
7.3.5 Rede�nition . 111
7.3.6 Collections . 113
7.3.7 Parameters . 113

7.4 Compilation . 114
7.4.1 Compilation Passes . 114
7.4.2 Lifting and Dependency Calculus . 114
7.4.3 Backend Input Language . 116
7.4.4 Compilation of Proofs to Coq . 116

8 Computational Part: Compiling ML to Dedukti 118
8.1 Pattern Matching . 118

8.1.1 Lifting of Pattern Matchings . 119
8.1.2 Serialization . 119
8.1.3 Compiling Patterns to Destructors . 120
8.1.4 Destructors in Dedukti . 124

8.2 Recursive Functions . 127
8.2.1 Examples . 128
8.2.2 Naive Translation . 131
8.2.3 Call-by-Value Application Combinator . 131
8.2.4 Local Recursion . 133
8.2.5 Termination . 133
8.2.6 E�ciency and Limitations . 134

8.3 Related Work . 135

9 Logical Part: Interfacing FoCaLiZe with Zenon Modulo 137
9.1 Extending Zenon to Typing . 137
9.2 The FoCaLiZe Extension . 138
9.3 The Induction Extension . 139
9.4 Higher-Order Right-Hand Sides . 139

4

IV Object-Oriented Interoperability between Logical Systems 143

10 Manual Interoperability between Coq and HOL 146
10.1 Mixing Coq and HOL Logics . 146

10.1.1 Type Inhabitation . 146
10.1.2 Booleans and Propositions . 147

10.2 Case Study: Sorting Coq Lists of HOL Numbers . 148
10.3 Limitations . 149

11 Automation using FoCaLiZe and Zenon Modulo 152
11.1 An Implementation of the Sieve of Eratosthenes in Coq 153

11.1.1 Programming the Sieve of Eratosthenes in Coq 153
11.1.2 Speci�cation . 155
11.1.3 Correctness proof . 156

11.2 Relating FoCaLiZe Logic with Coq and HOL . 157
11.3 FoCaLiZe as a User Interface to HOL . 158
11.4 Specifying Arithmetic as a FoCaLiZe Hierarchy of Species 159

11.4.1 Abstract arithmetic structures . 159
11.4.2 Morphisms Between Representations . 161
11.4.3 Instantiation of Coq Natural Numbers . 163
11.4.4 Instantiation of HOL Natural Numbers . 165
11.4.5 Instantiation of the Morphism . 166

11.5 Discussion . 166

12 Proof Constructivization 168
12.1 Partial De�nitions of Classical Axioms . 169

12.1.1 A Rewrite System for the Law of Excluded Middle 169
12.1.2 A Rewrite System for the Law of Double Negation 171

12.2 Inspecting the Proof . 171
12.2.1 Two Trivial Special Cases . 173
12.2.2 Eliminating Negation Proofs . 173
12.2.3 Exchanging Elimination Rules . 173
12.2.4 Con�uence . 175

12.3 Combining Rewrite Systems . 175
12.4 Example: Zenon Classical Proof of A⇒ A . 175
12.5 Experimental Results . 176

12.5.1 B Proof Obligations . 177
12.5.2 FoCaLiZe Standard Library . 179

12.6 Related Work . 179
12.6.1 Double-Negation Translations . 179
12.6.2 Intuitionistic Provers . 180
12.6.3 Zenonide . 180
12.6.4 Extensions of the Curry-Howard Correspondence for Classical Logic 181

5

Introduction

When Bolzano and Cantor discovered in the second half of the 19th century that the mathematical
notions of set and in�nity were worth studying [30, 39], it had two very important impacts on logic.
First it launched the study of foundations of mathematics which happens to be a very rich �eld
of research and is still active nowadays. It also led to a series of paradoxes, the very problem of
which was not the absence of workarounds but on the contrary the existence of several possible
corrections. One such correction was Russell and Whitehead's Principia Mathematica [173] solving
the paradoxes by introducing a type system, another one was the axiomatization of set theory ZFC
by Zermelo and Fraenkel [175, 3].

Both systems introduced axioms whose self-evidence was not obvious for all logicians: Russell
and Whitehead introduced the axiom of reducibility, a highly technical device which seemed manda-
tory to formulate real analysis and Zermelo introduced the axiom of choice which quickly led to
counter-intuitive results such as Hausdor� Paradox [92] and Banach-Tarski Paradox [21].

But the coexistence of several logical systems was only at its very beginning. At the time where
these new logics were elaborated, Brouwer rejected the principle of excluded middle [34] and entered
a long controversy with Hilbert about the validity of non-constructive proofs. Brouwer's vision of
constructivism was adapted by his student Heyting as a new logic called intuitionistic logic [94].
The study of intuitionistic logic culminated with the discovery by Scott and Martin-Löf that the
constructions of type theory closely correspond to intuitionistic logical connectives [159, 123]. This
discovery leads to a presentation of type theory much cleaner than Principia Mathematica: Intu-
itionistic Type Theory. Many other logics have since been invented such as modal logic, minimal
logic, linear logic, temporal logic, and fuzzy logic just to name a few.

But the real explosion in the number of logical systems comes from the development of computer
science. Computers have been used very soon to solve mathematical and logical problems. We can
distinguish three kinds of mathematical software with respect to their logical foundations:

� Some systems such as computer algebra systems are very imprecise with respect to their
foundations and o�er very few logical guarantees. They are intended to help mathematicians
to perform algebraic computations and guide the mathematical intuition but the mathematical
proofs remain to the charge of the mathematician.

� At the other extremity of the spectrum, proof checkers implement well-de�ned logics and
require extremely precise proofs that they verify step by step. They typically implement rich
logics in which complex mathematics can be formulated.

� Finally, some systems are designed to solve particular kinds of problems without requiring
human interaction.

6

The development of systems of the second and third categories have required the study of a lot of
new logics.

Quite often, the best choice for solving a particular class of problems is to design a speci�c logic
which is simple enough to be e�ciently automatized and powerful enough to express the problems
of interest. For example, temporal logics and separation logics are useful for modeling and verifying
respectively the evolution of �nite systems and the memory constraints of imperative programs.

Proof checkers, have been used to formalize and check mathematical theorems since the 60s [132].
This led to a higher level of con�dence in these mathematical results and even allowed the resolution
of some mathematical problems for which the usual peer-reviewing process was inapplicable due to
the length of the proof such as proofs of the four-color theorem [84] and Kepler conjecture [89].

Another important application of implementations of logical systems in computers is program
deductive veri�cation consisting in the formalization of program behaviour and the formal proof
that programs respect their speci�cations. Formal correctness proof of programs is mandatory
when human lives depend on them; in particular in the transport, medical, and energy industries.
Actually, formalization of mathematics and program deductive veri�cation are closely connected.
On one side, formally solving a mathematical problem such as the four-color theorem or Kepler
conjecture amounts to develop a computer program for solving the problem and prove it correct
with respect to its mathematical speci�cation. On the other side, rich libraries of mathematical
results are needed for proving some programs; for example, aircraft safety relies on real analysis and
correctness of cryptographic protocols relies on arithmetic.

The implementations of logical systems have served as experimentation platforms for new logical
ideas such as the Curry-Howard correspondence [134], automation [25], mixing set theory with
typing [4], and extensional type theory [54]. Because of this habit, logical systems are getting more
and more complex. To increase their trustability, most of these logical systems are built on top
of rather small kernels [87, 63, 10] which are supposed to be close to published logical systems for
which good meta properties such as consistency have been proved. In practice, this means that for
each new feature, implementors of logical systems have to choose whether it should be added to
the kernel at the price of making the logic more complicated or to an upper layer and compiled to
kernel code which might impact performances.

All these new features lead to high diversity of logically incompatible systems, especially in the
world of interactive proof assistants. Because of this diversity, formal proofs are usually associated
with the system in which they have been developed; while the foundational choices are usually
left implicit in mathematics, we almost systematically precise that the four-color theorem has been
proved in Coq logic, that Kepler conjecture has been proved in higher-order logic etc. . .

We believe however that until we have understood why the proof of a theorem requires a precise
logic, the user should be allowed to use whatever systems suits her best or even that she should be
allowed to use any combination of existing systems. Each logical system has its own bene�ts and
we would like to combine them. The questions of integration and interoperability between logical
systems is a longstanding demand of the users of these systems. The most successful results in this
�eld concern the integration of automatic tools in proof assistants. In [24], three styles of integration
of automatic tools are distinguished: the accepting style, the skeptical style, and the autarkic style.

� In the accepting style, problems are delegated to automatic tools which are blindly trusted.
This style is easy to implement because we only have to communicate the problem to the
automatic tool. The proof assistant PVS [139] and the Why3 system [72] are examples of this
style of delegation.

7

� In the skeptical style, problems are still delegated to automatic tools but they are asked to pro-
vide a formal proof of their answers that is independently checked. Examples of skeptical-style
delegation are the FoCaLiZe environment [143] and the Mizar integration of the automatic
theorem prover E [6]. The skeptical style is much more trustworthy than the accepting style
because proof checkers and proof assistant kernels are much smaller systems than automatic
theorem provers. This approach is however very limited in the number of automatic tools that
can be used because most automatic tools provide only partial justi�cation of their results.

� Finally, the autarkic approach pragmatically combines the bene�ts of the accepting style
and the skeptical style. In this approach, we take whatever justi�cation the automatic tool
accepts to provide and we use this proof certi�cate to guide the reconstruction of a fully
formal justi�cation in a trustworthy system. In [24], Barendregt and Barendsen advocate
for the omission of computation steps in proof certi�cate and this is the choice made by
Deduction modulo provers to which proof obligations from Atelier B are delegated in the
BWare project [62]. This notion of incomplete proof certi�cate is further pushed by the
ProofCert project [126, 127] which even allows some reasoning steps to be omitted in the
certi�cate. The most successful integration of automatic reasoners in a proof assistant is
probably achieved by the Sledgehammer tool [25] which combines the power of state-of-the-
art theorem provers and SMT solvers with the trust level of Isabelle by reconstructing the
proofs using a certifying prover called Metis.

What makes integration of automatic tools such as automatic theorem provers feasible is that
they essentially all share the same logic (�rst-order logic) which happens to be a fragment of the
logic of the interactive systems calling them so the proofs found by the automatic tool are readable
as proofs of the interactive system. The only logical drawback is that most automatic theorem
provers reason in classical logics whereas some proof assistants use constructive logics. We will
propose an original and pragmatic solution to this di�culty in Chapter 12.

Interoperability between interactive theorem provers is logically much harder because, as we
already mentioned, there are almost as many incomparable logics as there are interactive provers
implementing them. Even provers claiming to implement the same logic such as Coq [63] and
Matita [10] di�er on some details such as proof irrelevance and universe polymorphism so au-
tomatically translating a formal development from a system to another one is often considered
harder than redoing the development from scratch in the second one. The hard question of inter-
operability between interactive proof systems has been attacked many times for di�erent pairs of
systems [104, 131, 135, 103, 8] but it is still far from being solved because the number of translations
to de�ne is naturally quadratic in the number of existing proof systems.

This interoperability problem is the main topic of the Deducteam research team in which most
of the work presented in this thesis has been conducted. In order to solve this problem, we take
inspiration from the close �eld of programming languages. Taking inspiration from programming
languages is very common in the type-theoretical community since the Brouwer-Heyting-Kolmogorov
interpretation of intuitionistic logic as solving programming tasks.

So how is interoperability achieved in the programming world? Programming languages are
built on various paradigms and provide di�erent libraries so the need for interoperability is equally
present for programming languages and for logical systems. Typical programming projects are
built by combining a few languages, interoperability is achieved by compiling code written in these
di�erent high-level languages into a low-level language such as bytecode or assembly. All the code

8

is then linked together at low level to obtain a runnable program. Making the high-level languages
agree on a single low-level language requires only a linear number of compilers instead of a quadratic
number in the case of one-to-one correspondences.

The requirements for good low-level and high-level languages are di�erent. Among other require-
ments, high-level languages should focus on readability and modularity whereas low-level languages
should be e�cient but are generally hard to read.

Deducteam proposes to follow the same path for logical systems. A low-level proof system
called Dedukti [155] has been developed together with many translators from logical systems to
Dedukti playing the role of compilers. As a low-level system, Dedukti does not focus on readability
nor modularity but on expressiveness to encode many logics: it claims to be a universal proof
format [29].

At the beginning of this thesis, only a few logical systems were translated to Dedukti. Moreover
Dedukti did not really help to exchange proofs between these systems because no support for the
linking operation is provided. It seemed that a companion tool for doing the linking work was
needed but the priority was to develop translators for new systems and improve the existing ones.

We developed a translator from the FoCaLiZe formal environment to Dedukti. FoCaLiZe is both
a logical system and a programming language so this led us to the compilation of programming
languages to Dedukti and more particularly object-oriented mechanisms. We also realized that
FoCaLiZe, thanks to its object-oriented mechanisms, could provide the missing linking operation
that was needed to achieve interoperability in Dedukti.

In this thesis, we translate to Dedukti the formal environment FoCaLiZe and two popular pro-
gramming paradigms, object-oriented and functional programming. In order to better understand
how formal developments can be linked once they have been translated in Dedukti, we conduct
experiments with interoperability between the proof assistants Coq and HOL and we propose Fo-
CaLiZe object-oriented mechanisms to perform the linking.

The rest of thesis is structured as follows. In Part I, we present the notions on which this
thesis is built. In Part II, we focus on the compilation of object-oriented programming in Dedukti
independently of logical aspects through an object calculus. In Part III, we extend the FoCaLiZe
compiler by a backend to Dedukti, and Part IV is a case study of interoperability based on Dedukti
and FoCaLiZe.

More precisely, Part I is composed of Chapters 1, 2, and 3. In Chapters 1 and 2, we recall
notions from logic, rewriting, and type theory. We present Dedukti and explain how languages are
encoded in Dedukti in Chapter 3.

Part II is composed of Chapters 4, 5, and 6. We de�ne a translation from an object calculus
to Dedukti in Chapter 4. We extend this translation to subtyping, an important feature of object-
oriented type systems, in Chapter 5. We then implement this translation in Chapter 6.

Part III is composed of Chapters 7, 8, and 9. FoCaLiZe is presented in Chapter 7. In Chap-
ter 8, we propose a translation from FoCaLiZe functional programming language to Dedukti and in
Chapter 9, we adapt FoCaLiZe automatic theorem prover to use it together with our translation to
Dedukti.

Part IV is composed of Chapters 10, 11, and 12. A �rst proof of concept is conducted in
Chapter 10 in which the linking between Coq and HOL logics is performed manually in Dedukti. In
order to scale to a bigger example, we rely on FoCaLiZe object-oriented mechanisms in Chapter 11.
Finally in Chapter 12, we propose heuristics to eliminate unnecessary uses of classical axioms in
proofs found by automated theorem provers.

9

Part I

Background

10

Real mathematical proofs typically alternate clever reasoning and computation phases. This
distinction is also appropriate for machine-checked proofs. In this context, we expect the machine
to perform the computation by itself because, after all, computing is what computers are good at!
In [24], Barendregt and Barendsen state the Poincaré principle recommending that reasoning and
computing should be separated and that it should not be necessary to record pure computational
steps.

Deduction modulo [69] is about generalizing this distinction between logical reasoning and com-
putation in the context of automated proof search for �rst-order logic. The main practical bene�t
is a pruning of search space leading to more e�cient proof search. In Deduction modulo, computa-
tion is formalized as term rewriting, a very powerful formalism which is especially appropriate for
program veri�cation because it has close connections with operational semantics.

Theorem provers for Deduction modulo respect the Poincaré principle. They record all the
reasoning steps but not the computation steps so a proof checker for Deduction modulo proofs has
to be able to reason modulo a given rewrite system. Dedukti is such a system.

Dedukti is also used as a proof checker for proof assistants based on type theory. These proof
assistants usually implement higher-order logics which are more expressive than �rst-order logic.
This extra expressivity makes fully automatic proof search unpractical hence the need for human
hints.

The fact that Dedukti behaves well as a proof checker for both Deduction modulo and type
theory is not surprising because Dedukti implements the λΠ-calculus modulo, the combination of
a type system and Deduction modulo.

In this thesis, Dedukti will be used as a proof checkers for both Deduction modulo and type
systems. In particular, our translation of FoCaLiZe to Dedukti in Part III will be the occasion to
extend FoCaLiZe to Deduction modulo and our interoperability case study in Part IV is based on
two translators from proof assistants to Dedukti.

In this �rst part, we recall the background notions on which this thesis is built. Chapter 1 is
devoted to �rst-order reasoning: we present �rst-order logic, �rst-order rewriting and their combi-
nation Deduction modulo. In Chapter 2, we consider how types can be assigned to λ-calculus in
functional programming and type theory. After these preliminaries, we will be able to introduce
Dedukti and its type system in Chapter 3.

11

Chapter 1

First-Order Logic and First-Order

Rewriting

First-order logic is the logical formalism which is most often implemented in automatic theorem
provers. The traditional way to de�ne a mathematical theory using �rst-order logic is the axiomatic
approach: the theory is de�ned by a set of primitive axioms and the theorems are the logical
consequences of these axioms.

The notion of computation is absent from the axiomatic approach so the Poincare principle is
not applicable. In the axiomatic approach, to extend a theory by the de�nition of a computable
function, one adds a symbol and one or more axioms relating the new symbol to the other symbols
of the theory. Deduction modulo is an alternative to the axiomatic approach in which functions
and predicates are de�ned by well behaved rewrite systems.

In Section 1.1, we present �rst-order logic and the traditional axiomatic approach. We then give
a quick introduction to �rst-order term rewriting and we make more precise what "well behaved"
rewrite systems are by de�ning important properties that rewrite systems may or not enjoy in
Section 1.2. Deduction modulo, the alternative approach, is presented in Section 1.3. Finally
Section 1.4 is devoted to the implementation of Deduction modulo in Zenon, a �rst-order theorem
prover used in FoCaLiZe.

1.1 First-Order Logic

First-order logic [66], also known as predicate logic, is a logic in which a lot of mathematical theories
such as Peano arithmetic, Euclid geometry and set theory can be expressed. Contrary to weaker
logics such as propositional logic, �rst-order logic is powerful enough to serve as a logical foundation
for mathematics so it is not surprising that provability in �rst-order logic is not decidable.

First-order logic is however semi-decidable which means that we can build programs that will
eventually �nd proofs for all provable formulae but when run on an unprovable formula they might
either reject the formula or run inde�nitely. These programs are called automatic theorem provers.
Developers of automatic theorem provers form a very active community. New theorem proving
techniques can be evaluated thanks to the TPTP database of �rst-order problems [163] and a
competition of automatic theorem provers is organized every year [165, 142].

In this section, we give a traditional presentation of �rst-order logic. We start by de�ning the
syntactic constructs of the logic: terms, formulae, and theories. We then present natural deduction

12

as an example of a proof system for �rst-order logic. Finally, we consider a common extension of
�rst-order logic to typing.

1.1.1 Syntax

In �rst-order logic, a clear distinction is made between the objects of discourse called �rst-order
terms and the logical formulae. Contrary to second-order logic and higher-order logic (that will be
presented in Section 2.3.2), quanti�cation in �rst-order logic is restricted to terms: it is syntactically
not possible to quantify over propositions, predicates or functions in �rst-order logic.

First-Order Terms

First-order terms are built from variables and function symbols. We assume that a countable set
X of variables has been �xed and we denote variables by the letters x, y, and z possibly decorated
by indices if we need more than three names. Function symbols are denoted by the letter f . Each
function symbol comes with a natural number n called its arity indicating the number of arguments
of the function symbol. An n-ary function symbol is a function symbol of arity n. The syntax of
�rst-order terms, denoted by the letter t is as follows:

term t ::= x Variable
f(t1, . . . , tn) Application of an n-ary function symbol

A 0-ary function symbol is called a constant. Constants are denoted by the letter a. We simply
write a instead of the application of the constant a to no argument a().

The set of all the variables occurring in a term t is written FV(t) and can be formally de�ned
as follows:

� FV(x) := {x}

� FV(f(t1, . . . , tn)) := FV(t1) ∪ . . . ∪ FV(tn)

A variable x is said to be fresh in a term t when x 6∈ FV(t). Since the set of variables is in�nite
and the sets of variables of terms are always �nite, we assume given a function fresh assigning to
each term t a variable x which is fresh in t.

Variables are to be seen as placeholders for terms. The operation consisting of replacing a
variable by a term is called substitution. The substitution of the variable x by the term t in the
term t′ is written t′{x\t} and de�ned as follows:

x{x\t} := t
y{x\t} := y
f(t1, . . . , tn){x\t} := f(t1{x\t}, . . . , tn{x\t})

In the second line, y is assumed di�erent from x otherwise the �rst line would apply.
The notion of substitution is easy to generalize to the parallel substitution of several variables by

terms. A substitution is a mapping of variables to terms whose domain (that is, the set of variables
not mapped to themselves) is �nite. Substitutions are denoted by the letter ρ and applying the
substitution ρ to the term t is written tρ and de�ned by:

13

xρ := ρ(x)
f(t1, . . . , tn)ρ := f(t1ρ, . . . , tnρ)

Or using the notation {x1\t1, . . . , xn\tn} for the substitution mapping each variable xi to the
term ti.

xi{x1\t1, . . . , xn\tn} := ti
y{x1\t1, . . . , xn\tn} := y
f(t′1, . . . , t

′
m){x1\t1, . . . , xn\tn} := f(t′1{x1\t1, . . . , xn\tn}, . . . , t′m{x1\t1, . . . , xn\tn})

First-Order Formulae

Terms are related to each others by predicate symbols denoted by the letter P . As for function
symbols, each predicate symbol comes with a �xed arity.

Applied predicate symbols are called atomic formulae or atoms; more complex formulae can be
built using boolean connectives and quanti�ers:

formula ϕ ::= P (t1, . . . , tn) Application of an n-ary predicate symbol
t1 = t2 Equality
> Truth
⊥ Falsehood
¬ϕ Negation
ϕ1 ∧ ϕ2 Conjunction
ϕ1 ∨ ϕ2 Disjunction
ϕ1 ⇒ ϕ2 Implication
ϕ1 ⇔ ϕ2 Equivalence
∀x. ϕ Universal quanti�cation
∃x. ϕ Existential quanti�cation

In the quanti�ed formulae ∀x. ϕ and ∃x. ϕ, the variable x can appear in the formula ϕ, it is
bound in ϕ and can be renamed without changing the meaning of the formula. This means that we
want to identify the formulae ∀x. ϕ and ∀y. ϕ{x\y} (and similarly, we want to identify ∃x. ϕ and
∃y. ϕ{x\y}).

To de�ne this identi�cation, we �rst need to de�ne the set of free variables FV(ϕ) of a formula
ϕ and the substitution of a variable by a term.

A variable x occurring in a formula ϕ is called a bound variable if it is in the scope of a quanti�er.
Otherwise, it is a free variable. The set of all the free variables of a formula ϕ is written FV(ϕ) and
can be formally de�ned as follows:

14

FV(P (t1, . . . , tn)) := FV(t1) ∪ . . . ∪ FV(tn)
FV(t1 = t2) := FV(t1) ∪ FV(t2)
FV(>) := ∅
FV(⊥) := ∅
FV(¬ϕ) := FV(ϕ)
FV(ϕ1 ∧ ϕ2) := FV(ϕ1) ∪ FV(ϕ2)
FV(ϕ1 ∨ ϕ2) := FV(ϕ1) ∪ FV(ϕ2)
FV(ϕ1 ⇒ ϕ2) := FV(ϕ1) ∪ FV(ϕ2)
FV(ϕ1 ⇔ ϕ2) := FV(ϕ1) ∪ FV(ϕ2)
FV(∀x. ϕ) := FV(ϕ) \ {x}
FV(∃x. ϕ) := FV(ϕ) \ {x}

The distinction between free and bound variables only makes sense in the presence of binding
operations such as quanti�ers. In �rst-order terms, all the variables are free hence the notation
FV(t) for the set of all the variables occurring in the term t. The set of bound variables is not very
interesting because it does not respect the identi�cation of formulae under renaming.

A formula is closed if it has no free variable. A variable x is said to be fresh in a formula ϕ
when x 6∈ FV(ϕ).

The substitution of the variable x by the term t in the formula ϕ is written ϕ{x\t} and de�ned
as follows:

P (t1, . . . , tn){x\t} := P (t1{x\t}, . . . , tn{x\t})
(t1 = t2){x\t} := t1{x\t} = t2{x\t}
>{x\t} := >
⊥{x\t} := ⊥
(¬ϕ){x\t} := ¬ϕ{x\t}
(ϕ1 ∧ ϕ2){x\t} := ϕ1{x\t} ∧ ϕ2{x\t}
(ϕ1 ∨ ϕ2){x\t} := ϕ1{x\t} ∨ ϕ2{x\t}
(ϕ1 ⇒ ϕ2){x\t} := ϕ1{x\t} ⇒ ϕ2{x\t}
(ϕ1 ⇔ ϕ2){x\t} := ϕ1{x\t} ⇔ ϕ2{x\t}
(∀x. ϕ){x\t} := ∀x. ϕ
(∀y. ϕ){x\t} := ∀y. ϕ{x\t} (when y is fresh in t)
(∀y. ϕ){x\t} := ∀z. ϕ{y\z}{x\t} (where z := fresh(t))
(∃x. ϕ){x\t} := ∃x. ϕ
(∃y. ϕ){x\t} := ∃y. ϕ{x\t} (when y is fresh in t)
(∃y. ϕ){x\t} := ∃z. ϕ{y\z}{x\t} (where z := fresh(t))

The freshness condition is mandatory to avoid capture when performing substitutions: in the
formula ∀y. x = y, substituting x by y should not yield ∀y. y = y because we do not want to identify
∀x. ∀y. x = y and ∀y. ∀y. y = y.

A �rst-order signature declares the function and predicate symbols and provides their arities.
A �rst-order theory is de�ned by a signature and a set of closed �rst-order formulae called

axioms. The set of axioms might be in�nite but it is required to be computable (that is, we can
always decide whether or not a given formula ϕ is an axiom or not).

A �rst-order problem is given by a theory and a closed formula called the goal of the problem.

Example 1. Zermelo-Fraenkel set theory ZF can be de�ned as a �rst-order theory:

15

Signature

� ∅ is a constant

� {•, •} is a binary function symbol (we write {t1, t2} instead of {•, •}(t1, t2))

�

⋃
is a unary function symbol

� W is a constant

� P is a unary function symbol

� ∈ is a binary predicate symbol (we write t1 ∈ t2 instead of ∈ (t1, t2))

Axioms

� Axiom of extensionality: ∀x. ∀y. (∀z. z ∈ x⇔ z ∈ y)⇒ x = y

� Axiom of the empty set: ∀x. ¬x ∈ ∅

� Axiom of foundation: ∀x. ¬(x = ∅)⇒ (∃y. y ∈ x ∧ ¬∃z. z ∈ y ∧ z ∈ x)

� Axiom schema of restricted comprehension: for all formula ϕ whose free variables are among
x, z, w1, . . . , wn,
the formula ∀z. ∀w1. . . . ∀wn. ∃y. ∀x. x ∈ y ⇔ (x ∈ z ∧ ϕ) is an axiom

� Axiom of pairing: ∀x. ∀y. ∀z. z ∈ {x, y} ⇔ z = x ∨ z = y

� Axiom of union: ∀x. ∀z. z ∈
⋃

(x)⇔ (∃y. z ∈ y ∧ y ∈ x)

� Axiom schema of replacement: for all formula ϕ whose free variables are among x, y,A,w1, . . . , wn,
the formula ∀A. ∀w1. . . .∀wn. (∀x. x ∈ A⇒ ((∃y. ϕ)∧∀y′. ϕ{y\y′} ⇒ y = y′))⇒ ∃B. ∀x. x ∈
A⇒ ∃y. y ∈ B ∧ ϕ is an axiom

� Axiom of in�nity: ∅ ∈W ∧ ∀n. n ∈W ⇒
⋃

({n, {n, n}}) ∈W

� Axiom of the power set: ∀x. ∀y. y ∈ P(x)⇔ (∀z.z ∈ y ⇒ z ∈ x)

1.1.2 A Proof System for First-Order Logic: Natural Deduction

Automatic theorem provers implement various techniques based on various proof systems for �rst-
order logic [152, 161]. We are not going to detail all of them but only present a proof system called
natural deduction which is of interest for relating �rst-order theorem provers with proof assistants.

The derivation rules for natural deduction are given in Figure 1.1. The deduction judgment Γ ` ϕ
where Γ is a set of formulae and ϕ is a formula represents the derivability of the assertion ϕ from
the list of hypotheses Γ. The deduction rules in Natural Deduction are split in three categories:
introduction rules tell us how to derive a complex formula, elimination rules tell us how to use
a derived complex formula and the axiom rule allows us to derive a formula when it is one of the
hypotheses. Instead of giving rules for the missing connectives negation and equivalence, we consider
them as derived connectives de�ned by ¬ϕ := ϕ⇒ ⊥ and ϕ1 ⇔ ϕ2 := (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1).

16

(when ϕ ∈ Γ)
(Axiom)

Γ ` ϕ
(>-intro)

Γ ` >
Γ ` ⊥

(⊥-elim)
Γ ` ϕ

Γ ` ϕ1 Γ ` ϕ2
(∧-intro)

Γ ` ϕ1 ∧ ϕ2

Γ ` ϕ1 ∧ ϕ2
(∧-elim-1)

Γ ` ϕ1

Γ ` ϕ1 ∧ ϕ2
(∧-elim-2)

Γ ` ϕ2

Γ ` ϕ1
(∨-intro-1)

Γ ` ϕ1 ∨ ϕ2

Γ ` ϕ2
(∨-intro-2)

Γ ` ϕ1 ∨ ϕ2

Γ, ϕ1 ` ϕ3 Γ, ϕ2 ` ϕ3 Γ ` ϕ1 ∨ ϕ2
(∨-elim)

Γ ` ϕ3

Γ, ϕ1 ` ϕ2
(⇒-intro)

Γ ` ϕ1 ⇒ ϕ2

Γ ` ϕ1 ⇒ ϕ2 Γ ` ϕ1
(⇒-elim)

Γ ` ϕ2

Γ ` ϕ (when x 6∈ FV(Γ))
(∀-intro)

Γ ` ∀x. ϕ

Γ ` ∀x. ϕ
(∀-elim)

Γ ` ϕ{x\t}
Γ ` ϕ{x\t}

(∃-intro)
Γ ` ∃x. ϕ

Γ ` ∃x. ϕ (when x 6∈ FV(Γ))
(∃-elim)

Γ ` ϕ

(=-intro)
Γ ` t = t

Γ ` ϕ{x\t1} Γ ` t1 = t2
(=-elim)

Γ ` ϕ{x\t2}

Figure 1.1: Natural Deduction

17

Example 2. The formula (P (t)∧∀x. P (x)⇒ Q(x))⇒ Q(t) (where t is any term and P and Q are
unary predicate symbols) can be proved by the following derivation where ϕ abbreviates the formula
P (t) ∧ ∀x. P (x)⇒ Q(x):

(Axiom)
ϕ ` ϕ

(∧-elim-2)
ϕ ` ∀x. P (x)⇒ Q(x)

(∀-elim)
ϕ ` P (t)⇒ Q(t)

(Axiom)
ϕ ` ϕ

(∧-elim-1)
ϕ ` P (t)

(⇒-elim)
ϕ ` Q(t)

(⇒-intro)
` ϕ⇒ Q(t)

Natural deduction is a constructive proof system; in order to obtain a classical system equivalent
to the calculi implemented in classical �rst-order theorem provers, we need to add an axiom scheme
such as the Law of Excluded Middle: for all closed formula ϕ, the formula ϕ ∨ ¬ϕ is an axiom.

1.1.3 Polymorphic First-Order Logic

A weakness of �rst-order logic is that the only syntactic veri�cation which is made concerns the arity
of symbols so assuming parallelism has been declared as a binary predicate symbol, the sentence
"the straight line (d) is parallel" is syntactically rejected but meaningless formulae such as "2 is
parallel to the empty set" are still allowed albeit hopefully not provable.

To solve this oddity, �rst-order logic is often extended by introducing a notion of types (usually
called sorts [136] in the �rst-order community). Each term of �rst-order logic is assigned a type and
function and predicate symbols come not only with an arity but also with the expected types for
their arguments (and in the case of function symbols, the type of the term obtained by applying the
function symbol to arguments of the required types). This extended �rst-order logic syntactically
rejects the formula "2 is parallel to the empty set" by assigning 2 to a type of numbers, the empty
set a type of sets and the parallelism binary predicate expects two arguments in the type of straight
lines.

When �rst-order theorem provers are used for program veri�cation of programs written in typed
programming languages (this is the situation in the FoCaLiZe environment as we will see in Chap-
ter 7) or integrated into typed proof assistants (such as Isabelle [25]), a richer notion of typing is
often useful. A polymorphic extension of �rst-order logic has been added to the TPTP format used
by automatic theorem provers [26], we now present this polymorphic �rst-order logic.

In polymorphic �rst-order logic, the �rst syntactic class to be de�ned is the class of types. Types
are built from type variables and type symbols. Type variables are denoted by the letter α and
taken from a countable set of type variables disjoint from the set of term variables. Type symbols
are introduced with their arities in the signature of the theory. The notions of free variables and
substitutions de�ned in Section 1.1.1 are straightforwardly adapted to types. We use the letter ρ
to denote substitutions of type variables by types.

Instead of only asking for the arity of symbols, we require that each function symbol is introduced
with a closed type scheme of the form Πα1. . . .Παk. (τ1, . . . , τn) → τ0 and each predicate symbol
is introduced with a type scheme of the form Πα1. . . .Παk. (τ1, . . . , τn). The syntactic construct Π
binds a type variable α.

For example, integers should be represented by a constant type and the type of polymorphic lists
is introduced by a unary type symbol. When a polymorphic function is applied to arguments, the
types needed to instantiate its type scheme are explicitly provided as arguments to the function:

18

for example, if f is a function symbol of scheme Πα. int → α, we cannot accept the formula
f(0) = f(1) because it is ambiguous so we give the instance of the type α as �rst argument to f
and write f(list(int); 0) = f(list(int); 1). Also to avoid ambiguity, the type of quanti�ed variables
is attached to the quanti�er so we write ∀x : int. x = x instead of ∀x. x = x. Finally, type variables
can themselves be quanti�ed by type-level quanti�ers ∀type and ∃type.

The syntax and typing rules of polymorphic �rst-order logic are given in Figure 1.2.

Example 3. As an example of a polymorphic theory, we consider a theory of polymorphic lists:

Signature

� nat is a constant type symbol

� 0 : ()→ nat

� succ : (nat)→ nat

� list is a unary type symbol

� nil : Πα. ()→ list(α)

� cons : Πα. (α, list(α))→ list(α)

� length : Πα. (list(α))→ nat

Axioms

� ∀m : nat. ∀n : nat. succ(m) = succ(n)⇒ m = n

� ∀n : nat. ¬0 = succ(n)

� ∀typeα. length(α;nil(α)) = 0

� ∀typeα. ∀a : α. ∀l : list(α). length(α; cons(α; a, l)) = succ(length(α; l))

In this theory, we can prove for example the formula ∀typeα. ∀a : α. ∀l : list(α). ¬cons(α; a, l) =
nil(α).

Polymorphism has been added to TPTP rather recently so only a few automatic theorem provers
already support polymorphism natively. As far as we know, only the SMT solver Alt-Ergo [27],
the supperposition theorem provers SPASS [170] and Zipperposition [56] and Zenon [37] (see also
Section 9) support this extension.

1.2 Term Rewriting

Term rewriting [20] is a formal theory of computation presented as a succession of elementary
steps, each step being an instance of one of the rewrite rules de�ning the rewrite system under
consideration. We now focus on �rst-order rewriting, that is the notion of rewriting on the �rst-
order terms that we introduced in Section 1.1.1.

The most general way to de�ne a �rst-order rewrite rule is by giving two �rst-order terms. The
rewrite rule de�ned by the �rst-order terms l and r is written l −→ r. In this rule, l is called the

19

Syntax

Types τ ::= α
F (τ1, . . . , τn)

Terms t ::= x
f(τ1, . . . , τk; t1, . . . , tn)

Typing contexts Γ ::= ∅
Γ, α
Γ, x : τ
Γ, F : n
Γ, f : Πα1. . . .Παk. (τ1, . . . , τn)→ τ0
Γ, P : Πα1. . . .Παk. (τ1, . . . , τn)

Formulae ϕ ::= P (τ1, . . . , τk; t1, . . . , tn)
t1 = t2
¬ϕ
ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 ⇒ ϕ2 | ϕ1 ⇔ ϕ2

∀x : τ. ϕ | ∃x : τ. ϕ
∀typeα. ϕ | ∃typeα. ϕ

Well-typed terms

(when (x : τ) ∈ Γ)
(Var)

Γ ` x : τ

Γ ` t1 : τ1ρ . . . Γ ` tn : τnρ (when (f : Πα1. . . .Παk. (τ1, . . . , τn)→ τ0) ∈ Γ)
(App)

Γ ` f(α1ρ, . . . , αkρ; t1, . . . , tn) : τ0ρ

Well-typed formulae

Γ ` t1 : τ1ρ . . . Γ ` tn : τnρ (when (P : Πα1. . . .Παk. (τ1, . . . , τn)) ∈ Γ)
(Atom)

Γ ` P (α1ρ, . . . , αkρ; t1, . . . , tn) prop

Γ ` t1 : τ Γ ` t2 : τ
(=)

Γ ` t1 = t2 prop

Γ ` ϕ prop
(¬)

Γ ` ¬ϕ prop

Γ ` ϕ1 prop Γ ` ϕ2 prop
(∧)

Γ ` ϕ1 ∧ ϕ2 prop

Γ ` ϕ1 prop Γ ` ϕ2 prop
(∨)

Γ ` ϕ1 ∨ ϕ2 prop

Γ ` ϕ1 prop Γ ` ϕ2 prop
(⇒)

Γ ` ϕ1 ⇒ ϕ2 prop

Γ ` ϕ1 prop Γ ` ϕ2 prop
(⇔)

Γ ` ϕ1 ⇔ ϕ2 prop

Γ, x : τ ` ϕ prop
(∀)

Γ ` ∀x : τ. ϕ prop

Γ, x : τ ` ϕ prop
(∃)

Γ ` ∃x : τ. ϕ prop

Γ, α ` ϕ prop
(∀type)

Γ ` ∀typeα. ϕ prop

Γ, α ` ϕ prop
(∃type)

Γ ` ∃typeα. ϕ prop

Figure 1.2: Polymorphic First-Order Logic: Syntax and Typing Rules

20

left-hand side and r is called the right-hand side. The intended meaning of the rule l −→ r is that
any instance lρ (where ρ is a substitution) of the pattern l evolves to the corresponding instance rρ
of the term r. It is natural to expect that close terms only rewrite to close terms so we additionally
require FV(r) ⊆ FV(l) where FV(()t) denotes the set of the variables occurring in t (for �rst-order
terms, there is no notion of bound variable). Moreover, the case where the left-hand side l is a
mere variable x is degenerated since any term matches the left-hand side so we also forbid this case.
Hence our revised syntax for rewrite-rules is f(t1, . . . , tn) −→ r where FV(r) ⊆ FV(t1)∪ . . .∪FV(tn).

A �rst-order rewrite system is a �nite set of �rst-order rewrite rules. For the rest of this section,
we assume a rewrite system R has been �xed.

The rewriting relation associated with R is the smallest binary relation containing the rewrite
rules of R and closed under context, that is the smallest relation −→R such that:

� for every rewrite rule l −→ r ∈ R and every substitution ρ, lρ −→R rρ, and

� for every function symbol f of arity n, every k ≤ n, and every terms t1, . . . , tn and t′k, if
tk −→R t′k then f(t1, . . . , tn) −→R f(t1, . . . , tk−1, t

′
k, tk+1, . . . , tn).

We say that the term t1 rewrites to the term t2 when t1 −→R t2.
The re�exive and transitive closure of −→R is the smallest relation −→∗R such that:

� if t1 −→R t2 then t1 −→∗R t2,

� −→∗R is re�exive: t −→∗R t, and

� −→∗R is transitive: if t1 −→∗R t2 and t2 −→∗R t3 then t1 −→∗R t3.

The relation −→∗R models a �nite sequence of reductions. We say that the term t1 reduces to
the term t2 when t1 −→∗R t2.

A term t1 for which no term t2 exists such that t1 rewrites to t2 is called a normal term. If
t1 −→∗R t2 and t2 is normal then we say that t1 normalizes to t2 and that t2 is a normal form of t1.
In general, not all terms normalize and normal forms, when they exist, are not unique. If all the
terms have a normal form, we say that R is weakly normalizing. If no term has an in�nite reduction
sequence t0 −→R t1 −→R t2 . . . then we say that R is strongly normalizing. If for all terms t1, t2,
and t3 such that t1 reduces to both t2 and t3 there exists a term t4 such that both t2 and t3 reduce
to t4 we say that R is con�uent. Con�uence, also known as the Church-Rosser property, plays a
very important role in rewriting.

The congruence induced by R is the smallest relation ≡R such that:

� if t1 −→R t2 then t1 ≡R t2,

� ≡R is re�exive: t ≡R t,

� ≡R is symmetric: if t1 ≡R t2 then t2 ≡R t1, and

� ≡R is transitive: if t1 ≡R t2 and t2 ≡R t3 then t1 ≡R t3.

We say that the terms t1 and t2 are congruent modulo R when t1 ≡R t2. In general, the relation
−→R is decidable but the relations −→∗R and ≡R are not. However, the following properties are
trivial:

21

� If R is strongly normalizing, then we can e�ectively compute a normal form for each term.

� If R is both con�uent and strongly normalizing, then every term has a unique normal form.

� If R is both con�uent and strongly normalizing, then −→∗R and ≡R are decidable.

These are all the properties about term rewriting that we need to consider the integration of
rewriting in �rst-order logic as it is exempli�ed in Deduction modulo.

1.3 Deduction Modulo

Deduction modulo [69] is an extension of �rst-order logic in which theories are not only composed
of a signature and a list of axioms, but also of rewrite rules. A proof requiring to perform some
computation using the rewrite rules does not need to explicit the computation steps so proofs in
Deduction modulo are smaller (see Example 4). Moreover, contrary to axioms, rewrite rules are
oriented so, assuming good properties of the rewrite system, a theorem prover in Deduction modulo
can blindly apply the rewrite rules instead of backtracking.

For example, when associativity of a symbol � is given as a rewrite rule x�(y�z) −→ (x�y)�z,
the prover does not need to choose a way to reorder parentheses, this choice is imposed by the
rewrite system. This leads to a reduction of the proof search.

1.3.1 Presentation

In this section, we do not try to give an exhaustive presentation of Deduction modulo but we only
highlight a few results which are relevant for our concerns. A recent survey on Deduction modulo
can be found in [67].

In Deduction modulo, there are two kinds of axioms that can be turned into rewrite rules:

� Axioms of the form ∀x1. . . .∀xm. f(t1, . . . , tn) = t0 where f is a function symbol of arity n
and t0, . . . , tn are terms with FV(t0) = {x1, . . . , xm} ⊆ FV(t1) ∪ . . . ∪ FV(tn).

The corresponding rewrite rule is f(t1, . . . , tn) −→ t0, it is called a term rewrite rule.

� Axioms of the form ∀x1. . . .∀xm. P (t1, . . . , tn)⇔ ϕ where P is a predicate symbol of arity n,
t1, . . . , tn are terms, and ϕ is a formula with FV(ϕ) = {x1, . . . , xm} ⊆ FV(t1) ∪ . . . ∪ FV(tn).

The corresponding rewrite rule is P (t1, . . . , tn) −→ ϕ, it is called a proposition rewrite rule.

The way axioms are chosen to be replaced by rewrite rules is out of the scope of this thesis.
The de�nitions of Section 1.2 are extended in the obvious way to de�ne rewriting, reduction,

normalization, and congruence of �rst-order formulae.

1.3.2 Extending First-Order Logic

There are two equivalent ways to extend to Deduction modulo a proof system for �rst-order logic:
the �rst one, inspired by the conversion rule in type theory, consists in simply adding a proof rule
allowing the replacement of a formula by a congruent one:

Γ ` ϕ (when ϕ ≡R ψ)
(Conv)

Γ ` ψ

22

The computation steps used for going from ϕ to ψ are not recorded in the proof but proofs are
still a bit polluted by the new rule since each occurrence of Conv is recorded in the proof derivation.
The second presentation avoids this by integrating the conversion to every rule; for example, the
natural deduction rule for introduction of conjunction:

Γ ` ϕ1 Γ ` ϕ2
(∧-intro)

Γ ` ϕ1 ∧ ϕ2

is transformed into

Γ ` ϕ1 Γ ` ϕ2 (when ψ ≡R ϕ1 ∧ ϕ2)
(∧-intro)

Γ ` ψ

These two approaches are equivalent [69], the former is preferred when studying the connection
between Deduction modulo and type theory, the latter is closer to the implementation of theorem
provers for Deduction modulo.

Example 4. Consider the following rewrite system de�ning the addition of Peano natural numbers:
0 + n −→ n, succ(m) + n −→ succ(m+ n).

The formula 2 + 2 = 4 where 2 := succ(succ(0)) and 4 := succ(succ(succ(succ(0)))) can be
proved by a single application of the re�exivity rule:

(when t ≡R u)
(re�exivity)

Γ ` t = u

1.3.3 Termination and Consistency

Proving consistency of theories is at least as hard in Deduction modulo than in regular �rst-order
logic.

A common technique to prove consistency in �rst-order logic relies on cut-elimination: if we can
de�ne a notion of cut for the theory such that cuts are eliminable and every cut-free proof starts
with an introduction rule, then the theory is consistent (because there is no introduction rule for
the false proposition).

Since cut-elimination is a statement about the termination of a certain proof transformation
procedure, in Deduction modulo we expect it to be linked with termination of the rewrite system.
Dowek and Werner [70] remark however that these two notions have few links:

Lemma 1 (Proposition 3.8 in [70]). If a theory in Deduction modulo contains only rewrite rules at
the level of terms (no axiom and no rewrite rule at the level of propositions), then cuts are eliminable
hence the theory is consistent, regardless of the terminating status of the rewrite system.

Example 5 (Section 2.3 in [70]). Let A be a constant (a function symbol of arity 0) and • ∈ • be
a binary predicate symbol, the axiom-free theory containing the terminating rewrite rule A ∈ A −→
∀x, (x = A⇒ ¬(x ∈ A)) only is inconsistent.

23

1.4 Zenon Modulo

The two main techniques for automated theorem proving in �rst-order logic are a proof search
method for sequent calculus called the Tableaux Method [161] and Resolution [152]. Deduction
modulo has been implemented on top of both: Zenon Modulo [61] and iProver Modulo [36] are
extension to Deduction modulo of, respectively, the tableaux prover Zenon and the resolution prover
iProver.

Zenon [31] is able to read problems both in the standard TPTP format and in (a fragment
of) Coq syntax. Zenon is one of the very few theorem provers able to produce an independently
checkable proof; the output format of Zenon is Coq.

Zenon Modulo [61] is an extension of Zenon to Deduction modulo, it is developed by Pierre Hal-
magrand. Coq implements a type theory and can represent some computation using the conversion
rule but this is not enough for Deduction modulo: Coq is strongly normalizing so its conversion can
not express computation de�ned by a rewrite system for which termination is unknown. For this
reason, Zenon Modulo has been adapted to produce proofs in Dedukti format.

It has been shown that proof search in Zenon is more e�ective when using Deduction modulo [38].

24

Chapter 2

λ-Calculus and Type Theory

Type theory was invented by Russell [153] in 1908 to solve the paradoxes of naive set theory that
had just been discovered a few years before.

The typing discipline corresponds to the mathematical habit of not interchanging objects of
di�erent natures. In planar geometry for example, the parallelism relation applies only to straight
lines; statements such as "2 is parallel to the empty set" are not rejected because they are false
statements, they must be ruled-out because they carry no meaning.

Types also have a wide range of applications in programming languages. Most languages assign
types to data at least to indicate how much size they have in memory. This assignation happens
either dynamically during the program evaluation or statically during the compilation of the pro-
gram. In the case of static typing, types are used to ensure that some dynamic errors such as trying
to apply a number as a function will not appear. Types are also of a great help for reporting errors,
for guiding compiler optimizations [114], and for ensuring various properties.

In the particular case of the λ-calculus at the heart of the functional languages, many type
systems have been studied. We present λ-calculus in Section 2.1, the simplest type system for
λ-calculus in Section 2.2, and we extend this system to polymorphism in Section 2.3 to obtain
the type system used in real functional programming languages. By adding another feature called
dependent typing, type systems can be used to encode logics. We present dependent type systems
in Section 2.4 and a particular class of type systems called logical frameworks specialized in the
encoding of logical systems in Section 2.5.

2.1 λ-Calculus

The λ-calculus is the core calculus of functional programming languages. It is de�ned by a syn-
tax describing which terms belong to the language and a semantics describing how programs are
evaluated.

The syntax of the pure λ-calculus has only one category: the category of λ-terms. λ-terms are
built from variables, binary application, and the original operation of λ-abstraction:

λ-terms t ::= x Variable
t1 t2 Application
λx. t λ-abstraction

25

Application roughly corresponds to the usual operation consisting of applying a function to its
argument and is written t1 t2 instead of the more common mathematical notation t1(t2) in order to
save parentheses. To save more parentheses, we take the convention that application associates to
the left: t1 t2 t3 should be read as (t1 t2) t3, not t1 (t2 t3).

λ-abstraction is the way functions are de�ned in λ-calculus: the term λx. t corresponds roughly
to the function returning t when applied to x. In the term λx. t, the variable x is bound in the term
t (the notion of binding has been introduced in Section 1.1.1). In the context of the λ-calculus, the
renaming operation is called α-renaming, α-conversion, or α-equivalence. For example, the terms
λx. λy. x and λz. λx. z are α-equivalent. We are usually interested in λ-terms modulo α-equivalence
only.

The notions of free variables and substitutions are the same as for �rst-order formulae. The set
of free variables FV(t) of a term t is de�ned as follows:

FV(x) := x
FV(t1 t2) := FV(t1) ∪ FV(t2)
FV(λx. t) := FV(t) \ {x}

It is always possible to α-rename a λ-term in such a way that free and bound variables form
disjoint sets.

The substitution of the variable x by the term t1 in the term t2 is written t2{x\t1} and de�ned
as follows:

x{x\t1} := t1
y{x\t1} := y when y 6= x
(t2 t3){x\t1} := (t2{x\t1}) (t3{x\t1})
(λx. t){x\t1} := t
(λy. t){x\t1} := λy. (t{x\t1}) when y 6∈ FV(t1)

λ-calculus is given a computational meaning by de�ning the β rewriting rule:

� (λx. t2) t1 −→ t2{x\t1}

This rule is not a �rst-order rewrite rule in the sense discussed in Section 1.2 because of the
presence of the λ binder in the left-hand side and the substitution in the right-hand side so we need
to generalize the de�nitions of Section 1.2.

β-reduction is the smallest relation −→β such that:

� (λx. t2) t1 −→β t2{x\t1}, and

� −→β is a closed under context:

� if t1 −→β t2 then t1 t3 −→β t2 t3 and t3 t1 −→β t3 t2, and

� if t1 −→β t2 then λx. t1 −→β λx. t2.

For example, the term λx. (λy. x) x β-reduces to λx. x and the term (λx. x x) (λy. y y)
β-reduces to itself.

We denote by −→∗β the re�exive and transitive closure of −→β de�ned as the smallest relation
such that:

26

� if t1 −→β t2 then t1 −→∗β t2,

� −→∗β is re�exive: t −→∗β t, and

� −→∗β is transitive: if t1 −→∗β t2 and t2 −→∗β t3 then t1 −→∗β t3.

Finally, we denote by ≡β the re�exive, symmetric and transitive closure of −→β de�ned as the
smallest relation such that:

� if t1 −→β t2 then t1 ≡β t2,

� ≡β is re�exive: t ≡β t,

� ≡β is symmetric: if t1 ≡β t2, then t2 ≡β t1,

� ≡β is transitive: if t1 ≡β t2 and t2 ≡β t3 then t1 ≡β t3.

A λ-term t1 for which no λ-term t2 exists such that t1 −→β t2 is called a normal term. For
example, the identity λx. x is normal. If t1 −→∗β t2 and t2 is normal then we say that t1 normalizes
to t2 and that t2 is the normal form of t1. Not all terms normalize, for example the self-reducing
term (λx. x x) (λy. y y) does not normalize but the normal form of a normalizing term is unique.
This is a consequence of the Church-Rosser theorem [48] stating that β-reduction is a con�uent
relation:

Theorem 1 (Church-Rosser). Let t1, t2, and t3 be λ-terms such that t1 −→∗β t2 and t1 −→∗β t3,
there exists a λ-term t4 such that t2 −→∗β t4 and t3 −→∗β t4.

We can distinguish three kinds of λ-terms:

� diverging terms having no normal form such as (λx. x x) (λy. y y)

� weakly normalizing terms which have normal forms but also in�nite reduction sequences such
as (λx. λy. y) ((λx. x x) (λy. y y)) which reduces both to itself and to the normal term λy. y

� strongly normalizing terms for which all reduction sequences are �nite.

Despite its simplicity, λ-calculus is a Turing-complete model of computation. In particular,
natural numbers can be encoded in various ways, the simplest of which is probably Church numerals.
In this encoding of numerals, the natural number n is represented as the operation consisting of
iterating functions n times:

n := λf. λx.

n times︷ ︸︸ ︷
f (f (. . . (f x) . . .))

Some arithmetic functions are easy to de�ne in this setting:

0 := λf. λx. x
succ := λn. λf. λx. f (n f x)
+ := λm. λn. λf. λx. m f (n f x)
× := λm. λn. λf. λx. m (n f) x

27

2.2 Simple Types

The most simple way of assigning types to λ-terms is given by the simply-typed λ-calculus. Simple
types serve two purposes:

� they are used to forbid some meaningless terms, they can be conceived as a weak form of
speci�cation,

� they guarantee termination: all well-typed terms are strongly normalizing.

In this section, we give the syntax and then the basic properties of the simply-typed λ-calculus.
If τ1 and τ2 are types, we can build the type τ1 → τ2 which is the type of functions taking an

argument of type τ1 and returning a value of type τ2. To save parentheses, we take the convention
that → is right-associative: τ1 → τ2 → τ3 means τ1 → (τ2 → τ3). We also add basic types denoted
by the letter i so that at least one type can be constructed. The precise nature of these basic types
is not relevant for the simply-typed λ-calculus. In practice, they are often de�ned by a �rst-order
signature as we de�ned �rst-order terms in Section 1.1.1.

The terms of the simply-typed λ-calculus are the λ-terms that we introduced in Section 2.1; this
is called the presentation of simply-typed λ-calculus a la Curry as opposed to the presentation of
simply-typed λ-calculus a la Church where λ-abstractions are decorated by the type assigned to the
abstracted variable.

In order to check that a given λ-term has a given type, we require the type of all the free
variables. They are provided by a typing context Γ: a �nite list of variable declarations of the form
x : τ . When a context Γ is extended by a new declaration x : τ , we write the extended context
Γ, x : τ . The full syntax of simply-typed λ-calculus is as follows:

Simple types τ ::= i Basic type
τ1 → τ2 Arrow type

λ-terms t ::= x Variable
t1 t2 Application
λx. t Abstraction

Typing contexts Γ ::= ∅ Empty context
Γ, x : τ Extended context

We write x ∈ Γ to indicate that x is declared in Γ and (x : τ) ∈ Γ to indicate that the declaration
x : τ is present in Γ. Types are associated to terms using an inductive relation: the typing judgment
Γ ` t : τ de�ned in Figure 2.1.

A well-formed context is a context in which each variable is declared at most once. The side
condition in (Abs) rule is here to preserve well-formedness.

This type system satis�es a few important properties such as decidability and termination which
are the main motivations for introducing types.

Theorem 2 (Decidability). Given a typing context Γ, a term t and a type τ , the judgment Γ ` t : τ
is decidable.

Theorem 3 (Type inference). Given a typing context Γ and a term t, we can decide whether or
not there exists a type τ such that Γ ` t : τ .

28

Typing

(when (x : A) ∈ Γ)
(Var)

Γ ` x : A

Γ ` t1 : τ1 → τ2 Γ ` t2 : τ1
(App)

Γ ` t1 t2 : τ2

Γ, x : τ1 ` t : τ2 (when x 6∈ Γ)
(Abs)

Γ ` λx. t : τ1 → τ2

Figure 2.1: Typing rules for simply-typed λ-calculus

This result is constructive in the sense that when such a type τ exists, it can actually be
computed from Γ and t.

Theorem 4 (Subject reduction). If Γ ` t1 : τ and t1 −→β t2 then Γ ` t2 : τ .

Theorem 5 (Termination). If Γ ` t1 : τ then t1 is strongly normalizing.

2.3 Polymorphism

Simple types lead to a lot of code duplication because the same untyped λ-term can usually be
given several types. For example, the identity function λx. x can be assigned all the types of the
form τ → τ and the composition of functions λf. λg. λx. f (g x) can be assigned all the types of the
form (τ2 → τ3)→ (τ1 → τ2)→ τ1 → τ3. When the λ-calculus is used as a basis for a programming
language, this duplication is not acceptable. We do not want to duplicate the code of the programs
in order to get the right to use them on di�erent types.

This problem is solved by enriching the type system by polymorphism. Polymorphism is the
ability to de�ne functions acting on several types; two kinds of polymorphism can be distinguished:
ad-hoc polymorphism and parametric polymorphism.

An ad-hoc polymorphic function can act di�erently depending on the type of its argument.
Ad-hoc polymorphism is usually de�ned by overloading a function symbol with several types and
de�nitions. A typical example of ad-hoc polymorphism in programming is the printing function.
Many programming languages provide a function print which prints its argument and is de�ned
di�erently depending on the type of the argument: for example, numbers are converted in decimal
notation before printing.

Parametric polymorphic functions on the other side are functions whose de�nitions are generic
in one or more types; they do not inspect the type of their arguments. The identity function and
the composition of functions are examples of parametric polymorphic functions.

The most common polymorphic type system implemented in functional programming languages
such as OCaml and Haskell is the Damas-Hindley-Milner type system [59]. It extends the simply-
typed λ-calculus with parametric polymorphism. This type system is also used to de�ne higher-order
logic.

29

We present Damas-Hindley-Milner type system in Section 2.3.1 and higher-order logic in Sec-
tion 2.3.2.

2.3.1 Damas-Hindley-Milner Type System

To provide a powerful type system for the functional programming language ML, Damas, and
Milner [59] have proposed a polymorphic type system which had already been discovered by Hind-
ley [96] in the context of combinatory logic. Damas-Hindley-Milner type system is also known as
ML-like polymorphism, prenex polymorphism, let-polymorphism, and rank-1 polymorphism. There
are a few equivalent presentations of this type system, one of the simplest is the syntax-directed
presentation [53] that we adopt here.

In order to write the types of the identity function and of the composition of functions, we
add type variables denoted by α. The term λx. x still accepts multiple types such as ι → ι and
(ι → ι) → (ι → ι) but it has a principle type α → α; all the types of λx. x are obtained from
α → α by substituting the type variable α. Similarly, λf. λg. λx. f (g x) will have the principle
type (α2 → α3) → (α1 → α2) → α1 → α3. All λ-terms which are well-typed with respect to the
simply-typed λ-calculus have principle types and principle types are e�ciently computable.

In order to bind the variables occurring in types, we introduce the notion of type schemes. Type
schemes have the form Πα1. . . .Παn. τ

1, they appear instead of types in typing contexts.
Polymorphic terms are introduced by named local de�nitions with the syntax let x := t1 in t2

which is semantically equivalent to (λx. t2) t1 but has a more liberal typing rule: in the case of the
local de�nition, t2 is checked in a typing context in which x is assigned a type scheme whereas in
the case of the abstraction λx. t2, we are only allowed to assign a type to x while checking t2. The
syntax and typing rules of Damas-Hindley-Milner type system are given in Figure 2.2.

Contrary to other extensions of simply-typed λ-calculus to polymorphism such as System F [82],
type inference is decidable in Damas-Hindley-Milner type system.

Theorem 6 (Type inference). Given a typing context Γ and a term t, we can decide whether or
not there exists a type τ such that Γ ` t : τ .

As in the simply-typed case, this result is constructive in the sense that when such a type τ
exists, it can actually be computed from Γ and t.

2.3.2 HOL

Prenex polymorphism is also the type discipline adopted in Church simple theory of types, also
known as Higher-Order Logic (HOL for short). HOL has been implemented in various proof assis-
tants: HOL Light, HOL4, HOL Zero, ProofPower-HOL and Isabelle/HOL. These proof assistants
are commonly referred to as the HOL family.

As its name suggests, HOL is a logic in which quanti�cation is allowed at all orders: in HOL
we can quantify over logical propositions, predicates and arbitrary λ-terms. The type system of
HOL is simply obtained by extending Damas-Hindley-Milner type system by a new atomic type o.
Logical propositions are terms of type o and predicates over a type τ are terms of type τ → o.

1We use the notation Π for prenex quanti�cation instead of the more common notation ∀ in order to avoid confusion
with the logical universal quanti�er.

30

Syntax Types τ ::= α Type variable
ι Atomic type
τ1 → τ2 Arrow type

Type schemes σ ::= τ Type
Πα. σ Universal scheme

Terms t ::= x Variable
t1 t2 Application
λx. t Abstraction
let x := t1 in t2 Local de�nition

Typing contexts Γ ::= ∅ Empty context
Γ, x : σ Extended context

Typing

(when (x : Πα1. . . .Παn. τ) ∈ Γ)
(Var)

Γ ` x : τ{α1\τ1, . . . αn\τn}
Γ ` t1 : τ1 → τ2 Γ ` t2 : τ1

(App)
Γ ` t1 t2 : τ2

Γ, x : τ1 ` t : τ2
(Abs)

Γ ` λx. t : τ1 → τ2

Γ ` t1 : τ1 Γ, x : Πα1. . . .Παn. τ1 ` t2 : τ2 (when {α1, . . . , αn} = FV(τ1) \ FV(Γ))
(Let)

Γ ` let x := t1 in t2 : τ2

Figure 2.2: Damas-Hindley-Milner type system

31

As a logical system, HOL is axiomatized by a typing context called the signature and a set of
rules for deriving new theorems. All theorem statements should be well-typed terms of type o in
the signature.

The usual axiomatization of HOL which is implemented in proof assistants of the HOL family
is named Q0, it has been proposed by Andrews [7]. The signature of Q0 is =̇ : Πα. α→ α→ o, ε :
Πα. (α→ o)→ α. We write t1 = t2 for =̇ t1 t2. The deduction rules of Q0 are as follows:

Deduction rules

(Assume)
p ` p

(Re�)
` t = t

` t1 = t2
(AbsThm)

` λx. t1 = λx. t2

` t1 = t2 ` t3 = t4
(AppThm)

` t1 t3 = t2 t4

` p = q ` p
(EqMP)

` q

q ` p p ` q
(DeductAntiSym)

` p = q
(η-equality)

` λx. t x = t
(Choice)

p t ` p (ε p)

In Q0, functional extensionality f x = g x ` f = g is provable from AbsThm and η-equality.
From extensionality and Choice, the Law of Excluded Middle can be derived by Diaconescu Theo-
rem [65] hence Q0 de�nes a classical logic.

If we want to work in an intuitionistic higher-order logic, we can take the universal quanti�er
and the implication as primitives instead of equality and the choice operator. The signature of this
alternative axiomatization is Σ := ∀̇ : Πα. (α→ o)→ o, ⇒̇ : o→ o→ o. We write ∀x. p instead of
∀̇(λx. p) and p⇒ q instead of ⇒̇ p q. The derivation rules are as follows:

32

Deduction rules

(Assume)
p ` p

` p⇒ q ` p
(⇒-elim)

` q
p ` q

(⇒-intro)
` p⇒ q

` ∀̇p
(∀-elim)

` p t

` p x
(∀-intro)

` ∀̇p

In this axiomatization, equality can be de�ned using Leibnitz de�nition =̇ := λx. λy. ∀p. p x⇒
p y.

2.4 Dependent Types

Types can be seen as weak speci�cations of λ-terms. If a term t has type τ1 → τ2 then we now that
t will produce values of type τ2 when applied to arguments of type τ1.

In order to enrich the expressivity of types as program speci�cations, we can enrich the type
system by types depending on terms called dependent types. For example, in a dependently-typed
programming language, we can de�ne the type of lists parameterized by their length, usually called
the type of vectors. Adding an element at the head of a vector of length n should return a vector
of length n+ 1 so this operation has type vector n→ vector (n+ 1).

De Bruijn introduced dependent types in the late 60s in the logical framework Automath [132]
to encode the judgments of various object logics. This use of dependent types will be the subject of
Section 2.5. A few years later, Scott generalized De Bruijn's idea to represent all the intuitionistic
logical connectives using dependent types [159] but he did so without distinguishing λ-abstraction
and universal quanti�cation so the types themselves could not be quanti�ed upon, which leads to a
lot of complications. Martin-Löf introduced the dependent product to form a type theory expressive
enough to represent intuitionistic predicate logic through the Curry-Howard correspondence and he
proved its consistency [123].

We present Martin-Löf Type Theory in Section 2.4.1, we demonstrate its use as a logical system
by an encoding of natural deduction in Section 2.4.2, and we present the type system implemented
by the Coq proof assistant in Section 2.4.3.

2.4.1 Martin-Löf Type Theory

The Curry-Howard correspondence is a one-to-one correspondence between proof systems and com-
putational models. It was �rst discovered by Curry in [58] in the context of combinator calculus
and Hilbert system and then extended by Howard to natural deduction for minimal propositional
logic and simply-typed λ-calculus [98].

The Brouwer-Heyting-Kolmogorov (BHK) interpretation [108] is an informal explanation of the
meaning of intuitionistic proofs. Following the BHK interpretation, a formula in intuitionistic logic
can be read as a programming task and a proof as a program accomplishing this task. Each
intuitionistic connective can be associated a meaning in this interpretation: for example, the task
A ∧ B consists in accomplishing both tasks A and B and the task ∃x. P (x) consists in computing
a witness a of P and accomplishing the task P (a).

33

Because intuitionistic logic features a nice interpretation of proofs as programs, it is a good
candidate for the Curry-Howard correspondence. Martin-Löf Type Theory (MLTT) is a type system
for an extended λ-calculus in which formulae can be represented as types and proofs as terms.

To represent intuitionistic connectives, MLTT features inductive types freely generated by a set
of constructors. The de�nitions of these inductive types all follow the same pattern: we �rst give
the constructors with their types, then the elimination principle denoted by EA for each type A
states that all values of inductive types start with a constructor. Finally, we add computation rules
representing cut-elimination: one rule for each possible way of applying the elimination principle to
a constructor. Actual implementations of MLTT such as Agda [134] propose this general scheme
as a syntactic construct called inductive de�nition. The users of these implementations are free
to de�ne their own inductive types and the type constructors proposed by Martin-Löf to represent
logic through the Curry-Howard correspondence are special cases of inductive de�nitions. De�ning
inductive de�nitions precisely is however a quite subtle topic so we rather adopt a presentation close
to the one by Martin-Löf in [122].

Types in MLTT are themselves elements of universes. An in�nite hierarchy of universes
Type0,Type1, . . . is assumed, each universe inhabits the following one and each universe is closed
with respect to the type-forming operations that we are about to de�ne.

Apart from the universes, the basic types of MLTT are the empty type 0 and the unit type 1.
Two types A and B can be combined by forming their disjoint sum A+B. Moreover, two binding
constructs for building types are available: the dependent sum Σx : A. B and the dependent product
Πx : A. B. In both constructs, the variable x is bound in B. Finally, from a type A and two terms
a and a′ in A, we can build the identity type Eq(A, a, a′).

All these syntactic constructs have two readings. They can either be understood as describing
sets of terms of a certain shape or logical propositions:

� The empty type 0 has no inhabitant and corresponds to logical falsehood.

� The unit type 1 is a singleton and corresponds to logical truth.

� The disjoint sum A + B contains terms of the form inl(a) where a inhabits A and terms of
the form inr(b) where b inhabits B. The disjoint sum corresponds to the logical disjunction
A ∨B.

� The dependent sum Σx : A. B contains all the pairs (a, b) where a inhabits A and b inhabits
B{x\a}. In particular, the type of the second component of these pairs may depend on
the value of the �rst component. The dependent sum corresponds to the logical existential
quanti�cation ∃x : A. B.

� The dependent product Πx : A. B contains all the functions of the form λx : A. b where x is
bound in b and b inhabits B. In particular, the variable x representing the argument of the
function may appear not only in the returned value b but also in its type B. The dependent
product corresponds to the logical universal quanti�cation ∀x : A. B.

� The identity type Eq(A, a, a′) contains only the re�exivity proof. The term re�(A, a) inhabits
Eq(A, a, a). The identity type corresponds to the logical equality a =A a

′.

The other logical connectives can be derived as special cases:

34

� The conjunction A ∧ B is represented in MLTT by the Cartesian product A × B which is
de�ned as the non-dependent case of dependent sum: (A × B) := (Σx : A. B) where x does
not occur free in B. Hence inhabitants of A×B are the pairs (a, b) where a inhabits A and b
inhabits B.

� The implication A ⇒ B is represented in MLTT by the arrow type A → B which is de�ned
as the non-dependent case of dependent product: (A→ B) := (Πx : A. B) where x does not
occur free in B. Hence inhabitants of A→ B are the functions λx : A. b such that b inhabits
B (the variable x may appear in b but not in B).

� Negation is de�ned as usual in intuitionistic logic: (¬A) := (A→ 0).

� Equivalence is also de�ned as usual in intuitionistic logic: (A↔ B) := (A→ B)× (B → A).

We have explained all the ways by which we can construct inhabitants of types but not yet how
to use them. For example, given two types A and B, we are not yet able to construct a term of
type (A+B)→ (B +A) which logically reads as commutativity of disjunction. If we try, we start
by constructing the term λx : (A+B). c where c is a term of type B + A that we have to provide
(and which might use the variable x). Now we need to internalize in the type theory the principle
that all inhabitants of A + B have one of the following shape : inl(a) or inr(b). By internalizing,
we mean adding a new syntactic construct in the theory to do this.

This new construct is called the eliminator of disjoint sums and written EA+B(t, z : A+B. C, x :
A. c, y : B. d). This eliminator is a new binder, the variables x, y, and z are bound respectively in the
terms c, d, and C. The programming reading of the eliminator of disjoint sums is a pattern matching
construct. The term t is matched against the two possible shapes inl(x) and inr(y). In the �rst
case, the branch de�ned by the term c is chosen; in the second case, the branch de�ned by the term
d is chosen. The subtlety of this construct comes from its typing rule. The types of both branches
do not need to be identical but they may depend on the matched term. This dependency is handled
by the type C, the required type for c is C{z\inl(x)}, the required type for d is C{z\inr(y)}, and
the returned type for the whole expression EA+B(t, z : A+B. C, x : A. c, y : B. d) is C{z\t}. The
logical reading of this new construct is reasoning by case depending on the shape of t; if t has the
shape inl(x) then the �rst branch (the term c) provides a way to prove C{z\t}, if on the contrary
t has the shape inr(y) then the second branch (the term d) provides a way to prove C{z\t}. As
a reasoning tool, the eliminator of disjoint sum hence corresponds to the natural deduction rule
of elimination of disjunction (see Section 1.1.2). The computational behaviour of the eliminator is
provided by the following reduction rules:

� EA+B(inl(a), z : A+B. C, x : A. c, y : B. d) −→ c{x\a},

� EA+B(inr(b), z : A+B. C, x : A. c, y : B. d) −→ d{y\b}.

Similar eliminators can be added for all the type constructors. We shall not describe them in
detail.

Formally, the judgments of MLTT are the following:

� Γ ` meaning that Γ is a well-formed typing context,

� Γ ` t : A meaning that t is a term of type A,

35

Γ ` A : Typei Γ ` B : Typei
(+-formation)

Γ ` A+B : Typei

Γ ` a : A Γ ` B : Typei
(inl)

Γ ` inl(a) : A+B

Γ ` A : Typei Γ ` b : B
(inr)

Γ ` inr(b) : A+B

Γ, z : A+B ` C : Typei Γ ` t : A+B Γ, x : A ` c : C{z\inl(x)} Γ, y : B ` d : C{z\inr(y)}
(+-elim)

Γ ` EA+B(t, z : A+B. C, x : A. c, y : B. d) : C{z\t}

Γ, z : A+B ` C : Typei Γ ` a : A Γ, x : A ` c : C{z\inl(x)} Γ, y : B ` d : C{z\inr(y)}
(+-elim-inl)

Γ ` EA+B(inl(a), z : A+B. C, x : A. c, y : B. d) ≡ c{x\a} : C{z\inl(a)}

Γ, z : A+B ` C : Typei Γ ` b : B Γ, x : A ` c : C{z\inl(x)} Γ, y : B ` d : C{z\inr(y)}
(+-elim-inr)

Γ ` EA+B(inr(b), z : A+B. C, x : A. c, y : B. d) ≡ d{y\b} : C{z\inr(b)}

Figure 2.3: Typing rules for disjoint sums in MLTT

� Γ ` t ≡ u : A meaning that t and u are convertible terms of type A.

The last judgment Γ ` t ≡ u : A should not be confused with the judgment Γ ` v : Eq(A, t, u).
The judgment Γ ` t ≡ u : A implies Γ ` re�(A, t) : Eq(A, t, u) but the converse does not hold
because the judgment Γ ` t ≡ u : A is decidable but the existence of a v such that Γ ` v : Eq(A, t, u)
is not.

The rules related to disjoint sum are given in Figure 2.3. We will not attempt to list all the
other typing rules of MLTT but we only highlight the most interesting rule of the system which is
the conversion rule:

Γ ` t : A Γ ` A ≡ B : Typei
(Conv)

Γ ` t : B

As in Deduction modulo (see Section 1.3), this rule can be used to let huge computations implicit
by following the Poincaré principle [24].

2.4.2 Curry-Howard Correspondence for Natural Deduction

Through the Curry-Howard correspondence, the type system of the simply-typed λ-calculus that
we described in Section 2.2 corresponds exactly to minimal natural deduction, the fragment of
natural deduction where the only available connective is implication obtained by taking only the
rules Axiom, ⇒-intro and ⇒-elim from Figure 1.1.

It is possible to extend the Curry-Howard correspondence by embedding natural deduction in

MLTT. To each function symbol f we associate a variable f of type

n times︷ ︸︸ ︷
I → . . .→ I → I where n is

the arity of f and I is a �xed type in the �rst universe Type0; to each predicate symbol P we

associate a variable P of type

n times︷ ︸︸ ︷
I → . . .→ I → Type0 where n is the arity of P . In this context, we

can de�ne a well-typed translation of �rst-order terms and formulae to MLTT; �rst-order terms are

36

translated as terms of type I and �rst-order formulae are translated as types in the �rst universe
Type0.

JxK := x
Jf(t1, . . . , tn)K := f t1 . . . tn

JP (t1, . . . , tn)K := P t1 . . . tn
Jt1 = t2K := Eq(I, t1, t2)
J>K := 1
J⊥K := 0
J¬ϕK := JϕK→ 0
Jϕ1 ∧ ϕ2K := Jϕ1K× Jϕ2K
Jϕ1 ∨ ϕ2K := Jϕ1K + Jϕ2K
Jϕ1 ⇒ ϕ2K := Jϕ1K→ Jϕ2K
Jϕ1 ⇔ ϕ2K := Jϕ1K↔ Jϕ2K
J∀x. ϕK := Π(I, x. JϕK)
J∃x. ϕK := Σ(I, x. JϕK)

A derivation of a judgment Γ ` ϕ can then be translated as a typing derivation of some term t
such that JΓK ` t : JϕK.

2.4.3 The Calculus of Inductive Constructions

Russell invented the �rst type theory in 1908 [153] to solve Russell paradox. This paradox can be
stated as follows in naive set theory: any set might or not belong to itself, if we denote by E the
set of all sets not belonging to themselves, then E ∈ E if and only if E 6∈ E. According to Russell,
the source of the paradox is the possibility to quantify over all possible sets, including E, in the
de�nition of E. Such a de�nition is called an impredicative de�nition and a way to get rid of Russell
Paradox is to forbid impredicativity. To construct a predicative theory of sets, Russell invented a
system of types. The quanti�cation over all the objects of a certain type is a formula of a greater
type.

MLTT is a predicative type theory but HOL (see Section 2.3.2) is impredicative. Indeed, im-
predicativity is used at the very basis of HOL. For example, conjunction can be de�ned by the
impredicative de�nition A ∧B := ∀C. (A⇒ B ⇒ C)⇒ C.

The Calculus of Inductive Constructions (CIC) [141] is an extension of Martin-Löf Type Theory
with an impredicative universe Prop. The universe hierarchy is maintained as in MLTT: there is a
universe Typei for each natural number i. In CIC, types are more distinguished from propositions
than in MLTT: alongside this hierarchy, the universe Prop of type Type1 is used to represent
propositions. Prop beeing impredicative, it is possible to quantify (using the dependent product)
over all the propositions and the resulting formula is still a proposition. Thanks to impredicativity,
we can de�ne the impredicative encodings of logical connectives in the same way than in HOL; for
example, the conjunction of two propositions A and B can be de�ned as the proposition A ∧B :=
ΠC : Prop. (A→ B → C)→ C. However, the inductive de�nitions from MLTT are also available
and they are usually preferred over the impredicative encodings.

CIC is implemented in two systems, Coq [63] and Matita [10] with some slight di�erences in the
available features that we are not going to detail.

37

2.5 Logical Frameworks

Implementation of logical systems such as MLTT is both error-prone and critical from the point
of view of trust. In order to ease the implementation of proof checkers for new logics, frameworks
for expressing logics have been proposed; they are called Logical Frameworks. Type theory is a
branch of computer science which has been a great source of inspiration for logical frameworks
because some of the simplest type theories can be used as e�cient logical frameworks; this fact was
already observed by de Bruijn in the 60s during the development of Automath [132], the �rst logical
framework.

Dedukti is a logical framework based on type theory, its two main sources of inspiration are
the Edinburgh Logical Framework [90] (ELF for short) and Martin-Löf's Logical Framework [133]
(MLLF for short). We start with a short discussion on the representation of binding in logical
frameworks in Section 2.5.1. We then present ELF and MLLF in Sections 2.5.2 and 2.5.3. In
Sections 2.5.4 and 2.5.5 we detail the two main di�erences between ELF and MLLF and explain
the choices that have been made in Dedukti. We postpone the presentation of Dedukti itself to
Chapter 3.

2.5.1 Representing Binding

Almost all logical systems require a notion of variable binding. For example, quanti�ers are binders
in �rst-order logic (see Section 1.1), λ-abstraction is a binder in HOL (see Section 2.3.2), and a
lot of binding constructs have been introduced in our presentation of MLTT (see Section 2.4.1).
While the human reader usually understands easily what binding means, mechanizing binding is a
notoriously hard task. Binding is hard to get e�cient, readable, and easy to reason about at the
same time so compromises are made depending on the use-case [169].

Two main trends of representations of variable binding in�uence the development of logical
frameworks2: higher-order abstract syntax [146, 128, 91, 113] and nominal logic [149, 166, 19, 46].

Nominal logic axiomatizes binding from the more primitive notion of name swapping and name
freshness from which α-equivalence and capture-avoiding substitution are reasonably easy to de�ne.

The idea behind HOAS is to represent the binding operations of the represented logic by the
binding operation of the λ-calculus: λ-abstraction. The capture-avoiding substitution b{x\a} can
then simply be represented by the β-redex (λx. b) a.

HOAS can be used in any logical framework built on top of λ-calculus, not necessarily a logical
framework featuring dependent types. For example, λ-prolog [128] and Isabelle are logical frame-
works based on polymorphic λ-calculi and HOL, we can use HOAS to de�ne universal quanti�cation
from equality as (∀x. p) := (p = λx. >).

If the logic features quanti�cation, then the propositions need to be represented as λ-terms in
the logical framework: the formula ∀x. P (x) would be written ∀ (λx. P x).

In logical frameworks featuring dependent types, we can build the type of all the proofs of a
formula ϕ as a type depending on the term representing ϕ. The motivation for using dependent
types in logical frameworks is precisely the ability to represent proofs as objects of the framework.
Following the Curry-Howard correspondence, we can then use proofs as programs, that is we can
compute with proofs.

2Other representations of binding such as explicit names and De Bruijn indices are possible but we do not present
them because logical frameworks do not o�er more support for them than �rst-order logic.

38

2.5.2 Edinburgh Logical Framework

The expression Logical Framework was �rst coined in [90] to refer to the λΠ-calculus, the type
system underlying the Edinburgh Logical Framework.

The λΠ-calculus is a system of Barendregt's λ-cube [22] and can hence be presented as a Pure
Type System [23], this is the presentation that we use because it is very succinct.

The syntax and the typing rules for the λΠ-calculus are presented in Figure 2.4. We let the
letter s range over these two sorts, the letter x range over variables, and other letters range over
terms. The two forms of judgment are

� (Γ `) meaning that the context Γ is well-formed,

� (Γ ` t1 : t2) meaning that the term t1 has type t2 in context Γ.

The λΠ-calculus extends the simply-typed λ-calculus by dependent typing and nothing else.
Types are not syntactically distinguished from terms but two particular terms Type and Kind are
distinguished and called sorts. Type is the sort of all the types so the typing judgment Γ ` t : Type
is used to represent the fact that the term t is a type. Type itself is not a type to avoid Girard's
Paradox [82]; it is a kind, that is a term of type Kind. Type families can be introduced as
terms of type τ1 → . . . → τn → Type for some types τ1, . . . , τn. All the terms of the form
τ1 → . . . → τn → Type are also kinds but Kind itself is not a well-typed term. As in MLTT
(see Section 2.4.1), the arrow type τ1 → τ2 is seen as a particular case of the dependent product:
τ1 → τ2 := Πx : τ1. τ2 where the variable x does not occur free in τ2.

The most interesting typing rule of the λΠ-calculus is the conversion rule which can be used
to transparently replace a type A by any type B which is β-convertible to A. The relation ≡β , is
de�ned on untyped terms as in Section 2.1.

2.5.3 Martin-Löf's Logical Framework

Martin-Löf's Logical Framework has been informally introduced by Martin-Löf to de�ne Martin-
Löf's Type Theory [122]. This logical framework has then been formalized in [133]. We give here
a presentation of this framework where variables are introduced together with their types, this
presentation has been proposed by Luo in [118] and is convenient to compare MLLF with other
logical frameworks, especially Pure Type Systems such as the λΠ-calculus.

Similarly to the λΠ-calculus, MLLF is a dependent type system. In order to avoid confusion
between the types of MLLF and the types of type systems that are to be embedded in MLLF, the
former are called kinds and the later are the inhabitants of a built-in kind called Type. Contrary
to the λΠ-calculus, kinds and terms are syntactically distinguished, we shall use uppercase letters
to denote kinds and lowercase letters to denote terms. To each inhabitant a of Type is associated
a kind El(a), moreover kinds can be built using the dependent product. The terms of MLLF are
the usual terms of the λ-calculus where λ-abstraction is annotated by the kind over which the
introduced variable ranges.

The syntax of MLLF is given in Figure 2.5 and Figure 2.6 together with the rules de�ning MLLF
judgments:

� (Γ `) meaning that the context Γ is well-formed,

� (Γ ` K kind) meaning that K is a kind in context Γ,

39

Syntax s := Type | Kind sorts
t := s | x | t1 t2 | λx : t1. t2 | Πx : t1. t2 terms
Γ := ∅ | Γ, x : t contexts

Typing

(Empty)
∅ `

Γ ` A : s (when x 6∈ Γ)
(Decl)

Γ, x : A `
Γ `

(Type)
Γ ` Type : Kind

Γ ` (when (x : A) ∈ Γ)
(Var)

Γ ` x : A

Γ ` f : Πx : A. B Γ ` a : A
(App)

Γ ` f a : B{x\a}

Γ ` A : Type Γ, x : A ` b : B
(Abs)

Γ ` λx : A. b : Πx : A. B

Γ ` A : Type Γ, x : A ` B : s
(Prod)

Γ ` Πx : A. B : s

Γ ` t : A Γ ` B : s (when A ≡β B)
(Conv)

Γ ` t : B

Figure 2.4: The λΠ-calculus

40

Syntax t := x | t t | λx : K. t terms
K := Type | El(t) | Πx : K. K kinds
Γ := ∅ | Γ, x : K contexts

Context Formation

(Empty)
∅ `

Γ ` A kind (when x 6∈ Γ)
(Decl)

Γ, x : A `

Kinds

Γ `
(Type)

Γ ` Type kind
Γ ` A : Type

(El)
Γ ` El(A) kind

Γ ` A kind Γ, x : A ` B kind
(Prod)

Γ ` Πx : A. B kind

Typing

Γ ` (when (x : A) ∈ Γ)
(Var)

Γ ` x : A

Γ ` f : Πx : A. B Γ ` a : A
(App)

Γ ` f a : B{x\a}

Γ ` A kind Γ, x : A ` b : B
(Abs)

Γ ` λx : A. b : Πx : A. B
Γ ` t : A Γ ` B kind Γ ` A ≡ B

(Conv)
Γ ` t : B

Figure 2.5: Martin-Löf's Logical Framework (part 1/2)

� (Γ ` t : K) meaning that the term t has kind K in context Γ,

� (Γ ` A ≡ B) meaning that the kinds A and B are convertible in context Γ,

� (Γ ` t ≡ u : K) meaning that the terms t and u of kind K are convertible in context Γ.

2.5.4 Internal vs. External Conversion

In dependently typed systems, types are usually quotiented by evaluation of the terms occurring
inside; the congruence ≡ used for quotienting types is called conversion and it is dealt in two slightly
di�erent ways in logical frameworks:

� For some frameworks, such as MLLF [133] and Luo's PAL+ [119], conversion is an internal
judgment Γ ` A ≡ B : T ; this judgment is a congruence by virtue of its derivation rules.

41

Kind Conversion

Γ ` A kind
(Re�)

Γ ` A ≡ A
Γ ` A ≡ B

(Sym)
Γ ` B ≡ A

Γ ` A ≡ B Γ ` B ≡ C
(Trans)

Γ ` A ≡ C

Γ ` A ≡ A′ Γ, x : A ` B ≡ B′
(Prod)

Γ ` Πx : A. B ≡ Πx : A′. B′
Γ ` a ≡ a′ : Type

(El)
Γ ` El(a) ≡ El(a′)

Term Conversion

Γ ` t : A
(Re�)

Γ ` t ≡ t : A
Γ ` t ≡ u : A

(Sym)
Γ ` u ≡ t : A

Γ ` t ≡ u : A Γ ` u ≡ v : A
(Trans)

Γ ` t ≡ v : A

Γ ` f ≡ f ′ : Πx : A. B Γ ` a ≡ a′ : A
(App)

Γ ` f a ≡ f ′ a′ : B{x\a}

Γ ` A ≡ A′ Γ, x : A ` b ≡ b′ : B
(Abs)

Γ ` λx : A. b ≡ λx : A′. b′ : Πx : A. B

Γ ` t ≡ u : A Γ ` A ≡ B
(Conv)

Γ ` t ≡ u : B

Γ, x : A ` b : B Γ ` a : A
(Beta)

Γ ` (λx : A. b) a ≡ b{x\a} : B{x\a}

Γ ` f : Πx : A. B (when x 6∈ FV(f))
(Eta)

Γ ` λx : A. f x ≡ f : Πx : A. B

Substitution

Γ, x : A,Γ′ ` Γ ` a : A
(Decl)

Γ,Γ′{x\a} `
Γ, x : A,Γ′ ` B kind Γ ` a : A

(Kind)
Γ,Γ′{x\a} ` B{x\a} kind

Γ, x : A,Γ′ ` b : B Γ ` a : A
(Typing)

Γ,Γ′{x\a} ` b{x\a} : B{x\a}

Γ, x : A,Γ′ ` B kind Γ ` a = a′ : A
(KindConv1)

Γ,Γ′{x\a} ` B{x\a} ≡ B{x\a′}

Γ, x : A,Γ′ ` B ≡ B′ Γ ` a : A
(KindConv2)

Γ,Γ′{x\a} ` B{x\a} ≡ B′{x\a}

Γ, x : A,Γ′ ` b : B Γ ` a ≡ a′ : A
(Conv1)

Γ,Γ′{x\a} ` b{x\a} ≡ b{x\a′}

Γ, x : A,Γ′ ` b ≡ b′ : B Γ ` a : A
(Conv2)

Γ,Γ′{x\a} ` b{x\a} ≡ b′{x\a}

Figure 2.6: Martin-Löf's Logical Framework (part 2/2)

42

� For other frameworks, such as ELF [90] and Pure Type Systems [23], conversion is an external
relation on untyped terms, typically β-conversion or βη-conversion; conversion appears as a
side condition for the conversion rule

Γ ` t : A Γ ` B : s (when A ≡ B)
(Conv)

Γ ` t : B

The internal version is more powerful as it allows conversion to depend on the ambient type
of terms A and B and on the context Γ, this extra power is useful for the study of undecidable
conversion relations such as the conversion of the extensional version of Martin-Löf's Type Theory
(in which two terms are convertible if and only if they are provably equal) as it allows to keep
decidability of derivation checking. It does however lead to a huge increase in the size of derivations
so it is rarely implemented.

As we will see in Section 3.2, the approach taken in Dedukti is intermediate between these two
alternatives. In Dedukti, conversion is essentially an external relation which shall be decidable and
it does not appear in derivations. It does however depend on the rewrite rules declared in the
context Γ.

2.5.5 Proposition-as-Type vs. Judgment-as-Type

Following the Curry-Howard correspondence, logical frameworks types can be used to represent the
logical propositions of the embedded logic and logical connectives (such as conjunction) are then
interpreted as type-level operations (such as the Cartesian product of two types). This approach
leads to a rich conversion that has to be extended when new type constructs are introduced, this is
the way MLLF is usually used.

In order to keep the conversion relation simple, an alternative approach has been proposed; it
consists in representing the judgments of the logic as types in the logical framework and every other
construct, including propositions, only as terms in the logical framework. This is the way ELF is
used to represent natural deduction for example.

In Dedukti, both methodologies are commonly used. We will see both a judgment-as-type and
a proposition-as-type encoding of Natural Deduction in Section 3.5.1.

43

Chapter 3

Dedukti: a Universal Proof Checker

Mixing the λΠ-calculus with Deduction modulo leads to the λΠ-calculus modulo, a logical frame-
work able to express proofs modulo rewriting. The combination of dependent types and rewriting
is surprisingly powerful and a wide variety of logical systems have been encoded in Dedukti, an
implementation of the λΠ-calculus modulo [155].

Since the λΠ-calculus modulo is built on λ-calculus, �rst-order rewriting as we presented in
Section 1.2 has to be generalized to higher-order in order to be included in the λΠ-calculus modulo.
This generalization is the topic of Section 3.1. The λΠ-calculus modulo itself is then brie�y presented
in Section 3.2. Dedukti syntax is used throughout this thesis, it is summarized in Section 3.3.

In order to get a better feeling of what Dedukti can be used for, most of this chapter is devoted to
Dedukti from a user point of view. Section 3.4 is devoted to concrete examples of use of programming
and logical paradigms in Dedukti and Section 3.5 demonstrates the encoding of logical systems in
Dedukti.

3.1 Higher-Order Rewriting

Similarly to the way we have de�ned �rst-order rewriting in Section 1.2, we now de�ne rewriting in
the case where the terms under consideration are not �rst-order terms but (simply-typed) λ-terms.

As in Section 1.2, a higher-order rewrite rule [20] l −→ r is de�ned by giving two terms, a
left-hand side l and a right-hand side r. We continue to require that all the free variables of r are
among those of l and that l is not itself a variable. The intended meaning of the rule l −→ r is that
any term βη-equivalent to an instance lρ of l evolves to the corresponding instance rρ of the term
r.

Contrary to the �rst-order case, uni�cation of λ-terms modulo βη is not decidable so we need
to restrict the shape of the left-hand sides if we want the reduction relation to be decidable. Such
a constraint is provided by Miller patterns.

A Miller pattern [125] is a λ-term p in η-long β-normal form such that every free occurrence of
a variable x is in a subterm of p of the form x y1 . . . yn such that the yi are η-equivalent to distinct
bound variables.

In this thesis, we are only interested in higher-order rewrite systems corresponding to rewrite
systems of the λΠ-calculus modulo. Moreover, rewriting is used in the λΠ-calculus modulo to
de�ne an external convertibility relation which is de�ned before the typing relation so it is de�ned

44

on all terms, not only well-typed terms. In particular, the rewrite systems that we consider do not
terminate because the β-reduction relation on untyped terms does not terminate.

Con�uence however holds for some but not all rewrite systems. As in the �rst-order case,
con�uence is not a decidable property of higher-order rewrite systems but useful criteria have been
found and implemented to the point that higher-order term rewrite systems became in 2015 a new
category in the international con�uence competition.

The competitors for this new category were:

� ACPH [137], implementing two criteria:

� Weakly orthogonal rewrite systems are con�uent [168].

A weakly orthogonal rewrite system is a left-linear rewrite system such that all critical
pairs are trivial.

� Knuth-Bendix theorem: for terminating rewrite systems, con�uence is equivalent to local
con�uence [124].

Sadly, this criterion is useless because we are interested in non-terminating rewrite sys-
tems only.

� CSI�HO [130]: implementing the same criteria plus:

� An approximation of Van Oostrom criteria for left-linear rewrite systems [167], which we
are not going to explain.

This criterion can be used to prove con�uence for complex examples.

3.2 The λΠ-Calculus Modulo

The λΠ-calculus modulo has been introduced by Cousineau and Dowek in [55] and then improved
by Saillard in [154, 155] to integrate several features needed for the translation of complex systems
such as CIC. We give here a simpli�ed presentation of this improved λΠ-calculus modulo.

The syntax and the typing rules for the λΠ-calculus modulo are given in Figure 3.2. The
λΠ-calculus modulo is obtained from the λΠ-calculus (see Figure 2.4) by the following steps:

� Extending contexts so that they can contain rewrite rules:

Γ := . . . | Γ, t −→ t

� Adding a derivation rule for checking well-formedness of contexts containing rewrite rules:

Γ ` Γ ` l −→ r
(Rule)

Γ, l −→ r `

De�ning precisely typing of rewrite rules is a very subtle a�air if we want the criterion to be
both decidable and powerful enough to be used in practice. The interested reader is refered to
[155]. In this thesis, we will not give the de�nition of the judgment Γ ` l −→ r. All well-typed
rules l −→ r are higher-order rewrite rules in the sense of Section 3.1: l is not a variable,
FV(r) ⊆ FV(l), and l is a Miller pattern.

45

Syntax s := Type | Kind sorts
t := s | x | t t | λx : t. t | Πx : t. t terms
Γ := ∅ | Γ, x : t | Γ, t −→ t contexts

Typing

(Empty)
∅ `

Γ ` A : s (when x 6∈ Γ)
(Decl)

Γ, x : A `
Γ ` Γ ` l −→ r

(Rule)
Γ, l −→ r `

Γ `
(Type)

Γ ` Type : Kind
Γ ` (when (x : A) ∈ Γ)

(Var)
Γ ` x : A

Γ ` f : Πx : A. B Γ ` a : A
(App)

Γ ` f a : B{x\a}
Γ ` A : Type Γ, x : A ` b : B

(Abs)
Γ ` λx : A. b : Πx : A. B

Γ ` A : Type Γ, x : A ` B : s
(Prod)

Γ ` Πx : A. B : s

Γ ` t : A Γ ` B : s (when A ≡βΓ B)
(Conv)

Γ ` t : B

Figure 3.1: The λΠ-calculus modulo

� Changing the conversion relation used in rule (Conv): instead of mere β-conversion, we use
the congruence induced by the relation βΓ consisting of β-reduction together with all the
rewrite rules present in Γ.

Γ ` t : A Γ ` B : s A ≡βΓ B
(Conv)

Γ ` t : B

This small extension to the λΠ-calculus enhances greatly its power as a logical framework: it is
easy to encode any functional Pure Type System in the λΠ-calculus modulo [55]. More complicated
logics such as Martin-Löf Type Theory, the Calculus of Inductive Constructions, and PVS are also
faithfully encoded in the λΠ-calculus modulo as they would be encoded in MLLF following the
proposition-as-type principle.

In [155], Saillard showed that assuming con�uence of the relation βΓ (on untyped terms), the
λΠ-calculus modulo enjoys the subject reduction property. If the relation βΓ is also terminating (on
well-typed terms), then ≡βΓ and typing are decidable so under these assumptions, the λΠ-calculus
modulo can be implemented.

3.3 Dedukti

Dedukti [156] is an implementation of a proof-checking algorithm for the λΠ-calculus modulo. Its
input is a context Γ of the λΠ-calculus modulo, its output is either SUCCESS if it succeeded in

46

checking Γ ` or ERROR and an error message otherwise.
Dedukti is a free software available at http://dedukti.gforge.inria.fr. In this thesis, we

use the version v2.5 of Dedukti.

3.3.1 Syntax

A Dedukti �le represents a λΠ-modulo context, it is composed of symbol declarations, rewrite rules,
and commands.

Dedukti uses ASCII notations, identi�ers are composed of letters, digits, and the underscore _.
The mapping between Dedukti ASCII syntax and the constructs of the λΠ-calculus modulo is given
in Figure 3.2; abstractions are written using a double => arrow and products using a simple arrow
->. The name of the variable in the product can be omitted for the non-dependent arrow.

Dedukti features a very basic module system. Each Dedukti �le corresponds to module, the
name of the module is given by the �rst line. The mandatory line #NAME module_name. at the
beginning of a Dedukti �le de�nes a module named module_name. It is possible to refer to symbols
declared in another Dedukti module using the dotted notation: a.b refers to the symbol b in module
a. Modules cannot be nested nor opened.

Dedukti distinguishes two kinds of declarations:

� declaration of a static symbol f of type A is written f : A,

� declaration of a de�nable symbol f of type A is written def f : A.

The di�erence between static and de�nable symbols is that the head symbol of a rewrite rule
must always be de�nable. Because static symbols cannot appear at head of rewrite rules, they
are injective with respect to conversion and this information can be exploited by Dedukti when it
needs to solve uni�cation problems. Static symbol are so called because they cannot change during
evaluation whereas de�nable symbols might receive (maybe partial) de�nitions.

Rewrite rules have the following syntax: [x1, . . ., xn] l --> r. where the xi are the matching
variables, l is a pattern and r is a term.

De�nitions are a special case of rewrite rules for which a speci�c syntax is available as syntactic
sugar de�ned in Figure 3.3: def f (x1 : A1) . . . (xn : An) : A := a., where f is a symbol, the
xi are variables and A, the Ai and a are terms, declares the de�nable symbol f and de�nes it as a
in which the xi have been λ-abstracted. The type A can be omitted since it can always be inferred
from a.

Finally, Dedukti features opaque de�nitions with the thm keyword: the opaque de�nition thm

f (x1 : A1) . . . (xn : An) : A := a. is equivalent to the static declaration f : (x1 : A1 ->

. . . -> xn : An -> A). but also checks that the term x1 : A1 => . . . => xn : An => a. has the
same type than f.

3.3.2 Commands

The primary role of Dedukti is to check that a given λΠ-modulo context is well-formed but Dedukti
also gives access to toplevel commands which can be used for requesting normal forms and testing
whether or not two terms are convertible. Theses commands are:

� #STEP t: print the term obtained by applying one βΓ-reduction step to t.

47

http://dedukti.gforge.inria.fr

Dedukti λΠ-calculus modulo Syntactic Construct
x : A => b λx : A. b Abstraction
x : A -> b Πx : A. b Product
A -> B A→ B Arrow type
def x : A. x : A De�nable symbol declaration
x : A. x : A Static symbol declaration
[x1, . . ., xn] l --> r. l −→ r Rewrite rule

Figure 3.2: Correspondance between Dedukti syntax and the λΠ-calculus modulo

Sugar Meaning

def f (x1 : A1) . . . (xn : An) : A := a. def f : (x1 : A1 -> . . . -> xn : An -> A).

[] f --> x1 : A1 => . . . => xn : An -> a.

thm f (x1 : A1) . . . (xn : An) : A := a. f : (x1 : A1 -> . . . -> xn : An -> A).

(when a : A)

Figure 3.3: Dedukti de�nitions as syntactic sugar

� #SNF (resp. #HNF, #WHNF) t: print the βΓ strong- (resp. head-, weak-head-) normal form of
term t.

� #CONV t1, t2: print YES if t1 is βΓ-convertible to t2 and NO otherwise.

� #CHECK t1, t2: print YES is t1 has type t2 and NO otherwise.

� #INFER t: print a type for t.

� #PRINT "s": print the string s.

3.3.3 Con�uence Checking

For e�ciency, Dedukti does not check that typing is preserved each time it reduces a term but,
similarly to evaluators for typed functional languages, it relies on the subject-reduction property.
As we already mentioned, this property cannot be proved in general but it holds when the (untyped)
βΓ-reduction is con�uent.

The βΓ-reduction �ts the de�nition of a Higher-Order Term Rewrite System (see Section 3.1)
for which con�uence checkers such as CSI�HO are available.

These tools implement no criterion for non left-linear rewrite systems so we have no way of
automatically ensuring subject reduction for non left-linear systems. Actually, when Γ contains non
left-linear rules, the relation βΓ is almost never con�uent on untyped terms. Since con�uence is

48

our main tool for proving subject reduction, Dedukti discourages the use of non left-linear rewrite
systems; they are only allowed when the option "-nl" (for non-linear) is passed to Dedukti.

Unless otherwise speci�ed, all the examples in this thesis have been type checked by Dedukti
and proved con�uent by CSI�HO.

3.4 Proving and Programming in Dedukti

Dedukti can be seen both as a logical framework in which logics and proofs can be developed and as
a dependently typed programming language based on rewriting. When combining these two views,
we can take bene�t of programming techniques to develop logical embeddings, proofs and proof
transformations in Dedukti. In this chapter we describe a few such techniques which make Dedukti
more powerful than usual implementations of type theory.

3.4.1 Smart Constructors

In ML, data types are useful for representing free structures generated by a set of constructors
but some types are better represented by quotienting data types by an equivalence relation. Often
enough, this equivalence relation can be de�ned as the congruence generated by a rewrite system.

For example, the type of Peano natural numbers is generated by zero and successor but integers
are harder to represent as a free structure. They are however easy to de�ne as a quotient of pairs
of natural numbers:

type nat = O | S of nat;;

type int = Diff of nat * nat;;

let rec diff (m, n) =

match (m, n) with

| (S m', S n') -> diff (m', n')

| _ -> Diff (m, n);;

The function diff is called a smart constructor [5] for the type int; if we restrict ourselves
to use the function diff instead of the constructor Diff, an extra invariant is guaranteed for the
values of type int: there are of the form Diff(m, n) where at least one from m and n is zero. This
restriction can be automatically enforced by hiding the implementation of int in the interface of
the �le.

In Dedukti, there is no �xed notion of constructor so we do not need to distinguish diff from
Diff, the invariant can automatically hold for close normal terms:

nat : Type.

0 : nat.

S : nat -> nat.

int : Type.

def Diff : nat -> nat -> int.

[m,n] Diff (S m) (S n) --> Diff m n.

3.4.2 Partial Functions

Usually in type theory (for example in the Calculus of Inductive Constructions, in Martin-Löf Type
Theory or in NuPRL), symbols can be classi�ed into: constructors, type constructors, functions,

49

and axioms.
Constructors are used to build values, type constructors are used to build types, functions

are aliases to their de�nitions, and axioms are symbols assumed to inhabit their types without
justi�cation and should be avoided if possible. Constructors, type constructors and axioms have
no associated reduction behaviour. Functions however can always be unfolded. In type theory,
functions are total.

In the λΠ-calculus modulo however, only one kind of symbol is considered. Dedukti distinguishes
static and de�nable symbols but this is a di�erent scenario since if f is a de�nable symbol, Dedukti
does not enforce that f actually appears as head symbol of some rewrite rules and as we have seen,
some de�nable symbols play the role of smart constructors.

Dedukti does not enforce that de�nitions are total because this has no meaning in the λΠ-calculus
modulo: types can always be extended by declaring new symbols:

Example 6. Consider again the usual signature de�ning Peano natural numbers:

nat : Type.

0 : nat.

S : nat -> nat.

In this signature, we can de�ne Peano addition as usual:

def plus : nat -> nat -> nat.

[n] plus 0 n --> n

[m,n] plus (S m) n --> S (plus m n).

This de�nition is total in the sense that any normal close term of type nat is either 0 or starts
with S.

However, we can extend the type nat by declaring a new constructor infty representing in�nity:

infty : nat.

and now the plus function is partial and the term plus infty 0 is normal.

In Dedukti, the distinction between constructors, axioms, total functions and partial functions is
only in the eye of the user. It is not always possible to split the set of symbols between constructors
and total functions.

Example 7. The following signature de�nes lists of natural numbers:

list : Type.

Nil : list.

Cons : nat -> list -> list.

The functions returning the head and the tail of a constructed list can be partially de�ned:

def head : list -> nat.

def tail : list -> list.

[a] head (Cons a _) --> a.

[l] tail (Cons _ l) --> l.

To summarize, there is almost only one kind of symbol in Dedukti; constructors, axioms, and
functions are not distinguished; some symbols never reduce, some other reduce on any closed normal
terms, but some other sometimes reduce and sometimes do not; smart constructors and partial
functions belong to this category.

50

3.4.3 Encoding Polymorphism

Polymorphism is the ability to de�ne functions acting on several types; two kinds of polymorphism
can be distinguished, parametric polymorphism and ad-hoc polymorphism.

Parametric polymorphic functions are functions whose de�nitions are generic in one or more
types; for example, the identity function can be de�ned using parametric polymorphism as λA :
Type. λx : A. x. The λΠ-calculus and the λΠ-calculus modulo do not feature polymorphism1 but:

� Dedukti has an option, "-coc" which turns Dedukti into a type-checker for the Calculus of Con-
structions modulo, a very small adaptation of the λΠ-calculus modulo featuring parametric
polymorphism.

� Without the "-coc" option, polymorphism can easily be encoded. In order to pass types as
arguments, we need to reify types as terms of a �xed type type and interpret them as types by
an injection term. We need to construct products in type so we introduce the constant pi for
this purpose and we add a rewrite rule identifying interpretations of products with products
of interpretations:

type : Type.

def term : type -> Type.

pi : A : type -> (term A -> type) -> type.

[A,B] term (pi A B) --> x : term A -> term (B x).

The identity function can then be de�ned by:

def id (A : type) (x : term A) := x.

Ad-hoc polymorphism is the ability for a function to act di�erently depending on the type
of its argument. Ad-hoc polymorphism is usually de�ned by overloading a function symbol with
several types and de�nitions. For example, we might want to dispose of a polymorphic equality
eq : A : type -> term A -> term A -> term bool whose de�nition depends on its type argument:

bool : type.

True : term bool.

False : term bool.

nat : type.

0 : term nat.

S : term nat -> term nat.

def plus : term nat -> term nat -> term nat.

[n] plus 0 n --> n

[m, n] plus (S m) n --> S (plus m n).

int : type.

def Diff : term nat -> term nat -> term int.

[m, n] Diff (S m) (S n) --> Diff m n.

def eq : A : type -> term A -> term A -> term bool.

1This comes from the condition Γ ` A : Type in rule (Abs) of Section 3.2. In particular, the term λA : Type. λx :
A. x is not well-typed.

51

[] eq nat 0 0 --> True

[] eq nat 0 (S _) --> False

[] eq nat (S _) 0 --> False

[m, n] eq nat (S m) (S n) --> eq nat m n

[m1,m2,n1,n2]

eq int (Diff m1 m2) (Diff n1 n2)

-->

eq nat (plus m1 n2) (plus n1 m2)

[] eq bool True True --> True

[] eq bool True False --> False

[] eq bool False True --> False

[] eq bool False False --> True.

Given our encoding of parametric polymorphism, ad-hoc polymorphism is the same as par-
tial de�nitions for functions on type type, whereas parametric polymorphism corresponds to total
de�nitions for functions on type type.

3.4.4 Overfull De�nitions

The dual feature to partial de�nition is overfull de�nition, that is de�ning a total function with
more rules than needed to make it total. This seemingly useless feature actually provides an elegant
solution to a common issue in type theory: we cannot state that the empty vector is a neutral
element for vector concatenation.

Example 8. We can de�ne vectors of natural numbers (lists of numbers depending on their length)
and concatenation:

vector : nat -> Type.

Nilv : vector 0.

Consv : n : nat -> nat -> vector n -> vector (S n).

def append : m : nat -> n : nat -> vector m -> vector n -> vector (plus m n).

[v] append _ _ Nilv v --> v

[m,n,a,v,w] append _ n (Consv m a v) w -->

Consv (plus m n) a (append m n v w).

but for m : nat and v : vector m, the term {append m 0 v Nilv} has type vector (plus m 0)

which is not convertible to vector m so we cannot state that append m 0 v Nilv is equal to v.

This can be �xed in Dedukti by adding the rewrite rule [m] plus m 0 --> m.
In fact, the de�nition of equality of integers that we gave in Section 3.4.3 is not con�uent: the

following counterexample is given by CSI�HO:

52

eq int (Diff (S n1) (S n2)) (Diff n3 n4)

eq int (Diff n1 n2) (Diff n3 n4)

eq nat (plus n1 n4) (plus n3 n2)

eq nat (plus (S n1) n4) (plus n3 (S n2))

eq nat (S (plus n1 n4)) (plus n3 (S n2))

This can be �xed by adding the rewrite rule [m,n] plus m (S n) --> S (plus m n) which leads
to the fully symmetric de�nition of plus:

def plus : nat -> nat -> nat.

[n] plus 0 n --> n

[m] plus m 0 --> m

[m,n] plus (S m) n --> S (plus m n)

[m,n] plus m (S n) --> S (plus m n).

Overfull de�nitions also naturally appear when translating problems and proofs from Deduction
modulo: the more equality axioms are turned into rewrite rules, the simpler and shorter the proof
will be so there is no reason to stop when the de�ned function is total.

Moreover, when we add a rewrite rule such as [m] plus m 0 --> m for a total symbol such as
our �rst de�nition of plus, the con�uence condition which is automatically checked by CSI�HO
guarantees that the reduction relation on ground terms is unchanged. Actually, checking that
critical pairs generated by the new rule plus 0 0 and plus (S m) 0 are closed is the biggest part of
a proof of ∀m. plus m 0 = m. We are actually delegating some reasoning to the con�uence checker,
and it might even provide counter-examples when it fails!

For example, if we mistakenly de�ne addition of integers by

def int_plus : int -> int -> int.

[m1, n1, m2 , n2]

int_plus (Diff m1 n1) (Diff m2 n2)

-->

Diff (plus m1 n1) (plus m2 n2).

then CSI�HO catches the error and provides the following explanation:

int_plus (Diff (S n1) (S n2)) (Diff n3 n4)

int_plus (Diff n1 n2) (Diff n3 n4)

Diff (plus n1 n2) (plus n3 n4)

int_plus (plus (S n1) (S n2)) (plus n3 n4)

int_plus (S (S (plus n1 n2))) (plus n3 n4)

53

Thanks to the symmetric de�nition of plus, we can state that Nilv is a neutral ele-
ment for append but we get almost the same level of con�dence by adding the rewrite rule
[v] append _ _ v Nilv --> v and requiring a con�uence check.

3.4.5 Meta-Programming

Programmers often feel the need of de�ning syntactic sugar over a programming language such as
de�ning a for loop as syntactic sugar around a while loop.

These de�nitions of syntactic sugar cannot be achieved by regular function de�nitions because
they have to be performed before evaluation of arguments; they manipulate code snippets, not
regular values.

The simplest solution is to add a preprocessor: a programming language designed for manipu-
lating the programs of the initial language. The preprocessing phase happens before the program
is evaluated or compiled.

Some languages such as LISP are their own preprocessors, this is known as meta-programming.
In meta-programming, two or more evaluation phases can be distinguished, parts of the semantics
of the language are available in certain phases only while others are available in all steps.

Rewriting is known to be a nice framework for meta-programming, the Pure programming
language [88], a dynamically-typed language based on rewriting and the Maude system [52], an
implementation of rewriting logics achieve meta-programming by re�ection: declarations and rewrite
rules are represented as �rst-class objects which can be manipulated in the language.

In Dedukti, rewrite rules are not �rst-class objects so it is not clear if we can achieve re�ection
simply. Meta programming in Dedukti is however easy by chaining Dedukti invocations.

If two rewrite systems R1 and R2 are de�ned on the same signature, we can ask Dedukti to
normalize a term t with respect to R1 (using the command #SNF). The output of Dedukti is a
term in Dedukti syntax so we can check it with respect to R2.

This process can be iterated, t can be normalized to t1 with respect to R1, then t1 can be
normalized to t2 with respect to R2, then t2 can be normalized to t3 with respect to some other
rewrite system R3 and so on. The term tn−1 resulting from this process can �nally be checked in
the �nal rewrite system Rn.

Interestingly, the intermediate systems (R1, . . . , Rn−1) need not a degree of con�dence as high
as the last one Rn. In particular, we will often consider non-linear and non-con�uent intermediate
systems, this is not a problem as long as we do not break subject reduction.

These unsafe intermediate systems are useful to model non-con�uent behaviour but also for
e�ciency reasons. For example, it is very tempting to de�ne polymorphic equality by the following
non-linear rewrite system:

bool : type.

True : term bool.

False : term bool.

def eq : A : type -> term A -> term A -> term bool.

[x] eq _ x x --> True

[x,y] eq _ x y --> False.

but we usually avoid this de�nition because it is not con�uent, even without β-reduction: the
term eq A x x reduces to both True and False. At the meta-level however, we take the liberty
of accepting this kind of rewrite systems. It gives a direct access to the conversion check inside

54

the language. Using the rewrite system of Section 3.4.3, the time taken for computing eq A t t is
usually proportional to the size of t; it is achieved essentially in constant time in the above rewrite
system because Dedukti is optimized to perform conversion checks very quickly.

3.5 Translating Logical Systems in Dedukti

Dedukti is able to check proofs coming from a wide variety of logical systems; in [11], Assaf describes
three translators from proof assistants to Dedukti:

� Coqine, a translator for the Calculus of Inductive Constructions, as implemented in Coq;

� Krajono, another translator for the Calculus of Inductive Constructions, as implemented in
Matita;

� Holide [13], a translator for HOL as implemented in OpenTheory [99], an exchange format for
proof assistant in the HOL family.

A translator for PVS is also under development and several automatic theorem provers (Zenon
Modulo [44], iProver Modulo [36], VeriT) use Dedukti as a proof format.

We start in Section 3.5.1 with the translation of natural deduction for (polymorphic) �rst-order
logic which is at the core of this proof format for automatic theorem provers and is a good example
of the way logical systems are embedded in Dedukti. More examples are given in [14]. We then
quickly review the translators to Dedukti that we use to experiment interoperability between Coq
and HOL in Part IV: Coqine in Section 3.5.2 and Holide in Section 3.5.3.

3.5.1 First-Order Logic in Dedukti

We translate natural deduction for polymorphic �rst-order logic, the system that we presented in
Section 1.1.3, in Dedukti to demonstrate the use of Dedukti as a logical framework. To trans-
late a language in Dedukti, we start by representing the syntax of the language using HOAS (see
Section 2.5.1).

The representation of the type system is similar to the rewrite system of Section 3.4.3 but we
do not need to represent dependent types so it is enough to start with:

type : Type.

term : type -> Type.

For each n-ary type constructor F in the signature, we declare a symbol F of type
n times︷ ︸︸ ︷

type -> . . .-> type. The translation function for types is de�ned by

JαK := α
JF (τ1, . . . , τn)K := F Jτ1K . . . JτnK

For each function symbol f of type scheme Πα1. . . .Παk. (τ1, . . . , τn)→ τ0, we declare a symbol
f of type α1: type -> . . . -> αk: type -> term Jτ1K -> . . . -> term JτnK -> term Jτ0K. The translation
function for terms is de�ned by

JxK := x
Jf(τ1, . . . , τk; t1, . . . , tn)K := f Jτ1K . . . JτkK Jt1K . . . JtnK

55

In order to translate formulae, we declare a new Dedukti type prop and all the connectives:

prop : Type.

true : prop.

false : prop.

eq : a : type -> term a -> term a -> prop.

and : prop -> prop -> prop.

or : prop -> prop -> prop.

imp : prop -> prop -> prop.

all : a : type -> (term a -> prop) -> prop.

ex : a : type -> (term a -> prop) -> prop.

all_type : (type -> prop) -> prop.

ex_type : (type -> prop) -> prop.

Negation and equivalence are seen as derived connectives:

def not (A : prop) : prop := imp A false.

def eqv (A : prop) (B : prop) : prop := and (imp A B) (imp B A).

For each predicate symbol P of type scheme Πα1. . . .Παk. (τ1, . . . , τn), we declare a symbol P
of type α1: type -> . . . -> αk: type -> term Jτ1K -> . . . -> term JτnK -> prop.

The translation function for formulae is de�ned by

JP (τ1, . . . , τk; t1, . . . , tn)K := P Jτ1K . . . JτkK Jt1K . . . JtnK
J>K := true

J⊥K := false

Jt1 =τ t2K := eq JτK Jt1K Jt2K
J¬Kϕ := not JϕK
Jϕ1 ∧ ϕ2K := and Jϕ1K Jϕ2K
Jϕ1 ∨ ϕ2K := or Jϕ1K Jϕ2K
Jϕ1 ⇒ ϕ2K := imp Jϕ1K Jϕ2K
Jϕ1 ⇔ ϕ2K := eqv Jϕ1K Jϕ2K
J∀x : τ. ϕK := all JτK (x : term JτK => JϕK)
J∃x : τ. ϕK := ex JτK (x : term JτK => JϕK)
J∀typeα. ϕK := all_type (α : type => JϕK)
J∃typeα. ϕK := ex_type (α : type => JϕK)

Finally, we declare a type proof parameterized by a proposition. The type proof A is intended
to represent the type of the proofs of the formula A. For each deduction rule in natural deduction,
we declare a corresponding symbol in Figure 3.4

Until now, we have faithfully represented the syntax of natural deduction in Dedukti using the
judgment-as-type paradigm (see Section 2.5.5). Actually, we have not yet used rewriting so this
encoding uses only the pure λΠ-calculus and the only di�erence compared to an encoding in an
implementation of ELF such as Twelf [147] is purely syntactic. We emphasize this by calling this
translation a deep translation as opposed to shallow translations obtained by the proposition-as-type
paradigm.

Through the Curry-Howard isomorphism, proofs can be interpreted as programs and the re-
duction of these programs correspond on the logical side to the process of cut elimination. Cut
elimination can be added to our Dedukti signature by adding rewrite rules that simplify elimination
rules applied to introduction rules:

56

proof : prop -> Type.

def true_intro : proof true.

def false_elim : A : prop -> proof false -> proof A.

def and_intro : A : prop -> B : prop -> proof A -> proof B -> proof (and A B).

def and_elim_1 : A : prop -> B : prop -> proof (and A B) -> proof A.

def and_elim_2 : A : prop -> B : prop -> proof (and A B) -> proof B.

def or_intro_1 : A : prop -> B : prop -> proof A -> proof (or A B).

def or_intro_2 : A : prop -> B : prop -> proof B -> proof (or A B).

def or_elim : A : prop -> B : prop -> C : prop ->

(proof A -> proof C) -> (proof B -> proof C) ->

proof (or A B) -> proof C.

def imp_intro : A : prop -> B : prop ->

(proof A -> proof B) -> proof (imp A B).

def imp_elim : A : prop -> B : prop ->

proof (imp A B) -> proof A -> proof B.

def all_intro : a : type -> A : (term a -> prop) ->

(x : term a -> proof (A x)) -> proof (all a A).

def all_elim : a : type -> A : (term a -> prop) ->

proof (all a A) -> x : term a -> proof (A x).

def ex_intro : a : type -> A : (term a -> prop) -> x : term a ->

proof (A x) -> proof (ex a A).

def ex_elim : a : type -> A : (term a -> prop) -> B : prop ->

(x : term a -> proof (A x) -> proof B) ->

proof (ex a A) -> proof B.

def all_type_intro : A : (type -> prop) ->

(a : type -> proof (A a)) -> proof (all_type A).

def all_type_elim : A : (type -> prop) ->

proof (all_type A) -> a : type -> proof (A a).

def ex_type_intro : A : (type -> prop) -> a : type ->

proof (A a) -> proof (ex_type A).

def ex_type_elim : A : (type -> prop) -> B : prop ->

(a : type -> proof (A a) -> proof B) ->

proof (ex_type A) -> proof B.

def eq_intro : a : type -> x : term a -> proof (eq a x x).

def eq_elim : a : type -> x : term a -> y : term a -> A : (term a -> prop) ->

proof (A x) -> proof (eq a x y) -> proof (A y).

Figure 3.4: Dedukti signature for polymorphic natural deduction

57

[p] and_elim_1 _ _ (and_intro _ _ p _) --> p.

[q] and_elim_2 _ _ (and_intro _ _ _ q) --> q.

[p,r] or_elim _ _ _ p _ (or_intro_1 _ _ r) --> p r

[q,s] or_elim _ _ _ _ q (or_intro_2 _ _ s) --> q s.

[p,q] imp_elim _ _ (imp_intro _ _ p) q --> p q.

[p,x] all_elim _ _ (all_intro _ _ p) x --> p x.

[p,x,q] ex_elim _ _ _ p (ex_intro _ _ x q) --> p x q.

[p,a] all_type_elim _ (all_type_intro _ p) a --> p a.

[p,a,q] ex_type_elim _ _ p (ex_type_intro _ a q) --> p a q.

[p] eq_elim _ _ _ _ p (eq_intro _ _) --> p.

In the case of implication, we can read the introduction and elimination rules as axiomatizing
a logical equivalence between the types proof (imp A B) and proof A -> proof B and the rewrite
rule [p,q] imp_elim _ _ (imp_intro _ _ p) q --> p q. as stating that the functions imp_elim and
imp_intro are inverses of each other. We can further identify the types proof (imp A B) and
proof A -> proof B thanks to the rewrite rule [A,B] proof (imp A B) --> proof A -> proof B.

and quite generally, we can encode all the connectives using impredicative encodings:

def proof : prop -> Type.

[] proof true --> A : prop -> proof A -> proof A

[] proof false --> A : prop -> proof A

[A,B] proof (imp A B) --> proof A -> proof B

[A,B] proof (and A B) -->

C : prop -> (proof A -> proof B -> proof C) -> proof C

[A,B] proof (or A B) -->

C : prop -> (proof A -> proof C) -> (proof B -> proof C) -> proof C

[a,A] proof (all a A) --> x : term a -> proof (A x)

[a,A] proof (ex a A) -->

B : prop -> (x : term a -> proof (A x) -> proof B) -> proof B

[A] proof (all_type A) --> a : type -> proof (A a)

[A] proof (ex_type A) -->

B : prop -> (a : type -> proof (A a) -> proof B) -> proof B

[a,x,y] proof (eq a x y) -->

A : (term a -> prop) -> proof (A x) -> proof (A y).

Using these rewrite rules, all the deduction rules for natural deduction can be derived (see
Figure 3.5).

The cut-elimination rewrite rules are now super�uous, we can remove them and ask Dedukti to
check that cut-reduction still holds (see Figure 3.6) using the #CONV command for checking that two
terms are convertibles.

This translation of natural deduction is more shallow in the sense that it reuses more features
available in Dedukti: implication is mapped to Dedukti arrow, universal quanti�cation is mapped
to Dedukti dependent product etc. . .

Proof terms in this shallow translation are lighter than the ones of the deep translation because

58

def true_intro : proof true := A => p => p.

def false_elim (A : prop) (p : proof false) : proof A := p A.

def and_intro (A : prop) (B : prop) (p : proof A) (q : proof B)

: proof (and A B)

:= C : prop => r : (proof A -> proof B -> proof C) => r p q.

def and_elim_1 (A : prop) (B : prop) (p : proof (and A B)) : proof A

:= p A (x => y => x).

def and_elim_2 (A : prop) (B : prop) (p : proof (and A B)) : proof B

:= p B (x => y => y).

def or_intro_1 (A : prop) (B : prop) (p : proof A) : proof (or A B)

:= C : prop => q : (proof A -> proof C) => r : (proof B -> proof C) => q p.

def or_intro_2 (A : prop) (B : prop) (p : proof B) : proof (or A B)

:= C : prop => q : (proof A -> proof C) => r : (proof B -> proof C) => r p.

def or_elim (A : prop) (B : prop) (C : prop)

(p : proof A -> proof C) (q : proof B -> proof C)

(r : proof (or A B)) : proof C

:= r C p q.

def imp_intro (A : prop) (B : prop) (p : (proof A -> proof B))

: proof (imp A B) := p.

def imp_elim (A : prop) (B : prop) (p : proof (imp A B))

: proof A -> proof B := p.

def all_intro (a : type) (A : (term a -> prop))

(p : x : term a -> proof (A x)) : proof (all a A)

:= p.

def all_elim (a : type) (A : (term a -> prop)) (p : proof (all a A))

: x : term a -> proof (A x) := p.

def ex_intro (a : type) (A : (term a -> prop))

(x : term a) (p : proof (A x)) : proof (ex a A)

:= B : prop => q : (x : term a -> proof (A x) -> proof B) => q x p.

def ex_elim (a : type) (A : (term a -> prop)) (B : prop)

(p : x : term a -> proof (A x) -> proof B)

(q : proof (ex a A)) : proof B

:= q B p.

def all_type_intro (A : (type -> prop)) (p : a : type -> proof (A a))

: proof (all_type A) := p.

def all_type_elim (A : (type -> prop)) (p : proof (all_type A))

: a : type -> proof (A a) := p.

def ex_type_intro (A : (type -> prop)) (a : type) (p : proof (A a))

: proof (ex_type A)

:= B : prop => q : (a : type -> proof (A a) -> proof B) => q a p.

def ex_type_elim (A : (type -> prop)) (B : prop)

(p : a : type -> proof (A a) -> proof B)

(q : proof (ex_type A)) : proof B

:= q B p.

def eq_intro (a : type) (x : term a) : proof (eq a x x)

:= A : (term a -> prop) => p : proof (A x) => p.

def eq_elim (a : type) (x : term a) (y : term a) (A : (term a -> prop))

(p : proof (A x)) (q : proof (eq a x y)) : proof (A y)

:= q A p.

Figure 3.5: Shallow embedding of Natural Deduction in Dedukti

59

#CONV (A : prop => B : prop => p : proof A => q : proof B =>

and_elim_1 A B (and_intro A B p q)),

(A : prop => B : prop => p : proof A => q : proof B => p).

#CONV (A : prop => B : prop => p : proof A => q : proof B =>

and_elim_2 A B (and_intro A B p q)),

(A : prop => B : prop => p : proof A => q : proof B => q).

#CONV (A : prop => B : prop => C : prop =>

p : proof A => q : (proof A -> proof C) => r : (proof B -> proof C) =>

or_elim A B C q r (or_intro_1 A B p)),

(A : prop => B : prop => C : prop =>

p : proof A => q : (proof A -> proof C) => r : (proof B -> proof C) =>

q p).

#CONV (A : prop => B : prop => C : prop =>

p : proof B => q : (proof A -> proof C) => r : (proof B -> proof C) =>

or_elim A B C q r (or_intro_2 A B p)),

(A : prop => B : prop => C : prop =>

p : proof B => q : (proof A -> proof C) => r : (proof B -> proof C) =>

r p).

#CONV (A : prop => B : prop => p : (proof A -> proof B) => q : proof A =>

imp_elim A B (imp_intro A B p) q),

(A : prop => B : prop => p : (proof A -> proof B) => q : proof A =>

p q).

#CONV (a : type => A : (term a -> prop) =>

p : (x : term a -> proof (A x)) => x : term a =>

all_elim a A (all_intro a A p) x),

(a : type => A : (term a -> prop) =>

p : (x : term a -> proof (A x)) => x : term a =>

p x).

#CONV (a : type => A : (term a -> prop) => B : prop =>

p : (x : term a -> proof (A x) -> proof B) =>

x : term a => q : proof (A x) =>

ex_elim a A B p (ex_intro a A x q)),

(a : type => A : (term a -> prop) => B : prop =>

p : (x : term a -> proof (A x) -> proof B) =>

x : term a => q : proof (A x) =>

p x q).

#CONV (A : (type -> prop) => p : (a : type -> proof (A a)) => a : type =>

all_type_elim A (all_type_intro A p) a),

(A : (type -> prop) => p : (a : type -> proof (A a)) => a : type =>

p a).

#CONV (A : (type -> prop) => B : prop =>

p : (a : type -> proof (A a) -> proof B) =>

a : type => q : proof (A a) =>

ex_type_elim A B p (ex_type_intro A a q)),

(A : (type -> prop) => B : prop =>

p : (a : type -> proof (A a) -> proof B) =>

a : type => q : proof (A a) =>

p a q).

#CONV (a : type => A : (term a -> prop) => x : term a => p : proof (A x) =>

eq_elim a x x A p (eq_intro a x)),

(a : type => A : (term a -> prop) => x : term a => p : proof (A x) =>

p).

Figure 3.6: Checking cut elimination in the shallow embedding of natural deduction in Dedukti

60

less type annotations are needed. For example, the proof of (P (t) ∧ ∀x : τ. P (x) ⇒ Q(x)) ⇒ Q(t)
that we gave in 1.1.2 is written as follows in the deep encoding:

a : type.

t : term a.

P : term a -> prop.

Q : term a -> prop.

def example_0 : proof (imp (and (P t) (all a (x => imp (P x) (Q x)))) (Q t))

:=

imp_intro

(and (P t) (all a (x => imp (P x) (Q x))))

(Q t)

(p =>

imp_elim (P t) (Q t)

(all_elim a (x => imp (P x) (Q x))

(and_elim_2 (P t) (all a (x => imp (P x) (Q x))) p)

t)

(and_elim_1 (P t) (all a (x => imp (P x) (Q x))) p)).

In the shallow encoding, this term reduces to the following much shorter proof term:

a : type.

t : term a.

P : term a -> prop.

Q : term a -> prop.

def example_0 : proof (imp (and (P t) (all a (x => imp (P x) (Q x)))) (Q t))

:= p =>

p

(all a (x => imp (P x) (Q x)))

(x => y => y)

t

(p (P t) (x => y => x)).

3.5.2 Coqine

Coq implements the Calculus of Inductive Constructions (CIC), an extension of Martin-Löf Type
Theory with an impredicative universe Prop (see Section 2.4.3). Universes in CIC are types of
types; alongside Prop, there is a universe Typei for each natural number i. The type of Prop is
in Type1 and for all i, the type of Typei is in Typei+1.

Coqine [11], is a translator of Coq to Dedukti, it has been implemented by Assaf as a Coq plugin
from the ideas of a previous version [28] and his own improvements in order to handle the universe
hierarchy.

Coqine takes as input compiled Coq �les using the .vo extension and produces Dedukti �les
using the .dk extension. The Dedukti �les produced by Coqine depend on a small hand-written
Dedukti �le coq.dk representing CIC. This �le contains in particular the following declarations:

#NAME Coq.

(; Natural numbers ;)

61

Nat : Type.

z : Nat.

s : Nat -> Nat.

(; Universes ;)

Universe : Type.

prop : Universe.

type : Nat -> Universe.

U : Universe -> Type.

def T : s : Universe -> U s -> Type.

CIC universes are represented in coq.dk by terms of type Universe. Prop is represented by
prop and Typei is represented by type i. The CIC judgment corresponding to the fact that a
type A lies in a universe s is represented in Dedukti by the typing judgment A : U s. Similarly, the
CIC judgment corresponding to the fact that the term t has a type A in a universe s is represented
by the typing judgment t : T s A.

The �le coq.dk also contains declarations and rewrite rules to support some features of CIC.
One of these features, universe cumulativity (if a type A lies in a universe Typei then it also
lies in all bigger universes Typei+j), is implemented using a non-linear rewrite rule [11] so Coqine
developments require Dedukti non-linearity �ag and cannot automatically be checked for con�uence.
In fact, the �le coq.dk itself is not con�uent but could be extended to a con�uent rewrite system if
matching modulo associativity, commutativity, and identity would be supported in Dedukti [17, 16].

Unfortunately, Coqine still lacks a few features such as module functors which are used in Coq
standard library. It works well on small examples as long as we do not require substantial parts of
the standard library.

3.5.3 Holide

Several proof assistants have implemented HOL (see Section 2.3.2) following the LCF approach: a
small and simple kernel implements the rules of the logic and exports an abstract type of theorems.
The proof assistants of the HOL family usually implement Q0, a classical presentation of HOL
taking only equality and a choice operator as primitives [7].

OpenTheory is a package manager for HOL libraries of proofs developed and maintained by
Hurd [99]. Each OpenTheory package is composed of article �les containing the proofs. All proof
assistants of the HOL family can import OpenTheory article �les and most of them can also export
their developments to the OpenTheory article format. OpenTheory standard library is generated
by exporting most of HOL Light standard library.

Holide [13] is a translator of HOL to Dedukti. It takes OpenTheory article �les with the .art

extension as input and produces Dedukti �les with the .dk extension as output. The Dedukti �les
generated by Holide depend on a small hand-written Dedukti �le hol.dk representing HOL type
system and logic:

#NAME hol.

(; HOL Types ;)

def type : Type.

62

bool : type.

ind : type.

def arr : type -> type -> type.

(; HOL Terms ;)

def term : type -> Type.

[a,b] term (arr a b) --> term a -> term b.

eq : a : type -> term (arr a (arr a bool)).

select : a : type -> term (arr (arr a bool) a).

(; HOL Proofs ;)

def proof : term bool -> Type.

(; Axioms of Q0 ;)

REFL : a : type -> t : term a -> proof (eq a t t).

ABS_THM :

a : type ->

b : type ->

f : (term a -> term b) ->

g : (term a -> term b) ->

(x : term a -> proof (eq b (f x) (g x))) ->

proof (eq (arr a b) f g).

APP_THM :

a : type ->

b : type ->

f : term (arr a b) ->

g : term (arr a b) ->

x : term a ->

y : term a ->

proof (eq (arr a b) f g) ->

proof (eq a x y) ->

proof (eq b (f x) (g y)).

PROP_EXT : p : term bool -> q : term bool ->

(proof q -> proof p) ->

(proof p -> proof q) ->

proof (eq bool p q).

EQ_MP : p : term bool -> q : term bool ->

proof (eq bool p q) ->

proof p ->

proof q.

def BETA_CONV (a : type) (b : type) (f : term a -> term b) (u : term a)

:= REFL b (f u).

In this signature, bool represents the type o of propositions, ind represents the type ι
of individuals, and arr a b represents the arrow type a → b. Thanks to the rewrite rule
[a, b] term (arr a b) --> term a -> term b, we can translate HOL application by Dedukti ap-

63

plication and HOL abstraction by Dedukti abstraction. eq represents equality, select is the choice
symbol and the axioms REFL to EQ_MP are the axioms of Q0 presented in Section 2.3.2. Since Dedukti
conversion extends β-conversion, the axiom EQ_MP of Q0 can be derived.

OpenTheory and Holide have been extended by Shuai to also take implication and universal
quanti�cation as primitives. This extension of OpenTheory and Holide is called Holala [171]. Holala
requires a slightly bigger presentation of the logic but it leads to smaller proofs and, most importantly
for our purpose, to a shallower translation since implication and universal quanti�cation can directly
be mapped to Dedukti arrow type and dependent product. The �le hol.dk used by Holala extends
the previous one as follows:

imp : term bool -> term bool -> term bool.

forall : a : type -> (term (arr a bool) -> (term bool)).

[p,q] proof (imp p q) --> proof p -> proof q.

[a,p] proof (forall a p) --> x : term a -> proof (p x).

In Part IV, we use the Holala version of OpenTheory and Holide. The article �les can be
produced from the modi�ed version of HOL Light available at https://github.com/airobert/

holala and the Holala version of Holide needed to translate them to Dedukti is available on the
holala branch at https://gforge.inria.fr/projects/holide.

64

https://github.com/airobert/holala
https://github.com/airobert/holala
https://gforge.inria.fr/projects/holide

Part II

Object Calculi in Dedukti

65

Object-oriented programming languages are now-a-day the dominant programming paradigm.
By regrouping inside objects data and operations on them, object-oriented languages focus on
abstraction, maintaining invariants, code reuse through modularity, while also breaking the rigidity
of modules thanks to rede�nition and overloading.

Despite the popularity of object-oriented languages in the programming world, purely functional
languages are often preferred in proof systems because it is easier to enforce termination by a typing
discipline in the context of purely functional languages. We are aware of two systems mixing object-
oriented mechanisms with proof techniques: Yarrow, a type system based on pure type systems
with subtyping [176], and FoCaLiZe, an environment for certi�ed programming that we are going
to discuss at length in Parts III and IV.

Dedukti is both a programming language and a dependent type system. Termination in Dedukti
is not mandatory and it is a good experimentation platform for the encoding of object-oriented
languages. Such encodings can be a starting point for the design of a dependent type system for
objects able to express proofs as methods.

With their gain of popularity in the 90s, object-oriented languages raised theoretical interest.
They were connected with functional type systems, especially System Fω<:, through several encod-
ings [148, 35]. However, encoding simple object-oriented languages into a system as complex as
System Fω<: was found unsatisfactory and foundational calculi for the object-oriented paradigm
started to be designed.

The λ-calculus of objects [73] is an extension of λ-calculus with a few object primitives: calling
a method (sending a message), updating a method (replacing its de�nition by another one), and
extending an object by a new method. Several, slightly di�erent, type systems have been proposed
for this calculus: subtyping is proposed in [74], type annotations (making type-checking decidable)
are added in [116], typing of incomplete objects (objects missing some methods but already usable
as prototypes) is added in [32], typing of methods extending the object type is added in [64].

Abadi and Cardeli [2] proposed ς-calculi, a family of purely object-oriented calculi which simplify
the λ-calculus of objects by restricting the object primitives to selection and update only and by
removing λ-abstraction and application. These calculi correspond to common type systems for
functional languages based on λ-calculus. In ς-calculi however, subtyping and recursive types play
a more important role than in functional type systems. λ-abstraction and application are easy to
encode in ς-calculi but extending an object by a new method cannot be done in a polymorphic way
in ς-calculi because the type corresponding to the notion of the current object with an extra method
is not expressible (and adding it would lead to a system very similar to λ-calculus of objects). Hence
ς-calculi are a form of restriction of the λ-calculus of objects which lead to smaller foundational
calculi. This restriction also allows to consider simpler type disciplines such as simple types, whereas
type systems for the λ-calculus of objects require polymorphism.

ς-calculi and the λ-calculus of objects are foundations for object-based (or prototype-based)
programming language such as Self and Javascript but they can also encode classes. A functional
class-based core of the Java language, named Featherweight Java [100], has also emerged as a
framework for studying extensions of Java independently.

These calculi have been embedded in proof systems such as Isabelle [75, 93] and Coq [120, 49]
but none of these embeddings preserves the reduction behaviour for two reasons:

1. these proof systems require all functions to terminate and object calculi do not try to enforce
termination

66

2. the motivation for most of these encodings was to prove properties of the reduction relation
such as con�uence and subject reduction, which is not possible to do in a semantics-preserving
encoding.

Reduction-preserving encodings of objects have been designed in the context of rewriting logic
(in the ρ-calculus [51, 50] and in the Maude system [52]). However, the resulting object-oriented
languages are untyped and the encodings seem not to be easily adaptable to typing.

We propose a shallow encoding of the simply-typed ς-calculus in Dedukti. The notion of shallow
embedding is generally not precisely de�ned but in this context we call a translation shallow when
it preserves variable binding, typing, and operational semantics.

In Chapter 4, we present the simply-typed ς-calculus and its shallow translation in Dedukti.
The simply-typed ς-calculus is the simplest of the typed object calculi. It lacks the most interesting
feature of type systems for object-oriented languages: subtyping. In Chapter 5, we extend our
shallow embedding of the simply-typed ς-calculus to subtyping. The Chapter 6 is devoted to our
implementation.

67

Chapter 4

Simply-Typed ς-Calculus in Dedukti

The simply-typed ς-calculus is the simplest typed ς-calculus. It has been introduced by Abadi and
Cardeli in [1]. In this chapter, we �rst recall its de�nition in Section 4.1, then embed it in Dedukti
in two steps. The �rst step is as shallow as possible while remaining strongly terminating. The
second step drops the termination restriction to obtain a fully shallow embedding. The terminating
translation is de�ned in Sections 4.2, 4.3, and 4.4 and the shallow translation is de�ned in Section 4.5.

4.1 Simply-Typed ς-Calculus

The simply-typed ς-calculus is similar to the simply-typed λ-calculus that we presented in Section 2.2
but to be used as a core calculus for object-oriented languages instead of functional languages. In
this section, we present the syntax of the types and the terms of the calculus, the typing rules, and
the operational semantics. We conclude this section by small examples of encodings of programming
constructs in the ς-calculus.

4.1.1 Syntax

The syntax of the simply-typed ς-calculus is given in Figure 4.1; it is composed of types and terms.
Types are, possibly empty, records of types in which labels are assumed distinct and their order
is irrelevant. Terms are either ground objects given by a, possibly empty, record of methods, each
method being a term bound by the self binder ς binding the object itself, given a term a, its method

Type A,B, . . . ::= [li : Ai]i=1...n Object type

Term a, b, . . . ::= x Variable
[li = ς(xi : A)ai]i=1...n Object
a.l Method selection
a.l⇐ ς(x : A)b Method update

Figure 4.1: Syntax of the simply-typed ς-calculus

68

Notation: In this �gure, A abbreviates [li : Ai]i=1...n

(x : A) ∈ ∆
(Type Var)

∆ ` x : A

∆, xi : A ` ai : Ai ∀i ∈ 1 . . . n
(Type Obj)

∆ ` [li = ς(xi : A)ai]i=1...n : A

∆ ` a : A j ∈ 1 . . . n
(Type Select)

∆ ` a.lj : Aj

∆ ` a : A ∆, x : A ` b : Aj j ∈ 1 . . . n
(Type Update)

∆ ` a.lj ⇐ ς(x : A)b : A

Figure 4.2: Typing rules for simply-typed ς-calculus

labeled by l can be selected or updated by a new method body. When the ς binders are unused, we
might omit them, for example, we write [l = []] and [l = ς(x : A)x.l].l ⇐ [] respectively instead of
[l = ς(x : A)[]] and [l = ς(x : A)x.l].l⇐ ς(x : A)[] where A is the type [l : []].

4.1.2 Typing

The typing judgment ∆ ` a : A means that in context ∆, the term a has type A.
Contexts are composed of variable type assignments, we assume all variables appearing in a

context to be distinct:

∆ ::= ∅ | ∆, x : A

The typing rules for the simply-typed ς-calculus are given in Figure 4.2. An object is well-typed
when all its methods have the expected type in the context in which the self variable has the type
of the object being de�ned. Selecting a method returns a term of the expected type and updating
a term by a well-typed method returns a term of the same type.

4.1.3 Operational Semantics

Values of the ς-calculus are ground objects. The operational semantics is given by two reduction
rules, one de�ning selection and one de�ning update on values:

a.lj ; aj{xj\a}
a.lj ⇐ ς(x : A′)b ; [lj = ς(x : A)b, li = ς(xi : A)ai]i=1...n,i 6=j

where A is [li : Ai]i=1...n and a is [li = ς(xi : A)ai]i=1...n. The type A′ in the second rule might
be any type, the typing rule of Figure 4.2 enforces that well-typed application of this rule must
satisfy A′ = A but this will not remain true when we will extend the type system with subtyping
in Chapter 5.

69

4.1.4 Examples

The simply-typed ς-calculus is a bit limited but can already encode a few interesting examples:

� records can obviously be encoded by not using the ς binder

� booleans and conditional expressions can be encoded but since we lack polymorphism, we will
have a di�erent copy of the encoding of boolean and conditional for each type A for which we
want a conditional:

BoolA := [if : A, then : A, else : A]
trueA : BoolA := [if = ς(self : BoolA)self.then,

then = ς(self : BoolA)self.then,
else = ς(self : BoolA)self.else]

falseA : BoolA := [if = ς(self : BoolA)self.else,
then = ς(self : BoolA)self.then,
else = ς(self : BoolA)self.else]

ifthenelse(b : BoolA, t : A, e : A) := ((b.then⇐ t).else⇐ e).if

For every terms t and e of type A, we have ifthenelse(trueA, t, e) ;∗ t and ifthenelse(falseA, t, e) ;
∗ e.

� simply-typed λ-calculus can also be encoded:

A→ B := [arg : A, val : B]
λ(x : A)b := [arg = ς(self : A→ B)self.arg, val = ς(self : A→ B)b{x\self.arg}]
f(t) := (f.arg ⇐ t).val

This encoding is adequate in the sense that it preserves β-reduction: for every terms t and b,
(λ(x : A)b)(t) ;∗ b{x\t}.

4.2 Translation of Types in Dedukti

Our translation of the ς-calculus to Dedukti aims at being as shallow as possible, that is we want
a translation preserving scoping, typing, and operational semantics. In particular, a ς-term of type
A will be translated to a Dedukti term whose type depends on the translation of A so we start by
the translation of ς-types to Dedukti. This is the topic of this section. In Section 4.3, we de�ne a
relation which plays an important role in our translation. In Section 4.4, we de�ne a translation
of ς-terms preserving scoping and typing and in Section 4.5 we slightly modify it so that it also
preserves the operational semantics of the ς-calculus.

There is no prede�ned notion of records in Dedukti but lists are very easy to de�ne, hence there
are a few ways to de�ne ς simple types in Dedukti:

1. De�ne them as lists (of pairs of labels and types) and rely on the translator to always print
the labels in the same order (for example, in alphabetic order)

2. Use dependent types to add logical arguments to the constructor enforcing that the lists are
sorted and duplicate-free by construction

70

3. Use rewriting to make lists given in di�erent order convertible; this can be done either by
declaring the list concatenation as an associative-commutative operation or by using rewrite
rules to sort lists as follows:

def label : Type.

type : Type.

nil : type.

cons : label -> type -> type -> type.

[l1,A1,l2,A2,A3] cons l1 A1 (cons l2 A2 A3) --> cons l2 A2 (cons l1 A1 A3).

In order to keep a terminating rewrite system, we need to restrict the application of this rewrite
rule to the case where l1 > l2 by a side condition. Moreover, in order to guarantee uniqueness
of labels, we need to break the symmetry and arbitrary choose one of the associated types.

The third solution does not seem appropriate for the current version of Dedukti, which features
neither associative-commutative declarations nor side conditions but might be interesting in the
future. The second solution is already doable but a bit complex: types are constructed from nil

and cons at the same time than the inductive relation minors comparing labels and types: a label
l minors a type A if l is strictly smaller than all labels occurring in A (or equivalently since A is
sorted, if l is strictly smaller than the head label of A):

def label : Type.

def lt : label -> label -> Type.

type : Type.

def minors : label -> type -> Type.

nil : type.

cons : l : label -> A : type -> B : type -> minors l B -> type.

minors_nil : l : label -> minors l nil.

minors_cons : l : label -> l' : label -> A : type -> B : type ->

H : minors l' B -> lt l l' -> minors l (cons l' A B H).

From the theorems stating that lt is a total ordering, we can build a function for inserting a
label and the corresponding type in a type, without the trouble of manually �nding its position and
proving that the list is sorted:

def insert : label -> type -> type := ...

However, to ease the reading of normal forms of ς-types and ς-terms, we prefer the �rst solution.
We simply encode types by association lists and the burden of sorting them is left to the translator.
Here is the de�nition of types as association lists:

def label : Type.

type : Type.

tnil : type.

tcons : label -> type -> type -> type.

The translation function J•K for types is given by

J[li : Ai]l1<...<lnK := tcons l1 JA1K (. . . (tcons ln JAnK tnil) . . .)

Translated types are Dedukti terms of type type:

71

Theorem 7. Let A be a ς-type and Γ be a well-formed context of the λΠ-calculus containing:

� the four previous declarations and

� for each label l occurring in A a declaration l : label,

then the judgment Γ ` JAK : type holds in the λΠ-calculus modulo.

Proof. A is a ς-type so it is of the form [li : Ai]i=1...n for some n. Without loss of generality, we
assume that the labels are sorted (l1 < . . . < ln) and we proceed by induction on the size of A:

� if n = 0, then JAK = J[]K = tnil and we conclude by the rule (V ar) of Section 3.2

� if n = m + 1, then JAK = J[li : Ai]l1<...<lm+1K = tcons l1 JA1K JBK where B is the ς-type
[li : Ai]l2<...<lm+1 .

Both A1 and B are smaller than A so we can apply the induction hypothesis to them to get
Γ ` JA1K : type and Γ ` JBK : type. Moreover, l1 is a label occurring in A so the declaration
l1 : label is present in Γ hence Γ ` l1 : label by the rule (V ar) of Section 3.2.

By three applications of the (App) rule of Section 3.2, we conclude Γ ` JAK : type.

This translation function is injective:

Theorem 8 (Injectivity of the translation of ς-types). Let A and B be two ς-types such that JAK
and JBK are convertible, then A and B are identical.

Proof. A ς-type and its translation have the same size hence A and B have the same size. The
proof is done by induction on this common size, both cases are trivial.

A direct advantage of this solution is that we do not even need to compare labels in Dedukti.

4.3 Membership as an Inductive Relation

Since we gave up sorting, terms of type type in our translation may contain label duplicates. To
distinguish them, we do not introduce membership as a function but as an inductive relation mem:
if a label l appears several times associated to the type A in the type B, then the type mem l A B
will have several distinct inhabitants, called the positions of (l : A) in B. The two constructors of
mem l A B are mhead indicating that (l : A) is found at the head of the type B and mtail indicating
that (l : A) is found in the tail of B.

mem : label -> type -> type -> Type.

mhead : l : label -> A : type -> B : type -> mem l A (tcons l A B).

mtail : l1 : label -> l2 : label -> A1 : type -> A2 : type -> B : type ->

mem l1 A1 B -> mem l1 A1 (tcons l2 A2 B).

This inductive relation plays an important role because it is very useful for de�ning recursive
functions operating on types or objects without worrying about duplicates. In particular, we shall
de�ne selection and update this way in Section 4.4.2.

72

4.4 Terminating Translation of Terms

We start with an as-shallow-as-possible terminating translation of the simply typed ς-calculus.
More precisely, we de�ne a terminating Dedukti context Σς and a translation function J•K mapping
well-typed ς-terms to Dedukti terms which are also well-typed in Σς . We drop the termination
requirement in the next section in order to get a fully shallow translation; that is, we de�ne another
Dedukti context Σ′ς such that the translation function J•K still preserves typing but also preserves
the operational semantics.

Splitting our work this way has several advantages:

� The terminating translation is expressible in the Coq system, for which we are not required
to prove termination nor con�uence,

� Con�uence and termination of Σς will be obvious,

� Type-checking is decidable for Dedukti con�uent and terminating rewrite systems. In practice,
this guarantees that Dedukti terminates when asked to check this development, which is
comfortable.

4.4.1 Objects, Methods, and Preobjects

In Section 4.2, we have translated ς-types to Dedukti terms of type type. To each of these Dedukti
terms, we associate a Dedukti type to contain the translated terms of this type. Concretely, we
need a function Obj interpreting the association lists of Section 4.2 as Dedukti types:

def Obj : type -> Type.

In order to type methods, we also introduce a function Meth; Meth A B is the type of the methods
of objects of type A returning type B:

def Meth : type -> type -> Type.

We cannot de�ne the type Obj as some dependent list of methods because sublists of objects
are not themselves objects. For this reason, we introduce the notion of preobject : a preobject of
an object of type A is given by a list of methods implementing part of A. More concretely, we
introduce a new type constructor Preobj taking two parameters: one being the type of the object
we are building and one beeing the type of the methods we have de�ned:

Preobj : type -> type -> Type.

The type Preobj A B reads as the type of preobjects of type A de�ned on part B. It is parametric
in A and dependent in B. The only preobject of type A de�ned on the empty part is constructed
by pnil A. A method labelled by l from A to B can be added to a preobject of type A de�ned on
part C to form a preobject of type A de�ned on part tcons l B C.

pnil : A : type -> Preobj A tnil.

pcons : A : type -> l : label -> B : type -> C : type ->

Meth A B -> Preobj A C -> Preobj A (tcons l B C).

Obj can now be de�ned, an object of type A is exactly a preobject of type A de�ned on part A:

[A] Obj A --> Preobj A A.

73

However, to construct objects, we need to construct methods; the simplest choice would be to
de�ne Meth A B as Obj A -> Obj B but this implies a negative occurence of Preobj in its recursive
de�nition and leads to non-termination (as we will see in next section). We avoid this issue by
axiomatizing the equivalence between Meth A B and Obj A -> Obj B:

def Eval_meth : A : type -> B : type -> Meth A B -> Obj A -> Obj B.

def Make_meth : A : type -> B : type -> (Obj A -> Obj B) -> Meth A B.

4.4.2 Method Selection and Update

Because objects are de�ned as a special case of preobjects, we �rst de�ne selection and update on
preobjects. Method selection and update functions on preobjects traverse the preobject structure
following a path given as argument by a position. When the method is reached, it is returned by
the selection function or replaced by the update function:

def preselect : A : type -> l : label -> B : type -> C : type ->

mem l B C -> Preobj A C -> Meth A B.

def preupdate : A : type -> l : label -> B : type -> C : type ->

mem l B C -> Preobj A C -> Meth A B -> Preobj A C.

These functions are de�ned by induction on position, the base case corresponds to a (label, type)
pair found at the head of part C:

[m] preselect _ _ _ _ (mhead _ _ _) (pcons _ _ _ _ m _) --> m.

[A, B, C, l, o, m]

preupdate _ _ _ _ (mhead _ _ _) (pcons A l B C _ o) m

-->

pcons A l B C m o.

These rules make extensive use of the capacities of Dedukti to recognize ill-typed linear patterns
whose instances are all well-typed; they are equivalent to the more verbose

[A, l, B, C, l', B', C', A'', l'', B'', C'', m, o]

preselect A l B C (mhead l' B' C') (pcons A'' l'' B'' C'' m o) --> m.

[A, B, C, l, o, m, A', l', B', C', A'', l'', B'', C'', m']

preupdate A l B C (mhead l' B' C') (pcons A'' l'' B'' C'' m' o) m

-->

pcons A'' l'' B'' C'' m o.

from which the following constraints are inferred by Dedukti and used to type-check the right-
hand side against the type of the left-hand side1:

� A ≡ A′′,

� l ≡ l′ ≡ l′′,

� B ≡ B′ ≡ B′′,

� C ≡ tcons l′ B′ C ′, and

� C ′ ≡ C ′′.
1We denote Dedukti convertibility by ≡ when the rewrite system is clear from context.

74

The inductive case corresponds to a (label, type) pair found in the tail of C and is de�ned
similarly:

[A, l, B, C, p, o]

preselect _ l B _ (mtail _ _ _ _ _ p) (pcons A _ _ C _ o)

-->

preselect A l B C p o.

[A, l, B, C, p, o, m, l', B', m']

preupdate _ l B _ (mtail _ _ _ _ _ p) (pcons A l' B' C m' o) m

-->

pcons A l' B' C m' (preupdate A l B C p o m).

We can now de�ne selection and update on objects by enforcing that the type A and the part C
are identical. In the case of selection, moreover, we apply the returned method to the object itself:

def objselect : A : type -> l : label -> B : type -> mem l B A ->

Obj A -> Obj B.

[A,l,B,p,a]

objselect A l B p a

--> Eval_meth A B (preselect A l B A p a) a.

def objupdate : A : type -> l : label -> B : type -> mem l B A ->

Obj A -> Meth A B -> Obj A.

[A,l,B,p,a,m]

objupdate A l B p a m

--> preupdate A l B A p a m.

The Dedukti context containing all the declarations and rewrite rules that we have introduced so
far in this chapter is noted Σς . The underlying rewrite system is strongly normalizing and con�uent:

Theorem 9 (Strong Normalization for Σς). For any Dedukti term t, if t is well-typed in context Σς

then t is strongly normalizing with respect to −→βΣς .

Proof. All the functions de�ned in Σς use single structural induction only.

Theorem 10 (Con�uence for Σς). The relation −→βΣς is con�uent (on untyped Dedukti terms).

Proof. This property has been checked by the con�uence checker CSI�HO.

4.4.3 Translation Function for Terms

We can now translate well-typed ς-terms as well-typed Dedukti terms in Σς . This translation
actually maps a typing derivation of the simply-typed ς-calculus to a Dedukti term and it is de�ned
by induction on the derivation. For simplicity, we omit the dependency to the typing derivation and
present it as a function from ς-terms to Dedukti terms, this does not introduce ambiguity because
the typing rules of Figure 4.2 are syntax-directed. The translation function J•K is de�ned by:

75

JxK := x
J[li = ς(xi : A)ai]l1<...<lnK := pcons JAK l1 JA1K J[li : Ai]1<i≤nK Jς(x1 : A)a1K(. . .

(pcons JAK ln JAnK tnil Jς(xn : A)anK (pnil JAK)) . . .)
when A is [li : Ai]l1<...<ln

Ja.lK := objselect JAK l JBK p JaK
when a : A, a.l : B and p is the position of (l : B) in A

Ja.l⇐ ς(x : A)bK := objupdate JAK l JBK p Jς(x : A)bK JaK
when b : B and p is the position of (l, B) in A

Jς(x : A)bK := Make_meth JAK JBK (x : Obj JAK => JbK)
when b : B

To translate labels, we extended the parser of Dedukti so that it could read strings delimited
by double quotes. This parser extended with syntactic sugar is called Sukerujo. It is available from
the following URL: http://deducteam.gforge.inria.fr/sukerujo. In Sukerujo, string is the
promitive type of strings.

Example 9. The encoding of simply-typed λ-calculus given in Section 4.1.4 can now be translated
in Dedukti in the following set of de�nitions:

[] label --> string.

def Arrow (A : type) (B : type) : type

:= tcons "arg" A (tcons "val" B tnil).

def p0 (A : type) (B : type) : mem "arg" A (Arrow A B)

:= mhead "arg" A (tcons "val" B tnil).

def p1 (A : type) (B : type) : mem "val" B (Arrow A B)

:= mtail "val" "arg" B A (tcons "val" B tnil) (mhead "val" B tnil).

def Lambda (A : type) (B : type) (b : Obj A -> Obj B) : Obj (Arrow A B)

:= pcons (Arrow A B) "arg" A (tcons "val" B tnil)

(self : Obj (Arrow A B) =>

objselect (Arrow A B) "arg" A (p0 A B) self)

(pcons (Arrow A B) "val" B tnil

(self : Obj (Arrow A B) =>

b (objselect (Arrow A B) "arg" A (p0 A B) self))

(pnil (Arrow A B))).

def App (A : type) (B : type) (f : Obj (Arrow A B)) (t : Obj A) : Obj B

:= objselect (Arrow A B) "val" B (p1 A B)

(objupdate (Arrow A B) "arg" A (p0 A B) f

(__ : Obj (Arrow A B) => t)).

The translation function for the encoding is de�ned by:

JA→ BK = Arrow JAK JBK
Jλ(x : A)bK = Lambda JAK JBK (x : Obj JAK => JbK)
Jf(t)K = App JAK JBK JfK JtK

76

http://deducteam.gforge.inria.fr/sukerujo

As it can already be seen on this very small example, the encoding is so verbose that the
translated terms get quickly unreadable. We will see in Chapter 6 that there is room for much
improvement in that matter.

4.4.4 Typing Preservation

Our encoding of ς-terms preserves typing:

Theorem 11 (Typing preservation for simply-typed ς-calculus). The translation of a typing deriva-
tion ∆ ` a : A is a well-typed Dedukti term JaK of type Obj JAK in any context extending J∆K by the
declarations of the labels occurring in JAK.

The translation function for contexts is de�ned in the expected manner:

� J∅K := Σς and

� J∆, x : AK := J∆K, x : Obj JAK.

Proof. We proceed by induction on the typing derivation and case distinction on the last typing
rule, there are four cases:

� Case (TypeObj),

A is of the form [li : Ai]i=1...n and a is of the form [li = ς(xi : A)ai]i=1...n and for all
i, ∆, xi : A ` ai : Ai. Without loss of generality, we assume the labels sorted. By in-
duction hypothesis, for all i J∆, xi : AK ` JaiK : Obj JAiK hence J∆K ` Jς(xi : A)aiK :
Meth JAK JAiK. We show that pconsJAKlkJAkKJ[li : Ai]k<i≤nKJς(xk : A)akK(. . . pnilJAK) has
type PreobjJAKJ[li : Ai]k≤i≤nK in context J∆K for every k between 1 and n by a simple de-
creasing induction (that is, the base case is k = n and hereditary consists in proving the case
k − 1 assuming the case k holds). The case k = 1 gives us the expected result.

� Case (TypeV ar), (TypeSelect) and (TypeUpdate) are trivial.

The converse property does not hold: well-typed terms of type Obj JAK are not always transla-
tions of ς-terms because a term of type Obj JAK can contain subterms of type Obj β where β is not
the translation of a ς-type (it has duplicate or unsorted labels):

Example 10. Let a be a term of type Obj JAK and b be a term of type Obj β, the term
Eval_meth β JAK (Make_meth β JAK (x : Obj β=>a)) b has type Obj JAK but is the translation of
no ς-term.

Since Σς terminates, the translation cannot preserve reduction so we cannot use it to perform
proof by re�ection of object-oriented programs.

77

4.5 Shallow Embedding

In order to recover reduction preservation (at the cost of termination), we identify Meth A B with
Obj A -> Obj B:

[A,B] Meth A B --> (Obj A -> Obj B).

[f] Eval_meth _ _ f --> f.

[f] Make_meth _ _ f --> f.

To prove reduction preservation, we need a lemma for handling substitutions, this result is
standard in HOAS [146].

Lemma 2 (Preservation of substitutions). Let x be a variable, A and B be ς-types, ∆ and ∆′ be
ς-contexts and a and b be ς-terms such that ∆, x : B,∆′ ` a : A and ∆ ` b : B, we have

Ja{x\b}K ≡ JaK{x\JbK}

Proof. We proceed by induction on a.

� If a is the variable x, then Ja{x\bK} = JbK and JaK{x\JbK} = JxK{x\JbK} = x{x\JbK} = JbK.

� If a is another variable y, then Ja{x\b}K = Jy{x\b}K = JyK = y and JaK{x\JbK} = JyK{x\JbK} =
y{x\JbK} = y

� If a is a ground object [li = ς(xi : A)ai]i=1...n, we assume without loss of generality that the
labels are sorted. If one of the xi is x, we can α-rename it thanks to the induction hypothesis
on the corresponding ai. The result then follows directly from induction.

� The two remaining cases (selection and update) are easy.

Theorem 12 (Reduction preservation). Let a and a′ be two ς-terms of type A such that a ; a′,
we have JaK −→+ Ja′K.

Proof. There are two cases, one per rule de�ning ;:

� We consider a ς-type A = [li : Ai]i=1...n and an object a = [li = ς(xi : A)ai]i=1...n of type A,
we have to prove that Ja.ljK −→+ Jaj{xj\a}K.
By de�nition, Ja.ljK = objselect JAK lj JAjK p JaK where p is the position of (lj : Aj) in A.

Ja.ljK = objselect JAK lj JAjK p JaK
−→ Eval_meth JAK JAjK (preselect JAK lj JAjK JAK p JaK) JaK
−→ preselect JAK lj JAjK JAK p JaK JaK

To conclude this case, we show by decreasing induction on k ≤ j that

preselect JAK lj JAjK J[li : Ai]i=k...nK pk ok JaK −→+ Jaj{xj\a}K

where pk is the position of (lj : Aj) in [li : Ai]i=k...n and
ok = pconsJAKlkJAkKJ[li : Ai]k<i≤nKJς(xk : A)akK(. . . pnilJAK):

78

� Base case: k = j and pk = mhead lj JAjK J[li : Ai]j<i≤nK.

preselect JAK lj JAjK J[li : Ai]i=j...nK pj αj JaK
−→ Jς(xj : A)ajK JaK
−→ Make_meth JAK JAjK (xj : JAK=>JajK) JaK
−→ (xj : JAK=>JajK) JaK
−→β JajK{xj\JaK}
≡ Jaj{xj\a}K by Lemma 2

� Inductive case: k < j and pk = mtail lj lk JAjK JAkK J[li : Ai]k<i≤nK pk+1.

preselect JAK lj JAjK J[li : Ai]i=k...nK pk αk JaK
−→ preselect JAK lj JAjK J[li : Ai]k<i≤nK pk+1 αk+1 JaK
−→+ Jaj{xj\a}K by induction hypothesis

� We consider a variable x, a ς-type A = [li : Ai]i=1...n, an object a = [li = ς(xi : A)ai]i=1...n of
type A, and a term b of type Aj . We have to prove that Ja.lj ⇐ ς(x : A)bK −→+ J[lj = ς(x :
A)b, li = ς(xi : A)ai]i=1...n,i 6=jK.

By de�nition, Ja.lj ⇐ ς(x : A)bK = objupdate JAK lj JAjK p Jς(x : A)bK JaK where p is the
position of (lj : Aj) in A.

Ja.lj ⇐ ς(x : A)bK = objupdate JAK lj JAjK p Jς(x : A)bK JaK
−→ preupdate JAK lj JAjK JAK p Jς(x : A)bK JaK

To conclude this case, we show by decreasing induction on k ≤ j that

preupdate JAK lj JAjK J[li : Ai]i=k...nK pk Jς(x : A)bK αk −→+ α′k

where pk is the position of (lj : Aj) in [li : Ai]i=k...n,
αk = pconsJAKlkJAkKJ[li : Ai]k<i≤nKJς(xk : A)akK(. . . pnilJAK), and α′k is de�ned as αk but
replacing Jς(xj : A)ajK by Jς(x : A)bK:

� Base case: k = j and pk = mhead lj JAjK J[li : Ai]j<i≤nK.

preupdate JAK lj JAjK J[li : Ai]i=j...nK pk Jς(x : A)bK αj −→ α′j

� Inductive case: k < j and pk = mtail lj lk JAjK JAkK J[li : Ai]k<i≤nK pk+1.

preupdate JAK lj JAjK J[li : Ai]i=k...nK pk Jς(x : A)bK αj
−→ pconsJAKlkJAkKJ[li : Ai]k<i≤nKJς(xk : A)akK

(preupdate JAK lj JAjK J[li : Ai]k<i≤nK pk+1 Jς(x : A)bK αj)
−→+ pconsJAKlkJAkKJ[li : Ai]k<i≤nKJς(xk : A)akKα′k+1 by induction hypothesis
≡ α′k

79

Chapter 5

Object Subtyping in Dedukti

Contrary to type systems for functional languages where it plays a minor role, subtyping is om-
nipresent in typed object-oriented languages. In ς-calculi, subtyping is used for implementing private
methods (if an object a of type A is used as an object of type B, then all methods of A not present
in B are private) and inheritance.

In Section 5.1, we present the extension of the simply-typed ς-calculus to subtyping proposed
by Abadi and Cardeli. In Section 5.2, we give an example of use of subtyping to achieve privacy.

Our translation of the ς-calculus to Dedukti needs some adjustments to take subtyping into
account. In Section 5.3 we translate the subtyping relation to Dedukti and in Section 5.4, we
introduce explicit coercions on the Dedukti side to translate all the ς-terms that are well-typed in
the extension of the ς-calculus with subtyping.

In Sections 5.5 and 5.6, we discuss two properties that our translation might enjoy in additions
to the ones proved in the previous chapter. The �rst property is conservativity, it merely states that
the translation is surjective and it is the topic of Section 5.5. The second property is canonicity, it
merely states that the translation is injective and it is the topic of Section 5.6.

5.1 Simply-Typed ς-Calculus with Subtyping

The subtyping relation <: is de�ned in the ς-calculus by the following inference rules

(subtype)
[li : Ai]i∈1...n+m <: [li : Ai]i∈1...n

(re�)
A <: A

A <: B B <: C
(trans)

A <: C

Since the order of labels is irrelevant, the (subtype) rule actually states that A is a subtype of
B whenever every label of B is also in A, with the same type.

A term a of type A can be used with type B when A <: B thanks to the subsumption typing
rule:

∆ ` a : A A <: B
(subsume)

∆ ` a : B

80

5.2 Example

The expressivity of the ς-calculus with subtyping can be illustrated by the following example from
Abadi and Cardelli [2] assuming that we have a type Num for numbers and that the simply-typed
λ-calculus has been encoded:

RomCell := [get : Num]
PromCell := [get : Num, set : Num→ RomCell]
PrivateCell := [get : Num, contents : Num, set : Num→ RomCell]
myCell : PromCell := [get = ς(x : PrivateCell)x.contents,

contents = ς(x : PrivateCell)0,
set = ς(x : PrivateCell)λ(n : Num)x.contents⇐ n]

RomCell is the type of read-only memory cells; the only action that we can perform on a
RomCell is to read it (get method).

A PromCell is a memory cell which can be written once (set method), we can either read it
now or write it and get a RomCell.

PrivateCell is a type used for implementation; it extends PromCell with a contents �eld which
should not be seen from the outside.

The object myCell implemented as an object of type PrivateCell can be given the type
PromCell thanks to subsumption.

5.3 Translation of the Subtyping Relation

In Dedukti, the subtyping relation A <: B can be simply de�ned by inclusion

def subtype (A : type) (B : type) :=

l : label -> C : type -> mem l C B -> mem l C A.

Alternatively, we can also de�ne it by induction on B:

subtype ' : type -> type -> Type.

subtype_nil : A : type -> subtype ' A tnil.

subtype_cons : A : type -> l : label -> B1 : type -> B2 : type ->

subtype ' A B2 -> mem l B1 A -> subtype ' A (tcons l B1 B2).

These two de�nitions are equivalent, the �rst one is better for proving re�exivity and transitivity,
the second one for proving decidability.

Lemma 3. For all types A and B, the type subtype' A B -> subtype A B is inhabited.

Proof. By induction on B.

Lemma 4. The relation subtype' is decidable.

Proof. Trivial from decidability of membership.

Lemma 5. The relation subtype is re�exive and transitive.

Proof. The proof terms are identity and composition respectively.

81

5.4 Explicit Coercions

Considering two ς-types A and B such that A <: B, we do not achieve a correct encoding of
subtyping by either rewriting JAK to JBK or JBK to JAK because that would make JAK and JBK
convertible. We can however annotate terms by explicit coercions.

def coerce : A : type -> B : type -> subtype A B -> Obj A -> Obj B.

Unfortunately, these coercions get in the way of evaluation because preselect and preupdate

only reduce when applied to precons. For example, a Dedukti expression of the form
objselect _ _ _ _ (coerce _ _ _ _) is stuck whereas the semantics of the ς-calculus requires to
reduce it as if no coercion were present.

The symbol coerce can not be fully de�ned either but we can treat it as a smart constructor
by adding the following rewrite rules:

def select : A : type -> l : label -> B : type -> mem l B A ->

Obj A -> Obj B.

def update : A : type -> l : label -> B : type -> mem l B A ->

Obj A -> Meth A B -> Obj A.

[l,B,p,l',B',C',m,o]

select (tcons _ _ _) l B p (pcons _ l' B' C' m o)

-->

objselect (tcons l' B' C') l B p (pcons (tcons l' B' C') l' B' C' m o).

[l,B,p,l',B',C',m,o,m']

update (tcons _ _ _) l B p (pcons _ l' B' C' m o) m'

-->

objupdate (tcons l' B' C') l B p (pcons (tcons l' B' C') l' B' C' m o) m'.

[A,B,C,l,p,st,a]

select _ l C p (coerce A B st a)

--> select A l C (st l C p) a.

[A,B,C,l,p,st,a,m]

update _ l C p (coerce A B st a) m

--> coerce A B st

(update A l C (st l C p) a

(self : Obj A => m (coerce A B st self))).

The functions objselect and objupdate are only de�ned on objects of the form pcons _ _ _ _ _ _,
the functions select and update extend them by treating the case of the smart constructor coerce.

The translation of typing derivations given in Section 4.4.3 is adapted to subtyping by replacing
objselect and objupdate by select and update respectively and the case of the typing rule (subsume)
is given by coerce:

Ja.lK := select JAK l JBK p JaK
when a : A, a.l : B and p is the position of (l : B) in A

Ja.l⇐ ς(x : A)bK := update JAK l JBK p Jς(x : A)bK JaK
when b : B and p is the position of (l, B) in A

JaK := coerce JAK JBK st JaK
when the derivation ends with a subsume rule between types A and B

82

5.5 Reverse Translation

An important property of embeddings in the λΠ-calculus modulo is their conservativity. The con-
servativity property is a weak converse of typing preservation: it states that the translation of empty
types of the source language of the translation (here the ς-calculus) are empty types in the target
language (here the λΠ-calculus modulo). In the light of the Curry-Howard correspondence, con-
servativity means that the translation does not introduce inconsistencies so reasoning in the target
logic is as safe as in the source one.

The main conservativity result for embeddings in the λΠ-calculus modulo is a proof by Assaf [12,
11] that the embedding of Functional Pure Type Systems in the λΠ-calculus modulo de�ned by
Cousineau and Dowek [55] is conservative.

Conservativity is too weak to be of interest in our context because all the ς-types are inhabited.
However, the technique of Assaf conservativity proof is of interest in our setting.

Assaf devises partial functions ϕ and ψ translating back respectively the terms and the types of
the target language to terms and types in (a conservative extension of) the source language. These
functions are inverses of the translation functions for terms and types in the following sense: their
domains contain the images of the translations for terms and types and ϕ(JtK) is equivalent to t and
ψ(JAK) is equivalent to A. In our case, the notions of equivalence in the source language are given
by reordering of labels for types and by the congruence induced by the operational semantics for
terms.

Assaf then shows that, even for non-terminating encodings, all terms inhabiting translated types
reduce to terms in the domain of the reverse translations.

Following Assaf, we would like to obtain the following strong conservativity result: Dedukti
terms whose types are of the form Obj JAK reduce to translations of ς-terms.

As we have seen in Section 4.4.4, this strong conservativity statement fails in the case of our
terminating encoding of simply-typed ς-calculus but the counterexample that we gave is not normal
in the shallow system and it indeed reduces to a : Obj JAK which is not a counterexample anymore.

The reverse translations are de�ned in the natural way:

ϕ(x) := x
ϕ(pnil A) := []
ϕ(pcons A l B C m o) := [l = χ(m), ϕ(o)]
ϕ(select A l B p a) := ϕ(a).l
ϕ(update A l B p m a) := ϕ(a).l⇐ χ(m)
ϕ(coerce A B s a) := ϕ(a)
χ(x : Obj A => o) := ς(x : ψ(A))ϕ(o)
ψ(tnil) := []
ψ(tcons l A B) := [l : A,ψ(B)]

Note that ψ is only de�ned for duplicate-free lists, χ is only de�ned for λ-abstractions of type
Obj A → Obj B such that ψ is de�ned on A and ϕ is unde�ned on a lot of terms such as (x :
Obj A => b) a.

The reverse translation ψ is extended to contexts by

ψ(Σ′ς) := ∅
ψ(Γ, x : Obj A) := ψ(Γ), x : ψ(A)

83

The following two results are easy to show:

Lemma 6 (reverse translations). For any ς-type A, ψ(JAK) ≡ A and for any well-typed ς-term a,
ϕ(JaK) ≡ a where in both cases, ≡ denotes syntactic equality modulo reordering of labels.

Proof. By induction on the structure of the term, all cases are obvious.

Lemma 7 (conservation of typing). If t is a term of the λΠ-calculus modulo of type Obj A in context
Γ such that ψ is de�ned on A and Γ and ϕ is de�ned on t then ψ(Γ) ` ϕ(t) : ψ(A) in the ς-calculus
with subtyping.

Proof. By induction on the structure of the term t, each case corresponds to a di�erent typing rule
in the ς-calculus with subtyping.

We conjecture that Assaf's proof can be adapted to obtain the strong conservativity lemma:

Conjecture 1 (Strong conservativity lemma). If t is a term of the λΠ-calculus modulo of type
Obj A in context Γ such that ψ is de�ned on A and Γ, then t reduces to a term t′ on which ϕ is
de�ned.

Contrary to the previous lemmata, this conjecture is far from trivial because the ς-calculus does
not terminate so it is not su�cient to look at the normal forms.

A simple corollary of this conjecture can then be stated in terms of the direct translation
functions only:

Corollary 1. If t is a term of the λΠ-calculus modulo of type Obj JAK in the context J∆K then t
reduces to some JaK such that ∆ ` a : A in the ς-calculus with subtyping.

5.6 Canonicity

Thanks to transitivity of subtyping, we can optionally add the following rewrite rule to ensure that
the size of annotations does not grow faster than the term:

def trans (A : type) (B : type) (C : type)

(stAB : subtype A B)

(stBC : subtype B C) : subtype A C :=

l : label =>

D : type =>

p : mem l D C =>

stAB l D (stBC l D p).

[A,B,C,stAB ,stBC ,a]

coerce _ C stBC (coerce A B stAB a)

-->

coerce A C

(trans A B C stAB stBC)

a.

This is however hard to prove con�uent. For example, the con�uence of this rule alone relies
on the associativity of trans so it is sensible to our de�nition of subtyping. The transitivity of the

84

subtype' relation for example is also provable but not in an associative way. Moreover, this is a
kind of rewrite rule that makes CSI�HO slow: after hours, CSI�HO �nally replies MAYBE.

An argument in favor of this rule is that it eliminates a source of non-canonicity, the other source
is dummy coercion from a type to itself which is eliminated by the following non-linear rule:

[A,a] coerce A A _ a --> a.

When both rules are present, the system is canonical:

Theorem 13 (Canonicity). Let a and a′ be two well-typed terms of type Obj JAK such that ϕ(a) ≡
ϕ(a′), then a ≡ a′.

Proof. We �rst remark that the rewrite system consisting of these two rewrite rules is strongly
normalizing because the number of coercions decreases by one at each application of a rewrite rule.

Without loss of generality, we assume a and a′ in normal form with respect to these rules.
Since ϕ is de�ned on a and a′, they both have a shape among x, pnil A, pcons A l B C m o,

select A l B p o, update A l B p m o, and coerce A B s o. All these shapes but the last are
mapped to di�erent syntactic constructs of the ς-calculus so the only interesting case occur when at
least one of a and a′ is a coercion. The cases where one of them is a coercion and the other one is a
selection or an update are treated using the rules of Section 5.4, the cases where one is a coercion
and the other one is a variable or an object violate normalization with respect to the rewrite rule
[A,a] coerce A A _ a --> a.. The most interesting case is when both a and a′ are coercions.

The term a is coerce B A stBA b and the term a′ is coerce B' A stB'A b'. Our assumption is
ϕ(b) ≡ ϕ(b′) but the types B and B' are not a priori related. The ς-calculus with subtyping admits
minimal typings [1]. If we denote by C the translation of the minimal type of the ς-term c := ϕ(b),
then C is a subtype of both B and B' and both B and B' are strict subtypes of A.

Since C is a subtype of B, we can translate c at type B as JcK := coerce C B stCB c and apply the
induction hypothesis to get b ≡ coerce C B stCB c hence a ≡ coerce B A stBA (coerce C B stCB c).

By symmetry, we get a′ ≡ coerce B' A stB'A (coerce C B' stCB' c). Using the rewrite rule
for composition of coercions, we obtain a ≡ coerce C A stCA c ≡ a′.

The translations that we have presented in this chapter and the previous one simplify the
translations that we proposed in [42]. In [42], the inductive functions on the Dedukti and Coq sides
such as select and update were de�ned by induction over positions of labels in types whereas here
we consider only positions of (label, type) pairs in types. Contrary to [42], we do not need to put
positions inside preobjects, which simpli�es the de�nitions of selection and update: when positions
are packed in preobjects, we need to ensure that the positions we �nd in the preobjects are the
same as the one we used to access them. In Dedukti, this was done using non-linearity (which stops
us from automatic veri�cation of con�uence) and in Coq it was done by adding an extra parameter
to pcons asserting that the added label was not already present (hence we can prove that types of
objects are duplicate-free so positions are unique). Another simpli�cation in the presentation of
our translation with respect to [42] concerns the role of minimal typing. In [42], two versions of the
translation function for terms are mutually de�ned, the �rst one is annotated with the ς-type of
the term, the second one is not annotated and translates the term according to its minimal type.
The translations de�ned in [42] are really translations of well-typed terms whereas this chapter
presents a translation of typing derivations so we end-up with several possible translations of the
same well-typed term that can be related thanks to the canonicity result.

85

Chapter 6

The Implementation Sigmaid

We have implemented the translation functions presented in the previous chapters as a translator
named Sigmaid (SIGMA-calculus In Dedukti) from ς-calculus to Coq and Dedukti. Our code is
available at the following URL: http://sigmaid.gforge.inria.fr.

This chapter is devoted to the improvements that have been integrated in this implementation.
These improvements in the translation do not a�ect the semantics of the translated terms but only
their syntax.

The �rst improvement, described in Section 6.1, deals with the representation of concrete objects.
We de�ne additional Dedukti functions to shorten the translation of concrete objects and make it
more readable. This alternative de�nition of the translation of concrete object relies on the subtyping
relation that we introduced in Chapter 5, this is the reason why we have chosen not to give it in
Chapter 4.

The second improvement, described in Section 6.2, is the removal from the translation of the
position arguments needed for the selection and update functions. Sigmaid does not need to justify
precisely at which position the labels occur in types but relies on decidability lemmata.

In Section 6.3, we evaluate the time e�ciency of Sigmaid once these two improvements are
applied. The result heavily depends on the chosen representation for the labels. In Section 6.4,
we make good use of Dedukti at the meta-level to perform label operations independently of the
representation and speed-up Sigmaid.

6.1 Initiating Objects

All the types of the simply-typed ς-calculus are inhabited. If A = [li : Ai]i=1...n is ς-type, then we
can de�ne the following object init(A) of type A:

init(A) := [li = ς(x : A)x.li]i=1...n

All the methods of the object init(A) are loop methods, that is methods directly calling them-
selves. We have already encountered loop methods in Section 4.1.4. They are commonly used in
the ς-calculus as placeholders for methods whose body is irrelevant because the method is going to
be updated.

The object init(A) can be used to avoid writing concrete objects. Let a = [li = ς(xi : A)ai]i=1...n

be a concrete object of type A, the object a is semantically equivalent to the following ς-term:

86

http://sigmaid.gforge.inria.fr

(. . . ((init(A)).l1 ⇐ ς(x1 : A)a1) . . .).ln ⇐ ς(xn : A)an

Moreover, the order in which the methods are updated is not relevant. If σ is a permu-
tation of {1, . . . , n}, then both (. . . ((init(A)).l1 ⇐ ς(x1 : A)a1) . . .).ln ⇐ ς(xn : A)an and
(. . . ((init(A)).lσ(1) ⇐ ς(xσ(1) : A)aσ(1)) . . .).lσ(n) ⇐ ς(xσ(n) : A)aσ(n) evaluate to a.

In this section, We use this idea to improve our translation of concrete objects in such a way
that:

� Sigmaid does not need to manipulate preobjects. They are present in the Dedukti signature
but all the objects printed by Sigmaid are full objects.

� Sigmaid is not asked to sort the labels of concrete objects anymore. It can print the methods
in the same order than in the input �le, which is more readable.

� Partially de�ned objects are accepted, the missing methods are simply understood as loop
methods.

The new translation function is de�ned by:

J[li = ς(xi : A)ai]i=1...nK := update JAK JA1K l1 p1 Jς(x1 : A)a1K (. . .
(update JAK JAnK ln pn Jς(xn : A)anK (init JAK)) . . .)

when A is [li : Ai]i=1...n and pi is the position of (li : Ai) in A
other cases are unchanged.

In this de�nition, init is a Dedukti function of type A : type -> Obj A playing the role of init
on the Dedukti side. The de�nition of init is given in Figure 6.1.

The translation of the encoding of λ-calculus is now simpli�ed to the following set of de�nitions:

[] label --> string.

def Arrow (A : type) (B : type) : type

:= tcons "arg" A (tcons "val" B tnil).

def p0 (A : type) (B : type) : mem "arg" A (Arrow A B)

:= mhead "arg" A (tcons "val" B tnil).

def p1 (A : type) (B : type) : mem "val" B (Arrow A B)

:= mtail "val" "arg" B A (tcons "val" B tnil) (mhead "val" B tnil).

def Lambda (A : type) (B : type) (b : Obj A -> Obj B) : Obj (Arrow A B)

:= update (Arrow A B) "val" B (p1 A B)

(init (Arrow A B))

(self : Obj (Arrow A B) =>

b (select (Arrow A B) "arg" A (p0 A B) self)).

def App (A : type) (B : type) (f : Obj (Arrow A B)) (a : Obj A) : Obj B

:= select (Arrow A B) "val" B (p1 A B)

(update (Arrow A B) "arg" A (p0 A B) f (__ : Obj (Arrow A B) => a)).

This is still heavy but already signi�cantly more readable than what we got in Section 4.4.3.
Only the de�nition of Lambda has changed. The simpli�cation of the de�nitions of the positions p1
and p2 are investigated in the next subsection.

87

(; Loop method ;)

def loop : A : type -> B : type -> l : label -> mem l B A -> Meth A B.

[A,B,l,H]

loop A B l H

-->

Make_meth A B (self : Obj A => objselect A l B H self).

def preinit : A : type -> B : type -> subtype A B -> Preobj A B.

[A] preinit A tnil _ --> pnil A

[A,l,B,C,st]

preinit A (tcons l B C) st

-->

pcons A l B C (loop A B l (st l B (mhead l B C)))

(preinit A C (l' : label =>

B' : type =>

p : mem l' B' C =>

st l' B' (mtail l' l B' B C p))).

def init (A : type) : Obj A :=

preinit A A (l : label => B : type => p : mem l B A => p).

Figure 6.1: De�nition of the init function in Dedukti

88

6.2 Decidability

To simplify the translator further, we can avoid providing arguments when they can be computed
in the target systems. Type equality, membership and subtyping can all be proved decidable in
the target systems. Formally, a decidable relation is a function returning a boolean. Assuming
decidability of label equality, we can de�ne the boolean versions of type equality bteq, membership
bmem, and subtyping bst:

bool : Type.

true : bool.

false : bool.

def and : bool -> bool -> bool.

def or : bool -> bool -> bool.

[b] and true b --> b

[] and false _ --> false.

[] or true _ --> true

[b] or false b --> b.

def label_beq : label -> label -> bool.

def bteq : type -> type -> bool.

[] bteq tnil tnil --> true

[] bteq (tcons _ _ _) tnil --> false

[] bteq tnil (tcons _ _ _) --> false

[l, A, B, l', A', B']

bteq (tcons l A B) (tcons l' A' B')

-->

and (and (label_beq l l') (bteq A A')) (bteq B B').

def bmem : label -> type -> type -> bool.

[] bmem _ _ tnil --> false

[l, A, l', A', B]

bmem l A (tcons l' A' B)

-->

or (and (label_beq l l') (bteq A A')) (bmem l A B).

def bst : type -> type -> bool.

[] bst _ tnil --> true

[A, l, A', B] bst A (tcons l A' B) --> and (bmem l A' A) (bst A B).

Decidability of equality on strings is proved in Coq standard library. On the Dedukti side it
requires some work but nothing very deep so we omit the de�nition of the symbol label_beq here.

With some e�orts, we can prove that these decidable relations re�ect equality, mem, and subtype

respectively: the decidable relations return true if and only if the relations are inhabited. Actually,
we only need the "only if" direction.

Istrue : bool -> Type.

Istrue_true : Istrue true.

def bmem_reflects_mem :

l : label ->

A : type ->

89

B : type ->

Istrue (bmem l A B) ->

mem l A B.

def bst_reflects_subtype :

A : type ->

B : type ->

Istrue (bst A B) ->

subtype A B.

We do not show the proofs because they are quite long and not very interesting. The
point of using the re�ection technique is that we can compute with the proofs. For example,
bmem_reflects_mem "arg" A (Arrow A B) normalizes to mhead "arg" A (tcons "val" B tnil) so the
translator does not need to compute the positions and subtyping proofs itself, computing can be
discharged to the target systems. The de�nitions of the positions p1 and p2 in our running example
of the translation of the λ-calculus become

def p0 (A : type) (B : type) : mem "arg" A (Arrow A B)

:= bmem_reflects_mem "arg" A (Arrow A B) Istrue_true.

def p1 (A : type) (B : type) : mem "val" B (Arrow A B)

:= bmem_reflects_mem "val" B (Arrow A B) Istrue_true.

6.3 E�ciency

To our knowledge, the only available implementation of a ς-calculus is Pericas-Geertsen's Sigma
interpreter (http://types.bu.edu/seminar-ool-mini/sigma.html). Comparing Sigmaid with
Sigma is not easy because Sigma features recursive types (which we did not consider) but not
subtyping.

We tested Sigmaid on a few examples taken from [2]:

� The encoding of booleans: we check that if true then t else e is convertible to t and
if false then t else e is convertible to e.

� The encoding of λ-calculus: we check that the β-redex (λ(x : A) f x) a is convertible to f a.

� We de�ne types for points, colors, and colored points. We de�ne an explicit cast operation
point_of_colorpoint : ColorPoint→ Point by λ(p : ColorPoint) p and check that we
can select �elds through it: (point_of_colorpoint[x = 42; y = 0; color = red]).x is con-
vertible to 42.

� We can also write the example of memory cells of Section 5.2. We check that myCell.get is
0 and myCell.set(42).get is 42.

� Finally, we check that adding a dummy private �eld does not a�ect late binding: let XY and
XYZ be the types [x : Nat, y : Nat] and [x : Nat, y : Nat, z : Nat] respectively, if a is the object
of type XY de�ned by [x = ς(s : XYZ) s.y, y = 0, z = 0] then (a.y := 42).x is 42.

All these examples are included in the �le test.sigma distributed with Sigmaid.

90

http://types.bu.edu/seminar-ool-mini/sigma.html

Sigmaid translates these examples almost instantaneously, Dedukti checks them in 38 seconds
and Coq in 1.85 seconds. The huge di�erence in timing comes from the fact that characters are
represented on the Dedukti side using a unary representation of natural numbers whereas Coq
characters use a binary representation which is much more e�cient.

6.4 Optimization at the Meta-Level

As we have seen, Sigmaid does not compute positions and subtyping proofs but relies on decidability
lemmata instead. This simpli�es Sigmaid but comes at a price on the Dedukti and Coq side:

� The decidability proofs are not very hard but they are a bit tedious and decidability of label
equality is very speci�c to the implementation of labels.

� The type-checking time is dominated by these decidability checks so it also becomes very
dependent on the implementation choices.

Instead of writing in Dedukti a certi�ed membership and subtyping checker, we can solve these
problems by writing a certifying checker in Meta-Dedukti. We use a non-linear and non-con�uent
rewrite system similar to the one of Section 3.4.5 for deciding membership, and subtyping:

def decide_mem : l : label -> A : type -> B : type -> mem l A B.

[l, A, B] decide_mem l A (tcons l A B) --> mhead l A B

[l, A, l', A', B]

decide_mem l A (tcons l' A' B)

-->

mtail l l' A A' B (decide_mem l A B).

def decide_st ' : A : type -> B : type -> subtype ' A B.

[A] decide_st ' A tnil --> subtype_nil A

[A, l, B, C]

decide_st ' A (tcons l B C)

-->

subtype_cons A l B C (decide_st ' A C) (decide_mem l B A).

The type of decide_mem is a blatant lie but sometimes lying is very convenient!
We should not trust Dedukti when it uses this rewrite system to type-check an object-oriented

program but we can ask Meta-Dedukti to normalize the Dedukti �les produced by Sigmaid. Meta-
Dedukti is allowed to use this unsafe system but the Dedukti �les produced by Meta-Dedukti are to
be checked in a safe, con�uent rewrite system which does not include decide_mem and decide_st'.

The computation which is done at the Meta-Level is purely symbolic, it does not depend on
the chosen representation of labels so it is much more e�cient. On the same set of examples, the
cumulative time for Sigmaid, Meta-Dedukti, and Dedukti is less than 0.3 seconds.

91

Conclusion of Part II

We have translated the simply-typed ς-calculus to both Coq and Dedukti in Chapter 4. In the case
of the Dedukti translation, we have taken bene�t of rewriting to express the operational semantics
of the ς-calculus using a shallow embedding. We have then extended this translation to handle
subtyping in Chapter 5. Our �rst naive implementation in Chapter 6 was unreasonably slow. We
have used Dedukti as a program transformer to optimize our implementation and we have obtained
a considerable speedup: the optimized implementation is about 100 times faster than the naive one.

In order to use the object-oriented mechanisms of the ς-calculus for interoperability of proof
systems, we need to extend it to logic. Following the Curry-Howard correspondence, rich speci�ca-
tions can be expressed by dependent type systems so it is natural to try to extend the ς-calculus to
dependent typing.

The main obstacle to combine the ς-calculus with type theory is the lack of termination. In type
theory, termination is usually seen as a key feature to ensure both decidability of type checking
and consistency: in Martin-Löf Type Theory for example, the false proposition is identi�ed with an
inductive type with no constructor; in the empty context, a term of type false has to normalize to
a value of type false but no such value exists.

In the ς-calculus however, non-terminating objects (that is, objects for which selecting a method
would not terminate) are omnipresent because methods are initiated to loops. Even the very simple
encoding of the simply-typed λ-calculus uses a non-terminating object: (λx : A.b).arg diverges.

The omnipresence of looping objects can easily be patched by considering init as a primitive
unde�ned symbol and forbidding loops. This does not however forbid non-terminating objects
because more complex cycles would still be allowed. Typing in ς-calculus is not intended to enforce
termination and we do not see how a terminating ς-calculus could be designed.

The only terminating object calculus that we are aware of is Castagna's λ&-calculus [40] 1. This
calculus di�ers greatly from the ς-calculus; in particular messages are �rst-class values and methods
are not components of objects but overloaded functions.

With respect to consistency, the type of init already states that all object types are inhabited.
The only way to accommodate it with consistency is to interpret the false proposition as a type
which is not an object type. Such a type system distinguishing propositions from object types
would however hardly pretend to the title of "object-oriented logic"; it would look a lot like a
formalization of an object-oriented language in type theory and would not really empowers logic by
object-oriented mechanisms.

Trying to accommodate type theory and the BHK interpretation with non-termination is not
easy either; if we restrict the interpretation to consider that only terminating terms are proofs we

1Actually, the λ&-calculus is not terminating but admits slight variations which are strongly termination. See
Chapter 3 of [40].

92

loose decidability of proof checking; if we restrict it further by considering that only normal forms
are proofs then we obtain a criterion which is not stable by substitution.

Despite the apparent incompatibility between non-termination and dependent typing, it
is noticeable that non-terminating dependently-typed programming languages actually exist.
Cayenne [18] is a dependently-typed functional language; its type-checking is undecidable so
Cayenne type-checker is incomplete. Cayenne is inconsistent in the sense that all Cayenne types are
inhabited. In Ωmega [160], the programmer controls the interaction between static type checking
and dynamic programming: the type-checker does not perform computation but when computation
would be required for type-checking a re�ection of the type system at the level of terms can be
used. In ATS [174], indexing expressions form the terminating subclass of terms allowed to index
type families.

To continue, we need to be more pragmatic. The object calculi are extremely dynamic languages,
far more dynamic than object-oriented mechanisms implemented in real programming languages.
Dynamic method update for example is rarely available in compiled object-oriented languages2. If
the programmers are happy with static mechanisms, we certainly should consider restricting to more
static mechanisms if they allow to integrate logical features. The FoCaLiZe environment satis�es
this requirement; FoCaLiZe features static object-oriented mechanisms which are eliminated by the
FoCaLiZe compiler and logical methods which are implemented by proofs. The rest of this thesis
puts emphases on FoCaLiZe as a tool for interoperability of proof systems. So in Part III, we propose
a translation from FoCaLiZe to Dedukti, thus increasing the family of systems that have a Dedukti
output. In Part IV we demonstrate the use of FoCaLiZe and its object-oriented mechanisms in the
context of interoperability of proof systems.

2Compiled object-oriented language o�er re�ection to dynamically inspect objects and classes but this is considered
an advanced feature that should be avoided when possible and it does not go as far as the dynamic nature of the
ς-calculus.

93

Part III

From FoCaLiZe to Dedukti

94

FoCaLiZe [143] is an environment for certi�ed programming. In FoCaLiZe, proofs do not need
to be given in full details but high-level scripts can be written whose gaps are �lled by Zenon [31].
Zenon is a complex program, which we fortunately do not need to trust because each proof can be
independently checked by Coq.

FoCaLiZe proofs are usually composed of several calls to Zenon and the FoCaLiZe compiler
combines all the Coq proofs produced by Zenon into bigger Coq proofs that Zenon was not able to
�nd directly.

In order to bene�t from the object-oriented mechanisms of FoCaLiZe for interoperability of
proof systems, we developed a new backend for FoCaLiZe compiler3 to the Dedukti [155] language
called Focalide. Focalide itself is the topic of this part; its use as an interoperability platform will
be described in Part IV. The work presented in this part will be presented at the 13th ICTAC
conference [43].

Another motivation behind the development of Focalide is the integration of Deduction modulo.
In order to make the task of writing proofs in FoCaLiZe as easy as possible for the programmer, we
want to bene�t from all the improvements that have been made recently in Zenon. One of these
is the extension of Zenon to Deduction modulo [69], known as Zenon Modulo. In the context of
program veri�cation it is often useful to evaluate a program symbolically to prove its correctness,
Deduction modulo is particularly adapted for this kind of proofs. Unfortunately, Deduction modulo
proofs are in general not checkable by Coq so Zenon Modulo produces Dedukti proofs [44] instead.
In order to take bene�t from Zenon Modulo without blindly trusting it, this change of proof checker
propagates to FoCaLiZe.

As a by-product, the overall performances of FoCaLiZe are enhanced when Dedukti is used to
check the proofs because Dedukti is a lightweight proof checker. Coq is able to reconstruct a lot
of missing information like type annotations whereas Dedukti is a mere type-checker which does
very few inference. Replacing Coq by Dedukti forces us to provide theses pieces of type information
instead of discarding them and asking Coq to infer them again, which is quite ine�ective.

Focalide is based on the existing backend to Coq which has been adapted to Dedukti syntax; the
translation of types and formulae is straightforward but the translation of terms requires some work
because Dedukti lacks some mechanisms of functional languages such as local pattern matching.

We present FoCaLiZe in detail in Chapter 7. In Chapter 8 we explain how FoCaLiZe terms are
compiled to Dedukti and in Chapter 9, we describe how we integrated Zenon Modulo in Focalide.

More precisely, in Chapter 7, we present in term FoCaLiZe sublanguages. FoCaLiZe is both
a programming language and a logical system. We present the programming part of FoCaLiZe, a
variant of the functional language ML in Section 7.1 and the logical part of FoCaLiZe, a polymorphic
�rst-order logic in Section 7.2. FoCaLiZe object-oriented mechanisms do not impact the translation
of FoCaLiZe to Dedukti but will play an important role in Part IV, they are presented in Section 7.3.
Our presentation of FoCaLiZe ends in Section 7.4 with a description of the architecture of FoCaLiZe
compiler.

In Chapter 8, we describe our translation of FoCaLiZe computational language to Dedukti.
Two features of ML are non trivial to translate to Dedukti: local pattern matching and recursive
de�nitions. Pattern matching is the topic of Section 8.1 and recursion is the topic of Section 8.2.

In Chapter 9, we extend Zenon Modulo to interface it with FoCaLiZe and Focalide. The re-
quired improvements are typing, adapting the two Zenon extensions used by FoCaLiZe to Deduction
modulo, and generalizing Deduction modulo to the kind of rewrite rules required by our translation

3This work is available online: http://deducteam.gforge.inria.fr/focalide.

95

http://deducteam.gforge.inria.fr/focalide

of pattern matching and recursion.

96

Chapter 7

FoCaLiZe

In this chapter, we give a formal description of the FoCaLiZe language and its compiler.
The FoCaLiZe language can be decomposed into several simpler languages: FoCaLiZe computa-

tional language, a functional language very close to ML; FoCaLiZe speci�cation language, a typed
version of �rst-order logic; FoCaLiZe proof language; and FoCaLiZe object-oriented language, a
static class-based object-oriented language used for code and proof sharing.

These languages are essentially independent and the two �rst are very close to well-known for-
malisms (ML and �rst-order logic) so the literature on FoCaLiZe mostly focus on the last language.
However, this OO language does not a�ect FoCaLiZe code generation because OO mechanisms are
statically resolved in a compiler pass occurring before code generation. Moreover, Dedukti lacks
functional mechanisms which are present in other backend languages OCaml and Coq so we need a
good description of FoCaLiZe computational language to de�ne our compiler to Dedukti.

In Section 7.1, we give a detailed presentation of the variant of ML implemented in FoCaLiZe.
In Section 7.2, we describe the speci�cation and the proof languages. FoCaLiZe speci�cations are
written in polymorphic �rst-order logic and FoCaLiZe proofs are written in a declarative style. In
Section 7.3, we list FoCaLiZe static object-oriented mechanisms. Finally, Section 7.4 is devoted to
the way FoCaLiZe developments are compiled.

7.1 FoCaLiZe Computational Language

FoCaLiZe computational language is a typed functional language featuring implicit ML-like poly-
morphism. The syntax of FoCaLiZe computational language can be split into types and expressions.
As usual, we present types �rst in Section 7.1.1 and expressions next in Section 7.1.2.

7.1.1 Types

FoCaLiZe type system is very similar to Damas and Milner's Type System (see Section 2.3.1).
FoCaLiZe type system includes a few simple basic types and can be extended by user-de�ned
algebraic datatypes.

Syntax

The syntax of FoCaLiZe types is given in Figure 7.1. The types unit, bool, string, and int
are basic types. Types are built from polymorphic type variables, type constructors, arrows, and

97

Basic type i ::= unit Singleton type
bool Type of booleans
string Type of character strings
int Type of integers

Type τ ::= α Type variable
i Basic type
a(τ1, . . . , τn) Constructed type
(τ1, . . . , τn)→ τ Arrow type
τ1 × . . .× τn Cartesian product

Type scheme σ ::= τ Type
Πα. σ Universal scheme

Figure 7.1: Syntax of FoCaLiZe types

Cartesian products. A prenex-quanti�ed type is called a type scheme. For compatibility with typing
of �rst-order terms, we consider n-ary versions of arrows and polymorphism quanti�ers.

User-De�ned Types

User-de�ned algebraic datatypes can be introduced in FoCaLiZe using the following syntax:

type a (α1, . . . , αk) = | C1(τ1,1, . . . , τ1,k1) | . . . | Cn(τn,1, . . . , τn,kn)

where the αi are type variables and the τi,j are types; k, and the ki might be zero but n ≥ 1.
This de�nes a new type-constructor a of arity k and its constructors C1, . . . , Cn. The type

scheme associated with the constructor Ci is Πα1. . . .Παk. (τi,1, . . . , τi,ki)→ a(α1, . . . , αk).

7.1.2 Expressions

FoCaLiZe is a functional programming language. In FoCaLiZe, functions are �rst-class values as
in the λ-calculus so we can de�ne functions returning functions as values and functions taking
functions as arguments. Unfortunately, Zenon is a �rst-order theorem prover so it cannot reason
about such higher-order functions. Due to this mismatch, the �rst-order fragment of expressions
plays an important role in FoCaLiZe.

In this section, we de�ne the syntax of this �rst-order fragment of expressions, the typing rules
for expressions and the operational semantics of the language.

First-Order Fragment

First-order terms play an especially important role in FoCaLiZe because they are the expressions
allowed to appear in logical formulae. We describe their syntax in Figure 7.2 where x and f range

98

Constant c ::= () Inhabitant of unit
true True boolean constant
false False boolean constant
". . . " String literal
n Integer literal

Pattern p ::= c Constant pattern
x Pattern variable
_ Universal pattern
p as x Named pattern
C(p1, . . . , pn) Constructed pattern

Terms t ::= c Constant
x Variable
f(t1, . . . , tn) Application
t1 = t2 Equality test
let x := t1 in t2 Local term de�nition
let f(x1, . . . , xn) := t1 in t2 Local function de�nition
let rec f(x1, . . . , xn) := t1 in t2 Local recursive de�nition
C(t1, . . . , tn) Constructed term
(t1, . . . , tn) Tuple
if t1 then t2 else t3 Conditional
match t with | p1 → t1 . . . | pn → tn Pattern matching

Figure 7.2: Syntax of FoCaLiZe �rst-order terms

99

Expression e ::= c Constant
x Variable
λ(x1, . . . , xn).e Abstraction
µx.e Anonymous recursion
e(e1, . . . , en) Application
e1 = e2 Equality test
let x (x1, . . . , xn) := e1 in e2 Local de�nition
let rec x (x1, . . . , xn) := e1 in e2 Local recursive de�nition
C(e1, . . . , en) Constructed expression
(e1, . . . , en) Tuple
if e1 then e2 else e3 Conditional
match e with | p1 → e1 . . . | pn → en Pattern matching

Figure 7.3: Syntax of FoCaLiZe expressions

over distinct enumerable sets. Because of the special treatment of unit and bool as basic types,
their constructors (), true, and false are reserved keywords. The usual notations for string and
integer literals is also assumed. A function symbol can be applied to a list of terms, in particular
they cannot be passed as argument to other functions. Anonymous functions are not part of the
fragment. A polymorphic equality is assumed but it is rarely used because a user-de�ned equality
is often used in FoCaLiZe programs. De�nitions, recursive or not, can be introduced by the let
keyword. Terms can be constructed by applying a constructor to arguments or by wrapping together
terms in a tuple. Finally, terms can be inspected by pattern-matching and the usual if then else
conditional. A pattern can either be a literal constant, which matches exactly that constant and
nothing else, a variable, which is bound to the matched term, a wildcard, which matches any term
without binding it to a variable, a named pattern, which when matched binds the variable to the
matched term, or a constructor applied to sub-patterns, which matches terms constructed by this
constructor applied to terms matching the sub-patterns. Moreover, patterns have to be linear:
variables in patterns can occur at most once.

This presentation is not minimal. In particular, the conditional could be derived from pattern
matching and the equality could be axiomatized. We include conditional and equality because
they are simple to translate to Deduction modulo and Dedukti and will be used in Section 8.1.3 to
compile pattern matching. This presentation is not complete either as it lacks two constructs which
are seldom used in FoCaLiZe: mutual recursive de�nitions and records.

Full Syntax of Expressions

The syntax of expressions is given in Figure 7.3. Contrary to �rst-order terms, function symbols are
not distinct from variables, the local de�nition let x := e1 in e2 is seen as the special case of the
parametric de�nition let x (x1, . . . , xn) := e1 in e2 with n = 0. Moreover, anonymous functions
and recursive functions can be introduced respectively by the λ and µ binders (µ is actually not part
of FoCaLiZe concrete syntax but it is convenient to de�ne the semantics of recursive de�nitions).

100

Typing Contex Γ ::= ∅ Empty context
Γ, x : σ Variable declaration

Figure 7.4: Syntax of FoCaLiZe typing contexts

Constants

(Type Unit)
Γ `c () : unit

(Type True)
Γ `c true : bool

(Type False)
Γ `c false : bool

(Type String)
Γ `c ” . . . ” : string

(Type Int)
Γ `c n : int

Patterns

Γ `c c : τ
(PType Constant)

Γ `p c : τ, ∅
(PType Var)

Γ `p x : τ, (x : τ)

(PType Wildcard)
Γ `p _ : τ, ∅

Γ `p p : τ,Γ′
(PType Named)

Γ `p p as x : τ, (Γ′, x : τ)

(C : Πα1. . . .Παk. (τ1, . . . , τn)→ τ) ∈ Γ Γ `p pi : τiρ,Γi (i = 1 . . . n)
(PType Constr)

Γ `p C(p1, . . . , pn) : τρ, (Γ1, . . . ,Γn)

Figure 7.5: Typing rules for FoCaLiZe constants and patterns

Heads of application are no longer limited to function symbols but constructors still need to be
applied to arguments.

Typing

The typing rules for FoCaLiZe computational language are given in Figure 7.5 and Figure 7.6. They
are de�ned with three inductive judgments:

� Γ `c c : τ means that the constant c has type τ in context Γ.

� Γ `p p : τ,Γ′ means that the pattern p has type τ in context Γ and binds variables according
to Γ′.

� Γ ` e : τ means that the expression e has type τ in context Γ.

The typing context Γ associates type schemes to variables and constructors; its syntax is given in
Figure 7.4. In these typing rules, ρ denotes substitutions.

101

Γ `c c : τ
(Type Constant)

Γ ` c : τ

(x : Πα1. . . .Παk. τ) ∈ Γ
(Type Var)

Γ ` x : τ{α1\τ1, . . . , αn\τn}

Γ, x1 : τ1, . . . , xn : τn ` e : τ
(Type Abs)

Γ ` λ(x1, . . . , xn).e : (τ1, . . . , τn)→ τ

Γ, x : τ ` e : τ
(Type Rec)

Γ ` µx.e : τ

Γ ` e : (τ1, . . . , τn)→ τ Γ ` ei : τi (i = 1 . . . n)
(Type App)

Γ ` e(e1, . . . , en) : τ

Γ, x1 : τ1, . . . , xn : τn ` e : τ
{α1, . . . , αk} = (FV(τ1) ∪ . . . ∪ FV(τn) ∪ FV(τ)) \ FV(Γ)

Γ, x : Πα1. . . .Παk. (τ1, . . . , τn)→ τ ` e′ : τ ′
(Type Let)

Γ ` let x (x1, . . . , xn) := e in e′ : τ ′

Γ, x : (τ1, . . . , τn)→ τ,
x1 : τ1, . . . , xn : τn ` e : τ

{α1, . . . , αk} = (FV(τ1) ∪ . . . ∪ FV(τn) ∪ FV(τ)) \ FV(Γ)
Γ, x : Πα1. . . .Παk. (τ1, . . . , τn)→ τ ` e′ : τ ′

(Type LetRec)
Γ ` let rec x (x1, . . . , xn) := e in e′ : τ ′

(C : Πα1. . . .Παk. (τ1, . . . , τn)→ τ) ∈ Γ Γ ` ei : τiρ (i = 1 . . . n)
(Type Constr)

Γ ` C(e1, . . . , en) : τρ

Γ ` e1 : τ Γ ` e2 : τ
(Type Eq)

Γ ` e1 = e2 : bool
Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ

(Type If)
Γ ` if e1 then e2 else e3 : τ

Γ ` ei : τi (i = 1 . . . n)
(Type Tuple)

Γ ` (e1, . . . , en) : τ1 × . . .× τn

Γ ` e : τ1 Γ `p pi : τ1,Γi (i = 1 . . . n) Γ,Γi ` ei : τ2 (i = 1 . . . n)
(Type Match)

Γ `match e with | p1 → e1 . . . | pn → en : τ2

Figure 7.6: Typing rules for FoCaLiZe expressions

102

Value v ::= c
λ(x1, . . . , xn).e
µx.e
C(v1, . . . , vn)
(v1, . . . , vn)

Evaluation Context E ::= �
E(v1, . . . , vn)
v(v1, . . . , vi−1, E, ei+1, . . . , en)
v = E
E = e
let x := E in e
C(v1, . . . , vi−1, E, ei+1, . . . , en)
(v1, . . . , vi−1, E, ei+1, . . . , en)
if E then e else e
match E with | p1 → e1 . . . | pn → en

Figure 7.7: Syntax of FoCaLiZe values and evaluation contexts

Semantics

We give an operational call-by-value semantics to FoCaLiZe computational language. The syntax
for values and evaluation contexts is given in Figure 7.7. Values form a subset of expressions. An
evaluation context E contains exactly one hole �, the substitution of the hole by an expression e is
written E[e].

The reduction relation ; is inductively de�ned in Figure 7.8. The constant ERROR represents
a run-time error caused by a non-exhaustive pattern matching, it is not a value. We could add more
reduction rules for equality on constructed values and tuples but they are not very useful so we
prefer to omit them for simplicity.

7.2 Logical Language: FOL

For speci�cation, FoCaLiZe uses as logical language a typed version of �rst-order logic very close to
the TFF1 formalism [26] for typed �rst-order provers. The main di�erence between the formulae of
this logic and the one that we presented in Section 1.1.3 consists in the choice of atoms: FoCaLiZe
atoms are FoCaLiZe �rst-order terms of type bool. We describe this speci�cation language in
Section 7.2.1. In Section 7.2.2, we de�ne FoCaLiZe declarative proof language based on Zenon.

103

e; e′
(Semantics Context)

E[e] ; E[e′]

(Semantics Beta)
(λ(x1, . . . , xn).e)(v1, . . . , vn) ; e{x1\v1, . . . , xn\vn}

(Semantics Let)
let x := v in e; e{x\v}

(Semantics LetFun)
let x (x1, . . . , xn) := e1 in e2 ; let x := λ(x1, . . . , xn).e1 in e2

(Semantics LetRec)
let rec x (x1, . . . , xn) := e1 in e2 ; let x := µx.λ(x1, . . . , xn).e1 in e2

(Semantics Mu)
(µx.e)(v1, . . . , vn) ; (e{x\µx.e})(v1, . . . , vn)

(Semantics If True)
if true then e2 else e3 ; e2

(Semantics If False)
if false then e2 else e3 ; e3

ρ = mgu(v, p1)
(Semantics Match First)

match v with | p1 → e1 . . . | pn → en ; e1ρ

v does not unify with p1
(Semantics Match Next)

match v with | p1 → e1 . . . | pn → en ;

match v with | p2 → e2 . . . | pn → en

(Semantics Match Error)
match v with ∅; ERROR

(Semantics Eq ConstTrue)
c = c ; true

c1 6≡ c2
(Semantics Eq ConstFalse)

c1 = c2 ; false

Figure 7.8: Operational semantics for FoCaLiZe expressions

104

Formula ϕ ::= t Atom
¬ϕ Negation
ϕ ∧ ϕ Conjunction
ϕ ∨ ϕ Disjunction
ϕ⇒ ϕ Implication
ϕ⇔ ϕ Equivalence
∀x : τ.ϕ Universal quanti�cation
∃x : τ.ϕ Existential quanti�cation

Figure 7.9: Syntax of FoCaLiZe formulae

Γ ` t : bool
(Type Atom)

Γ ` t prop
Γ ` ϕ prop

(Type Not)
Γ ` ¬ϕ prop

Γ ` ϕ1 prop Γ ` ϕ2 prop ∗ ∈ {∧,∨,⇒,⇔}
(Type Connective)

Γ ` ϕ1 ∗ ϕ2 prop

Γ, x : τ ` ϕ prop Q ∈ {∀,∃}
(Type Quanti�er)

Γ ` Qx : τ.ϕ prop

Figure 7.10: Typing rules for FoCaLiZe formulae

7.2.1 Formulae

Syntax

The syntax of FoCaLiZe formulae is given in Figure 7.9. Atoms are �rst-order FoCaLiZe terms of
type bool, the usual propositional connectives are available and quanti�cation on well-typed terms
is allowed.

For example, ∀x : int.∃y : int.x = y is a formula.

Typing

In order to express well-typedness of formulae, we introduce a new typing judgment Γ ` ϕ prop
de�ned in Figure 7.10.

The formula ∀x : int.∃y : int.x = y is well-typed.

105

Fact F ::= property H
de�nition of f
type a
declaration of x

Step s ::= assume x : τ s
hypothesis H : ϕ s
prove ϕ π

Proof π ::= Coq proof ". . ."
Dedukti proof ". . ."
assumed
by F1, . . . , Fn
step H s π

Figure 7.11: Syntax of FoCaLiZe proofs

7.2.2 Proofs

Syntax

FoCaLiZe uses a high-level proof language described in Figure 7.11 and discharges to Zenon the
logical details. For this reason, there are no low-level tactics or proof objects in FoCaLiZe. However,
the context passed to Zenon has to be given explicitly so that Zenon does not get lost by too many
useless hypotheses and function de�nitions and so that dependencies can be �nely controlled.

For example, (∀x : int.x = x)⇒ ∀x : int.∃y : int.x = y can be proved by the following proof:

step H1

hypothesis H2 : ∀x : int.x = x
assume x : int
prove ∃y : int.x = y
by declaration of x, property H2

by property H1

The actual concrete syntax for FoCaLiZe proofs di�ers from the one we present here in two
aspects:

� in FoCaLiZe, keywords introducing facts can take lists of facts (like "property H1, . . . , Hn")
to avoid repeating the same keyword,

� FoCaLiZe distinguishes property facts by their provenance (it can either be a previous step,
an hypothesis or a mere property proved somewhere else). However, introduction of a
declaration of fact is also done, quite confusingly, by the property keyword.

106

Proof context Σ ::= ∅
Σ, prop H : ϕ
Σ, def f (x1, . . . , xn) := t
Σ, type a(α1, . . . , αk) := . . .
Σ, decl x : τ

Figure 7.12: Syntax of FoCaLiZe proof contexts

Moreover, a very common pattern in FoCaLiZe proofs consists in a chain of steps of the form
step H1 s1 step H2 s2 . . . step Hn sn by property H1, . . . ,Hn. For this case, FoCaLiZe provides
the keyword conclude to abbreviate this proof as step H1 s1 step H2 s2 . . . step Hn sn conclude.

Proof Contexts

Proof contexts extend typing contexts by also containing named logical properties, function de�ni-
tions and type de�nitions. Their syntax is described in Figure 7.12. We denote by |Σ| the typing
context extracted from the proof context Σ; this extraction operation can be de�ned by:

� |∅| := ∅

� |Σ,prop H : ϕ| := |Σ|

� |Σ,def f (x1, . . . , xn) := t| := |Σ|

�

∣∣Σ, type a(α1, . . . , αk) := | C1(τ1,1, . . . , τ1,k1) . . . | Cn(τn,1, . . . , τn,kn)
∣∣

:= |Σ|, C1 : Πα1. . . .Παk. (τ1,1, . . . , τ1,k1)→ a(α1, . . . , αk), . . . ,
Cn : Πα1. . . .Παk. (τn,1, . . . , τn,kn)→ a(α1, . . . , αk)

� |Σ,decl x : τ | := |Σ|, x : τ

If F1, . . . , Fn are facts present in Σ, we denote by Σ(F1, . . . , Fn) the sub-context from Σ con-
taining only F1, . . . , Fn. We write Zenon(Σ, ϕ) when Zenon is able to �nd a proof of ϕ in context
Σ.

Statement Associated with a Proof Step

The statement st(s) associated with a proof step s is the formula de�ned by:

� st(assume x : τ s) := ∀x : τ.st(s)

� st(hypothesis H : ϕ s) := ϕ⇒ st(s)

� st(prove ϕ π) := ϕ

107

|Σ| ` ϕ prop
(Check Coq)

Σ ` Coq proof ” . . . ” : ϕ

|Σ| ` ϕ prop
(Check Dedukti)

Σ ` Dedukti proof ” . . . ” : ϕ

|Σ| ` ϕ prop
(Check Assumed)

Σ ` assumed : ϕ

Σ ` s Σ,prop H : st(s) ` π : ϕ
(Check Step)

Σ ` step H s π : ϕ

Zenon(Σ(F1, . . . , Fn), ϕ) |Σ| ` ϕ prop
(Check Zenon)

Σ ` by F1, . . . , Fn : ϕ

Σ,decl x : τ ` s
(Check Assume)

Σ ` assume x : τ s

Σ,prop H : ϕ ` s
(Check Hypothesis)

Σ ` hypothesis H : ϕ s

Σ ` π : ϕ
(Check Prove)

Σ ` prove ϕ π

Figure 7.13: Proof checking

Valid Proofs

We can now de�ne the proof checking relation; the relation Σ ` π : ϕ means that π is a valid proof
of the formula ϕ in context Σ. It is de�ned in Figure 7.13 mutually with the relation Σ ` s meaning
that s is a valid proof step in context Σ. The proof that we gave for the formula (∀x : int.x = x)⇒
∀x : int.∃y : int.x = y is valid.

7.3 Object-Oriented Mechanisms

We have seen in Section 7.1.1 that algebraic datatypes can be de�ned at toplevel. FoCaLiZe pro-
grams can also contain global de�nitions of expressions and global theorems. Similarly to the
possibility to prove directly a theorem in one of the target logical languages (Coq and Dedukti),
we can de�ne global symbols by external expressions of the target languages (OCaml, Coq, and
Dedukti). For example, addition of integers is de�ned in FoCaLiZe standard library as follows:

let (+) =

internal int -> int -> int

external

| caml -> {* Ml_builtins.bi__int_plus *}

| coq -> {* coq_builtins.bi__int_plus *}

| dedukti -> {* dk_int.plus *}

;;

Each branch of this de�nition corresponds to a function written manually in the corresponding
target language.

108

In this section, we brie�y describe the other toplevel constructions of the FoCaLiZe languages:
object-oriented mechanisms. These mechanisms are statically resolved by the FoCaLiZe compiler
before code generation so they are unseen by Focalide but they are very useful in practice, in
particular when using FoCaLiZe as an interoperability framework.

7.3.1 Species

Species are the main building blocks of FoCaLiZe developments. They are used to group together
a type, functions operating on it and speci�cations of these functions. Species are very similar
to abstract classes in OO languages; distinctions arise from the presence of logical methods in
FoCaLiZe.

7.3.2 Methods

There are three kinds of methods in FoCaLiZe:

� Computational methods whose bodies are expressions (from Figure 7.3); they correspond to
the usual notion of methods in OO languages; they are introduced by the let keyword

� Logical abbreviations whose bodies are formulae; they are introduced by the logical let

keyword

� Logical methods whose bodies are proofs (from Figure 7.11); they are introduced by the
theorem keyword

� The representation method whose body is a type (from Figure 7.1); each species contains
exactly one representation; it is introduced by the representation keyword.

Here is an example of a species de�nition where all the proofs are assumed to shorten the
example:

open "basics";;

species PlusInteger =

representation = int;

let plus (x : Self , y : Self) : Self = x + y;

theorem plus_associative :

all x : Self , all y : Self , all z : Self ,

plus(x, plus(y, z)) = plus(plus(x, y), z)

proof = assumed;

theorem plus_commute :

all x : Self , all y : Self , plus(x, y) = plus(y, x)

proof = assumed;

end;;

7.3.3 Inheritance

To avoid code duplication, FoCaLiZe o�ers the possibility to de�ne species by inheriting from one
or several other species.

For example, we can extend the PlusInteger species by a neutral element:

109

species ZeroPlusInteger =

inherit PlusInteger;

let zero : Self = 0;

theorem plus_zero : all x : Self , plus(x, zero) = x

proof = assumed;

end;;

Multiple inheritance is allowed, when a de�ned method is present in several parent species, the
ambiguity is syntactically solved by taking the de�nition of the rightmost de�ning parent in the
inherit clause.

7.3.4 Unde�ned methods

Providing de�nitions for methods is not mandatory. An unde�ned computational method can be
introduced by the keyword signature and an unde�ned logical method can be introduced by the
keyword property; unde�ned in this case means that the logical method has no proof yet. As
there must be exactly one representation (de�ned or not) per species, no keyword is required for an
unde�ned representation.

Unde�ned methods can be used to de�ne species representing algebraic structures. For example,
we can prove the unicity of the neutral element of any abelian group and instantiate this theorem
in the special case of ZeroPlusInteger:

species AbelianGroup =

signature plus : Self -> Self -> Self;

signature zero : Self;

signature opp : Self -> Self;

property plus_associative :

all x : Self , all y : Self , all z : Self ,

plus(x, plus(y, z)) = plus(plus(x, y), z);

property plus_commute :

all x : Self , all y : Self , plus(x, y) = plus(y, x);

property plus_zero : all x : Self , plus(x, zero) = x;

property opp_plus : all x : Self , plus(x, opp(x)) = zero;

theorem zero_uniq :

all z : Self , (all x : Self , plus(x, z) = x) -> z = zero

proof = assumed;

end;;

species OppZeroPlus =

inherit ZeroPlusInteger;

let opp (x : Self) : Self = 0 - x;

theorem opp_plus : all x : Self , plus(x, opp(x)) = zero

proof = assumed;

end;;

species OppZeroPlusAbelian =

inherit OppZeroPlus , AbelianGroup;

end;;

110

In this �gure, frames represent species and there is an arrow from a species A to a species B if
A directly inherits from B.

Figure 7.14: Inheritance Hierarchy

All the methods of species OppZeroPlusAbelian are de�ned (we say that OppZeroPlusAbelian
is a complete species) and the proof of zero_uniq does not depend on the choice of the type for the
representation and can be used in any abelian group.

In the course of a typical FoCaLiZe development, the �rst species are totally abstract and the
latter species re�ne them until all the methods are de�ned. The inheritance hierarchy of this example
is pictured in Figure 7.14.

Species look a lot like typeclasses as found in Haskell, Coq and Isabelle. The main di�erence
which gives a real OO �avor to FoCaLiZe species is rede�nition.

7.3.5 Rede�nition

When a de�ned computational method is inherited, it is possible to give it a new de�nition overriding
the inherited one. As usual in object-oriented languages, the semantics of rede�nition is given by
early binding : when a method gets several de�nitions it is bound to the last one, if a method m1

refers to method m2 and m2 get rede�ned, the meaning of m1 silently changes to refer to the new
de�nition of m2.

When a method is rede�ned, proofs of logical methods depending on the previous de�nition via
de�nition of facts are then not valid anymore and are removed in the child species, turning these
logical methods to unde�ned.

A typical example of the use of rede�nition is to provide default de�nitions that can then be
replaced by more e�cient ones when more properties are assumed. From an ordering relation,
equality can be de�ned by antisymmetry:

species Setoid =

signature eq : Self -> Self -> bool;

111

property eq_refl : all x : Self , eq(x, x);

property eq_symm : all x y : Self , eq(x, y) -> eq(y, x);

property eq_trans : all x y z : Self , eq(x, y) -> eq(y, z) -> eq(x, z);

end;;

species Ordering =

inherit Setoid;

signature leq : Self -> Self -> bool;

property leq_refl : all x : Self , leq(x, x);

property leq_trans : all x y z : Self , leq(x, y) -> leq(y, z) -> leq(x, z);

let eq(x, y) = leq(x, y) && leq(y, x);

proof of eq_refl = by definition of eq property leq_refl;

proof of eq_symm = by definition of eq;

proof of eq_trans = by definition of eq property leq_trans;

end;;

type nat = | O | S(nat);;

species OrderedNat =

inherit Ordering;

representation = nat;

let rec leq(x, y) =

match x with

| O -> true

| S(x) ->

(match y with

| O -> false

| S(y) -> leq(x, y));

end;;

species EfficientOrderedNat =

inherit OrderedNat;

let rec eq(x, y) =

match (x, y) with

| (O, O) -> true

| (O, S(_)) -> false

| (S(_), O) -> false

| (S(x), S(y)) -> eq(x, y);

end;;

In this example, the theorems on equality eq_refl, eq_symm, and eq_trans are proved in species
OrderedNat but their proofs are erased in species EfficientOrderedNat because they depend on the
de�nition of eq found in species OrderedNat which is unavailable in species EfficientOrderedNat

and its descendents due to early binding.

112

7.3.6 Collections

Complete species can be transformed into collections on which methods can be called from the
outside.

collection C =

implement OppZeroPlusAbelian;

end;;

The construction operation also abstracts the representation so C!zero_uniq proves the formula
all z : C, (all x : C, plus(x, z) = x) -> z = zero and the type C is abstract, it can only
be manipulated by the methods of the collection.

7.3.7 Parameters

Species can be parameterized. Two kinds of parameters are allowed:

� is-parameters: if S is a previously de�ned species, parameterization over collections instanti-
ating species inheriting from S is allowed with the syntax P is S

� in-parameters: if C is a collection, paramerization over elements of C is allowed with the
syntax p in C

For example, given two abelian groups G1 and G2, we can build the product of G1 and G2 which
is also an abelian group:

species AbelianProduct (G1 is AbelianGroup , G2 is AbelianGroup) =

inherit AbelianGroup;

representation = G1 * G2;

let zero = (G1!zero , G2!zero);

let opp (g) = (G1!opp(fst(g)), G2!opp(snd(g)));

let plus (g, h) = (G1!plus(fst(g), fst(h)), G2!plus(snd(g), snd(h)));

proof of plus_associative =

by definition of plus

property G1!plus_associative , G2!plus_associative;

proof of plus_commute =

by definition of plus

property G1!plus_commute , G2!plus_commute;

proof of plus_zero =

by definition of plus , zero

property G1!plus_zero , G2!plus_zero;

proof of opp_plus =

by definition of opp , plus , zero

property G1!opp_plus , G2!opp_plus;

end;;

We can also translate a group by one of its elements:

113

species TranslatedAbelianGroup (G is AbelianGroup , g in G) =

inherit AbelianGroup;

representation = G;

let zero = g;

let plus(g1 , g2) = G!plus(G!plus(g1, g2), G!opp(g));

let opp(g1) = G!plus(G!opp(g1), g);

proof of plus_associative =

by definition of plus

property G!plus_associative;

proof of plus_commute =

by definition of plus

property G!plus_commute;

proof of plus_zero =

by definition of plus , zero

property G!opp_plus , G!plus_associative;

proof of opp_plus =

by definition of opp , plus , zero

property G!opp_plus , G!plus_zero;

end;;

7.4 Compilation

We now brie�y describe the architecture of focalizec, the FoCaLiZe compiler. The compilation
process is composed of several passes, some of them are speci�c to FoCaLiZe and need a bit of
explanations.

7.4.1 Compilation Passes

In Figure 7.15, we show the pipeline of FoCaLiZe compilation passes. The �rst two ones, lexing and
parsing transform the input �le into a parsed abstract syntax tree. In the third pass all relevant
nodes are annotated by typing information in order to detect type errors as early as possible. In this
typing pass, since most binders in our syntax do not require type annotations, Algorithm W from
Damas and Milner [59] is used to infer them. During this third pass, FoCaLiZe static object-oriented
mechanisms are also resolved and dependencies between methods and parameters are computed.

7.4.2 Lifting and Dependency Calculus

Because of early binding, a de�ned method cannot be translated directly as a toplevel de�nition
because its body may contain calls to declared (not yet de�ned) methods (of the same species, of
inherited species, or from parameters) or calls to other methods which can be rede�ned later. The
solution to delay the de�nition of auxiliary functions in functional languages consists in adding
parameters for these auxiliary functions so that their chosen implementation can be provided as
late as the time of calling the function. This technique is known as λ-lifting [101] and is easy to
implement in a compiler. λ-lifting is also performed in the third pass of the compiler.

114

lexing

parsing

typing + dependencies +
λ-lifting + OO

FocalideCoq output OCaml output

Focalize compiler

Zenon Zenon Modulo

Coq Dedukti OCaml

Figure 7.15: FoCaLiZe Compilation Scheme

Things get a bit harder when methods start to inspect the code of other methods. This is for
example the case when the proof of a logical methodm1 is based on the de�nition of a computational
method m2, a feature which we absolutely need in a system such as FoCaLiZe where the primary
goal of proofs is to certify that the de�nitions of functions satisfy their speci�cations. In this case,
it is not possible anymore to λ-lift m2 in the de�nition of m1. Moreover, rede�ning m2 should
invalidate the proof of m1 since it relied on an obsolete implementation of m2. This leads to the
distinction of two kinds of dependencies between methods:

� m1 decl-depends onm2 ifm1 does not inspect the de�nition ofm2,m2 can even be unde�ned.
The only information thatm1 needs aboutm2 is its type (or its statement whenm2 is a logical
method). This kind of dependency is handled by λ-lifting.

� m1 def-depends on m2 if it does inspect the de�nition of m2. m1 knows both the type and
the de�nition of m2. This kind of dependency is not λ-lifted, but the de�nition of m1 is erased
as soon as m2 is rede�ned.

In the case of the dependencies on the representation, we still have both cases however:

� decl-dependence on the representation brings no special information, λ-lifting the representa-
tion corresponds exactly to de�ning a polymorphic function

� def-dependence on the representation is so common that rede�ning the representation would
usually erase all the interesting part of species. To avoid accidental erasure of methods,
rede�nition of the representation is forbidden by the compiler.

115

The concrete way to compute the dependencies of a method is described in [143, 150]. This is
the purpose of the compilation pass labeled "typing + OO" in Figure 7.15.

7.4.3 Backend Input Language

The input of the di�erent backends (Coq output, OCaml output, and Focalide) is composed of the
input abstract syntax tree with two extra pieces of information: each node is annotated with its
type and each method is annotated with its decl-dependencies, its def-dependencies and, for de�ned
methods, the name of the species containing its current de�nition. It is then easy to replace each
species with a namespace and each de�nition in a species with a λ-lifted de�nition. Namespaces
corresponding to complete species also contain shortcuts to unlifted de�nitions of their methods;
these shortcuts are wrapped in a record.

Collections can also be implemented by namespaces, each method of a collection is a de�nition
in this namespace pointing to the record �eld in the implemented complete species.

So the interesting part of the backend, which really depends on the language toward which we
are compiling, is the translation from the computational and logical languages. The backend input
language is the system presented in Sections 7.1 and 7.2 for which �les consist of de�nitions of
datatypes, higher-order functions and proved theorems (whose atoms are �rst-order terms of type
bool); moreover, these de�nitions can appear at toplevel or be grouped together in namespaces.

7.4.4 Compilation of Proofs to Coq

FoCaLiZe computational language has been designed with Coq and OCaml backends in mind; the
features available in this language (such as local de�nitions, pattern-matching, and tuples) are
available in both OCaml and Coq and are trivially translated. The proof language however is very
di�erent because it has been designed to be convenient for Zenon.

Zenon output to the Coq language actually gives a Coq toplevel theorem, from its statement
with the Theorem keyword to the end of the proof with the Qed keyword. For example, a Zenon
proof of a property a : A depending on a previously known property b : B will be a toplevel Coq
theorem Theorem a : A. Proof. ... b ... Qed.

In order to integrate this in a FoCaLiZe development compiled to Coq, we need to add arguments
for λ-lifting. The Section mechanism of Coq is a way to perform implicit λ-lifting: inside a section,
Variables can be declared and used in the de�nitions, statements, and proofs of the section; from
outside the section, each symbol gets λ-lifted with respect with all the variables it uses. The
FoCaLiZe compiler wraps all the toplevel theorems generated by Zenon into sections so on the
previous example, the compiled Coq �le shall be

Section Proof_of_a.

Variable b : B.

Theorem a : A.

Proof.

... b ...

Qed.

End Proof_of_a.

which is synonym of

Theorem a (b : B) : A.

Proof.

116

... b ...

Qed.

so from outside the section, a has type B -> A as expected.
Coq sections seem very convenient in this case because it seems that we only need to wrap

the output of Zenon in a section to get the expected λ-lifted theorem. There is a bad corner-case,
however, which introduces some complexity: if Zenon �nds a proof which does not use one of the
hypotheses, then this hypothesis does not get lifted by the section mechanism and then the set of
lifted methods does not correspond to the set of decl-dependencies computed by the dependency
calculus. For example, if Zenon is able to prove A without using the hypothesis b : B, the obtained
section

Section Proof_of_a.

Variable b : B.

Theorem a : A.

Proof.

...

Qed.

End Proof_of_a.

is now a synonym of

Theorem a : A.

Proof.

...

Qed.

and a has type A instead of the expected type B -> A.
The compiler cannot foresee this problem because it has no access to the actual de�nition of

the logical method, which will be computed by Zenon after the compiler has exited, but only to
the proof script which might contain useless dependencies. Fortunately, this issue can be solved by
doing a second proof on the same theorem in which all the expected decl-dependencies are enforced
before exploiting the proof provided by Zenon. The actual generated code is

Section Proof_of_A.

Variable b : B.

Theorem for_zenon_a : A.

Proof.

...

Qed.

Theorem a : A.

Proof.

assert (__force_use_b := b).

apply for_zenon_a; auto.

Qed.

End Proof_of_same_is_not_different.

This issue is very speci�c to Coq and its interaction with Zenon. In the case of Focalide, no
section mechanism is available in Dedukti but Zenon Modulo is able to output a Dedukti term
(and nothing more) which can be plugged in any context. The other distinctions between Zenon
and Zenon Modulo will be discussed in Chapter 9.

117

Chapter 8

Computational Part: Compiling ML to

Dedukti

As we have seen, the interesting part of the Focalide backend is the translation of the computational
and logical languages to Dedukti. This chapter describes the two di�cult points in the translation of
the computational language, the next chapter will show how Deduction modulo and its implementa-
tion in Zenon Modulo can be extended to accept the rewrite system that we are going to introduce
now. Most features of the computational language can be translated in a very simple, shallow way:
variables are translated by variables, applications by applications, and abstractions by abstractions.
The interesting part of the translation of the computational language is the translation of pattern
matching and recursion. We encode pattern matching in Dedukti in Section 8.1 and recursion in
Section 8.2. Section 8.3 is devoted to a comparison with the techniques of the literature.

8.1 Pattern Matching

Dedukti's pattern matching di�ers from the one of functional languages such as FoCaLiZe in two
important ways:

� Locality: in Dedukti, pattern matching is only allowed at toplevel, introduction of new rewrite
rules is a global process whereas the match . . . with construct is local.

� Overlapping: rewrite rules are requested to be con�uent whereas overlapping of patterns is
solved by their ordering.

For these reasons, we need to compile FoCaLiZe pattern matching to simpler constructs which
are expressible in Dedukti. In our context, the e�ciency of the produced Dedukti code is not
fundamental because de�nitions using pattern matching in FoCaLiZe are usually simple. The main
reasons for this is that complex pattern matchings are hard to specify and that Zenon support
for pattern matching is limited. Hence we want to avoid complex compilation techniques such as
decision trees [121] because the generated code would be hard to reason about automatically.

We start by solving the locality issue in Section 8.1.1. To solve the overlapping issue, we de�ne
two program transformation functions. The �rst one, called serialization, compiles pattern match-
ings with arbitrary number of branches to a simpler form with exactly two branches. The second
one, called �attening, simpli�es the nesting of patterns. Serialization is de�ned in Section 8.1.2

118

and �attening is de�ned in Section 8.1.3. After these two transformations, the programs can be
expressed in Dedukti, this is the topic of Section 8.1.4.

8.1.1 Lifting of Pattern Matchings

The locality issue is not hard because it is always possible to λ-lift the expression

E[match a with | p1 → e1 . . . | pn → en]

(where E is an evaluation context) as

let f(x0, x1, . . . , xn) := match x0 with | p1 → x1(FV(p1)) . . . | pn → xn(FV(pn)) in
E[f(a, λ(FV(p1)).e1, . . . , λ(FV(pn)).en)]

where f, x0, x1, . . . , xn are fresh and FV(p) denotes the set of all the variables occurring in the
pattern p.

However, even at toplevel, we cannot directly translate FoCaLiZe pattern matching by rewriting
without breaking con�uence as demonstrated by the following example.

Consider the following top-level de�nition

let f(x) := match x with
| 0 → 1
| _ → 0

Using the de�nition of integers from Section 3.4, the direct translation in Dedukti would be

def f : int -> int.

[] f (Diff 0 0) --> Diff 1 0

[] f _ --> Diff 0 0.

which is not con�uent and from which it is easy to obtain a Dedukti proof of 0 = 1:

int_equal : int -> int -> Type.

int_refl : n : int -> int_equal n n.

def fn_is_0 (n : int) : int_equal (Diff 0 0) (f n) := int_refl (Diff 0 0).

def 0_is_1 : int_equal (Diff 0 0) (Diff 1 0) := fn_is_0 (Diff 0 0).

8.1.2 Serialization

We say a pattern matching simple if it has two branches and the second pattern is _.
Serialization is the program transformation process by which each pattern matching with an

arbitrary number of branches becomes a sequence of simple pattern matchings. We formally describe
this program transformation by a function S which is de�ned in Figure 8.1.

The function S recursively descends the expression until it �nds a pattern matching, it then
replaces a pattern matching with n branches by a sequence of n simple pattern matchings. To
avoid useless duplication of the matched expression, it is �rst factorized using a let binding. This
transformation is linear and preserves the operational semantics de�ned in Figure 7.8.

Once serialized, the priority of patterns is made apparent but since the pattern matching in
our counterexample in Section 8.1.1 used a simple pattern matching, it is clear that we still cannot

119

S(x) := x
S(f(a1, . . . , an)) := f(S(a1), . . . ,S(an))
. . .
S(match a with | p1 → e1 . . . | pn → en) :=
let x := a in
match x with
| p1 → S(e1)
| _ →
match x with
| p2 → S(e2)
| _ → . . .
match x with
| pn → S(en)
| _ → ERROR

where x is a fresh variable

Figure 8.1: De�nition of the function S for serialization of pattern matching

simply lift pattern matchings and translate them directly. The di�culty comes from the complexity
of the patterns, in the next section, we use another program transformation to simplify them until
they become easy to de�ne by con�uent rewrite rules.

8.1.3 Compiling Patterns to Destructors

Instead of translating each matching to a rewrite system, we introduce symbols called destructors
associated with constructors. These destructors will be de�ned by orthogonal (and hence con�uent)
rewrite systems.

If C is a constructor of arity n for some datatype, we call the expression

DC := λa, b, c. match a with | C(x1, . . . , xn) → b(x1, . . . , xn)
| _ → c

the destructor associated with C. We say that a pattern matching has the shape of a destructor if
it is a fully applied destructor. In other words, a pattern matching has the shape of a destructor if
it is simple and its �rst pattern is a constructor applied to variables.

In this section, we show how to translate FoCaLiZe expressions to the fragment of FoCaLiZe
where each pattern matching has the shape of a destructor, that is we want to restrict our grammar
of expressions to the following:

e′ ::= . . . match e′ with | C(x1, . . . , xn) → e′ | _ → e′

We introduce another program transformation F called �attening de�ned in Figure 8.2. It also
descends down the expression looking for a pattern matching. The input for F is the output of S

120

F(x) := x
F(f(a1, . . . , an)) := f(F(a1), . . . ,F(an))
. . .
F(match x with | c → e | _ → d) :=

if x = c then F(e) else F(d)
F(match x with | p as y → e | _ → d) :=
F(match x with | p → let y := x in e | _ → d)

F(match x with | y → e | _ → d) :=
let y := x in F(e)

F(match x with | _ → e | _ → d) :=
F(e)

F(match x with | C(p1, p2, . . . , pn) → e | _ → d) :=
let f(x0 : unit) := F(d) in
match x with
| C(x1, . . . , xn) →
F(match x1 with
| p1 → F(match x2 with
| p2 → . . .F(match xn with
| pn → F(e)
| _ → f()) . . .
| _ → f())
| _ → f())

| _ → f()
where the variables xi and the function symbol f are fresh

Figure 8.2: De�nition of the function F for �attening of pattern matching

so it must be a simple pattern matching whose matching expression is a variable. Function F then
inspects the �rst pattern; constant patterns are transformed using equality tests and alternatives;
for named patterns, the function recursively calls itself after let binding of the pattern name to the
matched variable; variable patterns are directly transformed to let bindings; and wildcard patterns
are transformed to their bodies. The most interesting case is the case of constructed patterns where
each subpattern is tried from left to right; if all succeed, we proceed with the branch body, otherwise
we continue with the default case. Similarly to function S, we avoid code duplication of the default
case by factorizing it using a let binding but we also do not want it to be evaluated when all pattern
match so we use the usual trick of wrapping it in a λ-abstraction expecting an argument of type
unit whose purpose is to delay evaluation until it is applied to the expression ().

To prove the termination of F , we de�ne the notion of �rst-pattern size for an expression e as
follows:

� if e is match a with | p1 → e1 . . . then its �rst-pattern size is the size of p1: size1stpat(e) =
size(p1),

121

� otherwise it is 0: size1stpat(e) = 0.

The lexical ordering e1 ≤ e2 de�ned as (size1stpat(e1), size(e1)) ≤lex (size1stpat(e2), size(e2)) is well-
founded and strictly decreasing at each recursive call of F so F terminates.

Flattening F preserves the semantics of pattern matching:

Theorem 14. For any expression e and any substitution θ from variables to values, the expressions
F(e)θ and eθ are semantically equivalent.

Proof. The proof is done by induction on the structure of the function F . The only non-trivial case
is the case of nested patterns: we want to prove F(match x with | C(p1, . . . , pn) → e1 | _ → d)θ
≡match xθ with | C(p1, . . . , pn) → e1θ | _ → dθ.

After unfolding of de�nitions, we need to prove that

let f(x0 : unit) := d′ in
match v with
| C(x1, . . . , xn) →

(F(match x1 with
| p1 → F(match x2 with
| p2 → . . .F(match xn with
| pn → F(e′1)
| _ → f()) . . .
| _ → f())
| _ → f())

| _ → f())
≡match v with | C(p1, . . . , pn) → e′1 | _ → d′

where the variables xi and the function symbol f are fresh and d′, v, and e′1 are respective
abbreviations for F(d)θ, xθ, and e1θ.
� If v does not unify with C(x1, . . . , xn), then it does not unify with the more speci�c pattern
C(p1, . . . , pn) either and both sides are equivalent to d′.

122

� Otherwise, v = C(v1, . . . , vn) and the left-hand side can be reduced:

let f(x0 : unit) := d′ in
match C with(v1, . . . , vn)
| C(x1, . . . , xn) →

(F(match x1 with
| p1 → F(match x2 with
| p2 → . . .F(match xn with
| pn → F(e′1)
| _ → f()) . . .
| _ → f())
| _ → f())

| _ → f())

;

match C(v1, . . . , vn) with
| C(x1, . . . , xn) →
F(match x1 with
| p1 → F(match x2 with
| p2 → . . .F(match xn with
| pn → F(e′1)
| _ → d′′) . . .
| _ → d′′)
| _ → d′′)

| _ → d′′

;

ρ0(F(match x1 with
| p1 → F(match x2 with
| p2 → . . .F(match xn with
| pn → F(e′1)
| _ → d′′) . . .
| _ → d′′)
| _ → d′′))

where ρ0 is the substitution mapping each xi to the corresponding vi and d′′ is the redex (λ(x0 :
unit).d′)().

By iterated induction hypothesis on all the arguments of F , this term is equivalent to

match v1 with
| p1 → (match v2 with
| p2 → (. . .match vn with
| pn → ρ0(e′1)
| _ → ρ0(d′′)) . . .
| _ → ρ0(d′′))
| _ → ρ0(d′′)

Since the xi do not appear in e′1 nor d′′, this term is simply

match v1 with
| p1 → (match v2 with
| p2 → (. . .match vn with
| pn → e′1)
| _ → d′′) . . .
| _ → d′′)
| _ → d′′

To prove that this term is semantically equivalent to the expected one
match v with | C(p1, . . . , pn) → e′1 | _ → d′, we distinguish two subcases:

� If v = C(v1, . . . , vn) uni�es with C(p1, . . . , pn), then let ρ = mgu(v, C(p1, . . . , pn)) =
mgu(v1, p1)◦ . . .◦mgu(vn, pn) (the last equality comes from pattern linearity) and both sides reduce
to e′1ρ.

123

� Otherwise, one of the vi does not unify with its corresponding pi. Let k be the smallest index
such that vk does not unify with pk and ρ be the substitution mgu(v1, p1) ◦ . . . ◦ mgu(vk−1, pk−1).
The left-hand side reduces to d′ρ and the right-hand side reduces to d′′ which β-reduces to d′.
Fortunately, by pattern linearity, the patterns pi can not capture a variable occurring in d′ so
d′ρ = d′.

8.1.4 Destructors in Dedukti

Destructors are easy to write in Dedukti. Each destructor of a datatype with n constructors is
de�ned by n rewrite rules, one rule for each possible application of the destructor to a constructor
of the datatype. This rewrite system is however a bit tedious to formalize in the general case. In
order to understand the essence of the de�nition of destructors in Dedukti, we start with a few
special cases.

Peano Natural Numbers

We start with the very simple datatype of Peano natural numbers which can be written in FoCaLiZe
as

type nat = | O | S (nat).

So we only have two constructors and no polymorphic variable. The produced Dedukti code for
this type nat, its constructors O and S, and its destructors DO and DS is:

nat : Type.

O : nat.

S : nat -> nat.

def D_O : R : Type -> nat -> R -> R -> R.

[b] D_O _ O b _ --> b

[c] D_O _ (S _) _ c --> c.

def D_S : R : Type -> nat -> (nat -> R) -> R -> R.

[c] D_O _ O _ c --> c

[n,b] D_O _ (S n) b _ --> b n.

nat : Type.

O : nat.
S : nat→ nat.

def DO : ΠR : Type. nat→ R→ R→ R.
[R, b, c] DO R O b c −→ b
[R,n, b, c] DO R (S n) b c −→ c.

def DS : ΠR : Type. nat→ (nat→ R)→ R→ R.
[R, b, c] DS R O b c −→ c
[R,n, b, c] DS R (S n) b c −→ b n.

As expected, the rewrite system is orthogonal hence con�uent.

124

Linear Expressions

To illustrate the case where the datatype has more than two constructors, we now consider linear
arithmetic expressions de�ned by

type lexpr = | Variable(string)
| Constant(int)
| Times(int, lexpr)
| Plus(lexpr, lexpr)

We have four constructors and still no polymorphic variable. Assuming the type of strings as
been de�ned, the generated Dedukti code is the following:

lexpr : Type.

Variable : string -> lexpr.

Constant : int -> lexpr.

Times : int -> lexpr -> lexpr.

Plus : lexpr -> lexpr -> lexpr.

def D_Variable : R : Type -> lexpr -> (string -> R) -> R -> R.

[s,b] D_Variable _ (Variable s) b _ --> b s

[c] D_Variable _ (Constant _) _ c --> c

[c] D_Variable _ (Times _ _) _ c --> c

[c] D_Variable _ (Plus _ _) _ c --> c.

def D_Constant : R : Type -> lexpr -> (int -> R) -> R.

[c] D_Constant _ (Variable _) _ c --> c

[n,b] D_Constant _ (Constant n) b _ --> b n

[c] D_Constant _ (Times _ _) _ c --> c

[c] D_Constant _ (Plus _ _) _ c --> c.

def D_Times : R : Type -> lexpr -> (int -> lexpr -> R) -> R.

[c] D_Times _ (Variable _) _ c --> c

[c] D_Times _ (Constant _) _ c --> c

[n,e,b] D_Times _ (Times n e) b _ --> b n e

[c] D_Times _ (Plus _ _) _ c --> c.

def D_Plus : R : Type -> lexpr -> (lexpr -> lexpr -> R) -> R.

[c] D_Plus _ (Variable _) _ c --> c

[c] D_Plus _ (Constant _) _ c --> c

[c] D_Plus _ (Times _ _) _ c --> c

[e1,e2,b] D_Plus _ (Plus e1 e2) b _ --> b e1 e2.

For the more general case of a monomorphic datatype de�ne by

type a = | C1(τ1,1, . . . , τ1,k1) | . . . | Cn(τn,1, . . . , τn,kn),

each destructor is de�ned by an orthogonal set of rules, one rule per constructor; the term
DCi R (Cj e1 . . . ekj) b c reduces to b e1 . . . ekj if i ≡ j and to c otherwise.

125

Polymorphic Lists

To illustrate the impact of polymorphism to the de�nition of destructors, we consider the datatype
of polymorphic lists de�ned by

type list(α) = | Nil | Cons (α, list(α))
The generated Dedukti code is as follows:

list : Type -> Type.

Nil : a : Type -> list a.

Cons : a : Type -> a -> list a -> list a.

def D_Nil : R : Type -> a : Type -> list a -> R -> R -> R.

[b] D_Nil _ _ (Nil _) b _ --> b

[c] D_Nil _ _ (Cons _ _ _) _ c --> c.

def D_Cons : R : Type -> a : Type -> list a -> (a -> list a -> R) -> R -> R.

[c] D_Cons _ _ (Nil _) _ c --> c

[e,l,b] D_Cons _ _ (Cons _ e l) b _ --> b e l.

General Case

Finally, in the general case

type a(α1, . . . , αk) = | C1(τ1,1, . . . , τ1,k1) | . . . | Cn(τn,1, . . . , τn,kn),

we get the following rewrite system:

a : Type→ . . .→ Type→ Type.

C1 : Πα1, . . . , αk : Type. τ1,1 → . . .→ τ1,k1 → a α1 . . . αk.
. . .
Cn : Πα1, . . . , αk : Type. τn,1 → . . .→ τn,kn → a α1 . . . αk.

def DC1 : ΠR,α1, . . . , αk : Type. a α1 . . . αk → (τ1,1 → . . .→ τ1,k1 → R)→ R→ R.
[e1, . . . , ek1 , b] DC1 _ _ . . . _ (C1 _ . . . _ e1 . . . ek1) b _ −→ b e1 . . . ek1
[c] DC1 _ _ . . . _ (C2 _ . . . _) _ c −→ c
. . .
[c] DC1 _ _ . . . _ (Cn _ . . . _) _ c −→ c.
. . .
def DCn : ΠR,α1, . . . , αk : Type. a α1 . . . αk → (τn,1 → . . .→ τn,kn → R)→ R→ R.
[c] DCn _ _ . . . _ (C1 _ . . . _) _ c −→ c
. . .
[c] DCn _ _ . . . _ (Cn−1 _ . . . _) _ c −→ c
[e1, . . . , ekn , b] DCn _ _ . . . _ (Cn _ . . . _ e1 . . . ekn) b _ −→ b e1 . . . ekn .

126

8.2 Recursive Functions

Recursion is a powerful but subtle feature in FoCaLiZe; it raises a number of issues among which:

� Termination of Zenon:

Zenon might need to unfold function de�nitions to complete a proof. In the case of recur-
sive functions, even terminating ones, this unfolding process has to be used with parsimony
otherwise Zenon could diverge. FoCaLiZe activates a Zenon extension called induct which
performs a special treatment for recursive de�nitions but it has not been ported to Zenon
Modulo; Zenon Modulo expects its rewrite system to be strongly terminating and normalizes
terms eagerly.

� Termination proofs:

Coq is a strongly terminating system, it o�ers two mechanisms for de�ning recursive functions:

� Structural recursion with the keywords �x and Fixpoint and

� General recursion with the keywords Function and Program. In this case, the user is
asked to provide a Coq proof of the termination of the function.

FoCaLiZe uses both structural de�nition by Fixpoint and general de�nitions by Function.
In the case of Function, the user can prove the termination of the function in FoCaLiZe with
the assistance of Zenon [71].

In Dedukti, there are two reasons for which termination of the βΓ relation is expected:

� completeness of the type-checking algorithm heavily depends on it;

� con�uence is easier to prove when the rewrite system is known to be strongly terminating,
con�uence is used to prove correctness of the type-checking algorithm;

Since we are using Dedukti to recheck proofs, not developing new proofs directly in Dedukti,
completeness of type-checking is not vital. Correctness however is wanted so we would like to
preserve termination of FoCaLiZe terminating programs but, contrary to the Coq backend, it
is not mandatory to support termination proofs coming from the system; these termination
proofs are simply dropped by Focalide.

� Induction

Certifying recursive functions usually requires induction principles which are di�cult to inte-
grate in a �rst-order theorem prover such as Zenon because induction principles are second-
order formulae. The induct extension supports a bit of higher-order reasoning but we cannot
rely on it in Zenon Modulo because is very hard to adapt to typing (see Section 9.3).

This work is based on the encoding of recursion in Dedukti de�ned in the context of Coqine [11,
28]. The situation compared to Coqine is simpli�ed by the absence of dependent types in input but
also made more complex by the generality of the recursion: in Coq kernel, termination of recursive
functions is guaranteed by very restrictive syntactic side conditions on which are not imposed in
FoCaLiZe. In the next section, we will look at some idiomatic examples of recursive de�nitions
in FoCaLiZe. We will then show why the translation of recursive de�nitions cannot be handled as
easily as the translation of non-recursive de�nitions. We will then present the translation of recursive
de�nitions implemented in Focalide and �nally discuss its behaviour in terms of termination, size
and e�ciency of the generated Dedukti code.

127

8.2.1 Examples

We start with a few examples of recursive de�nitions in FoCaLiZe, aiming at illustrating the diversity
of styles allowed by FoCaLiZe. For simplicity, we want to treat all these examples in a uniform way.

Factorial

We start with the usual example of the factorial function. In FoCaLiZe, like in many functional
languages, functions on natural numbers are usually implemented using the built-in type int which
gets translated to OCaml's machine integers, implicitly assuming no over�ow. The type nat of
natural numbers would have a better inductive structure but leads to exponentially larger values.

On negative values, the behaviour of the factorial function is not important; we arbitrarily choose
to �x it to the value 1.

let rec fact (n) = if n < 2 then 1 else n * fact (n - 1)

Obviously, the recursive call of fact is not performed on a subterm of the argument because
there is no notion of subterm for the built-in type int. So we can not restrict our attention to
structural recursion. Moreover, since the only argument to the factorial function is typed by a
built-in type, we can not inspect its de�nition (actually, the type int has several de�nitions, one for
each backend) and look at the behaviour of the function on applied constructors. For the Dedukti
backend, the de�nition of int is the de�nition we gave in Section 3.4.1:

int : Type.

def Diff : nat -> nat -> int.

[m,n] Diff (S m) (S n) --> Diff m n.

Equality of Lists

Structural recursion on a known datatype is not enough but it is fortunately also possible. Our
second example illustrates structural recursion on the usual datatype of lists. In Figure 8.3, we
de�ne equality on lists using pattern-matching.

In FoCaLiZe however, we also have the opportunity to de�ne list equality in a more general
setting by abstracting over the concrete representation of lists and requiring only the necessary
functions used to check equality. This de�nition of equality of lists replaces pattern matching by
calls to the projections head and tail so we refer to it as the projection-based de�nition of equality
of lists. This approach is illustrated in Figure 8.4.

Similarly to the case of the factorial function, the arguments of the recursive function are now
inhabitants of an unknown (or not-yet known) type: Self ; the recursive calls are not performed on
syntactic subterms but on more complex terms (n-1 in the case of the factorial function, tail(l)
here). This style is encouraged in FoCaLiZe because it makes sharing of de�nitions and proofs easier.
We can for example prove that equal is an equivalence relation and this fact will be available for
each possible implementation of lists (as long as we do not rede�ne equality).

However, this generality comes at a price: the equal function can not be proved terminating
because we can not prove that the tail of a list is smaller than the list. Actually, there is an
implementation of the List species in which this recursive de�nition of equal diverges: our de�nition
of lists does not rule out possibly in�nite streams. The type of possibly in�nite streams can be
de�ned in FoCaLiZe (see Figure 8.5).

128

type list ('a) =

| Nil | Cons ('a, list ('a));;

let rec equal (l1 , l2) =

match l1 with

| Nil -> (match l2 with

| Nil -> true

| Cons (_, _) -> false)

| Cons (h1 , t1) -> (match l2 with

| Nil -> false

| Cons (h2 , t2) ->

(h1 = h2) && equal (t1 , t2));;

Figure 8.3: Constructor-based equality of lists

species List (A is Setoid) =

inherit Setoid;

signature nil : Self;

signature cons : A -> Self -> Self;

signature is_nil : Self -> bool;

signature head : Self -> A;

signature tail : Self -> Self;

property surjective_pairing :

all l : Self , ~ (is_nil(l)) <-> l = cons(head(l), tail(l));

property head_proj :

all a : A, all l : Self , head (cons (a, l)) = a;

property tail_proj :

all a : A, all l : Self , tail (cons (a, l)) = l;

property is_nil_nil : is_nil(nil);

let rec equal (l1 , l2) =

(is_nil (l1) && is_nil (l2)) ||

(~~ is_nil(l1) && ~~ is_nil(l2) && A!equal(head(l1), head(l2)) &&

equal(tail(l1), tail(l2)));

end;;

Figure 8.4: Projection-based equality of lists

129

type stream ('a) =

| Finite (list ('a)) (* finite streams are lists *)

| Infinite (int -> 'a)

(* Infinite(f) represents the infinite stream

f(0), f(1), f(2), ... *);;

species Stream (A is Setoid) =

inherit List(A);

representation = stream (A);

let nil = Finite (Nil);

let cons (a, l) =

match l with

| Finite (tl) -> Finite (Cons(a, tl))

| Infinite (f) ->

Infinite (function i -> if i = 0 then a else f(i - 1));

let is_nil (l) =

match l with

| Finite (Nil) -> true

| _ -> false;

let head (l) =

match l with

| Finite (Nil) -> A!element

| Finite (Cons(a, _)) -> a

| Infinite (f) -> f(0);

let tail (l) =

match l with

| Finite (Nil) -> l

| Finite (Cons(_, tl)) -> Finite (tl)

| Infinite (f) -> Infinite (function i -> f(i + 1));

end;;

Figure 8.5: De�nition of possibly in�nite streams in FoCaLiZe

130

8.2.2 Naive Translation

Let f be a recursive function, without loss of generality, we assume that it is de�ned as

let rec f (x) = g(f(h(x)), x)

If we just ignore the rec keyword, we have two simple ways of translating the de�nition of f in
Dedukti:

[] f --> x : A => g (f (h x)) x.

or

[x] f x --> g (f (h x)) x.

In the second case, the term f itself does not reduce until it is applied to an argument. Unfor-
tunately, in both cases the term f a where a is a term of type A diverges. Even if the type A is
empty, since reduction is allowed under λ-abstraction, the term λx. f x diverges.

To recover termination, we need to restrict the shape of arguments allowed to unfold the recursive
de�nition of f .

8.2.3 Call-by-Value Application Combinator

In�nite unfolding of recursive de�nitions is avoided in FoCaLiZe computational language by a syn-
tactic condition: unfolding of a recursive function is performed only after all its arguments have
been reduced to values. We want to mimick part of this behaviour to avoid useless divergence but
we can not hope to fully re�ect the call-by-value semantics in our shallow embedding for several
reasons:

� checking that a term is a value costs linear time; performing such a test at each unfolding
would make the generated code very ine�cient;

� beeing a value is a property which is not stable by substitution so de�ning a predicate for
testing it in a con�uent manner is not compatible with the preservation of substitution by the
embedding;

� to reason about a recursive de�nition requires unfolding of the de�nition on open terms, for
example if we de�ne the concatenation of lists by

let rec append (l1 , l2) = match l1 with

| Nil => l2

| Cons(a, l) => Cons(a, append(l,l2))

then proving the theorem ∀l, append(Nil, l) = l requires an unfolding of the de�nition on the
open term append(Nil, l).

Since we can not inspect the de�nition of types to decide wether or not we should unfold the
recursive de�nition, we delegate this to the rewrite system de�ning the type. This takes the form of
a combinator CBV of type A : Type -> B : Type -> (A -> B) -> A -> B which is de�ned by ad-hoc
polymorphism on type A. The de�nition of CBV is extended each time a new datatype is de�ned.

This combinator should behave like application on values, should not reduce on most non-values
(especially on variables) and should imply only a constant-time overhead.

Here is the de�nition of CBV for type int:

131

def CBV : A : Type -> B : Type -> (A -> B) -> A -> B.

[m,n,f] CBV int _ f (Diff m n) --> f (Diff m n).

For algebraic datatypes, CBV is de�ned by giving a rewrite rule for each constructor. Here is the
de�nition for the algebraic type nat:

[f] CBV nat _ f O --> f O.

[n,f] CBV nat _ f (S n) --> f (S n).

In the general case

type a(α1, . . . , αk) = | C1(τ1,1, . . . , τ1,k1) | . . . | Cn(τn,1, . . . , τn,kn),

CBV is de�ned by the rewrite system

[f, α1, . . . , αk, e1, . . . , ek1]
CBV (a _ . . . _) _ f (C1 α1 . . . αk e1 . . . ek1) −→ f (C1 α1 . . . αk e1 . . . ek1)

[f, α1, . . . , αk, e1, . . . , ekn]
CBV (a _ . . . _) _ f (Cn α1 . . . αk e1 . . . ekn) −→ f (Cn α1 . . . αk e1 . . . ekn)

Now that we dispose of a combinator for freezing evaluation until the arguments of the recursive
functions start with a constructor, we can resume to our de�nition of the recursive function f :

[x] f x --> g (f' (h x)) x.

[x] f' x --> CBV A B f x.

As expected, the symbol f alone does not reduce, it is unfolded exactly once when it is applied
to a variable, it is fully unfolded if f is applied to a value and is partially unfolded if f is applied to
a non-value starting with a constructor (just unfolded enough to reason about recursive unfoldings
in an abstract way).

For example, remember the FoCaLiZe recursive de�nition of the factorial function:

let rec fact (n) = if n < 2 then 1 else n * fact (n - 1)

This recursive de�nition gets translated to the following rewrite system in Dedukti:

def fact : int -> int.

def fact ' : int -> int.

[n] fact n -->

if (lt n (Diff 2 0)) (Diff 1 0) (mult n (fact ' (minus n (Diff 1 0)))).

[n] fact ' n --> CBV int int fact n.

The term fact n normalizes to
if (lt n (Diff 2 0)) (Diff 1 0) (mult n (CBV int int fact (minus n (Diff 1 0)))). To con-
tinue the evaluation of the term, we have to substitute the variable n by a term starting with the
smart constructor of integers Diff. The term fact (Diff 2 0) is evaluated as follows:

132

fact (Diff 2 0) −→∗

if (lt (Diff 2 0) (Diff 2 0))

(Diff 1 0)

(mult (Diff 2 0)

(CBV int int fact

(minus (Diff 2 0) (Diff 1 0))))

−→∗

mult (Diff 2 0)

(CBV int int fact

(Diff 1 0))

−→ mult (Diff 2 0)

(fact (Diff 1 0))
−→∗ mult (Diff 2 0)

(Diff 1 0)
−→∗ Diff 2 0

8.2.4 Local Recursion

We have seen in previous section how toplevel recursion is translated. Local recursion is not harder,
we de�ne a constant Fix for translating the µ binder:

Fix : A : Type -> B : Type -> ((A -> B) -> A -> B) -> A -> B.

[A, B, F, a] Fix A B F a --> CBV A B (F (Fix A B F)) a.

8.2.5 Termination

The CBV combinator is only an approximation of the call-by-value strategy which is intentionally
incomplete for e�ciency reasons. In the pathological case where the function h reduces to a term
starting with a constructor, we still obtain a diverging rewrite system, even if the original code
was terminating with respect to the call-by-value semantics. At the expense of loosing complexity
preservation, we can really check that arguments are variables.

To encode value checking, we send a signal through terms which is only allowed to come back if
the term is actually a value. We use three new constants for this: one for sending the signal down
the value, one for waiting for the signal echo and one for sending the signal back toward the root of
the term:

def ping : A : Type -> A -> A.

def wait : A : Type -> A -> A.

def pong : A : Type -> A -> A.

For each constructor C of type (τ1, . . . , τn)→ τ1, we add the following rules where n is the arity
of C:

[x_1 , ..., x_n] ping tau (C x_1 ... x_n) -->

wait tau (C (ping tau_1 x_1) ... (ping tau_n x_n)).

[x_1 , ..., x_n] wait tau (C (pong tau_1 x_1) ... (pong tau_n x_n)) -->

pong tau (C x_1 ... x_n).

In particular for constructors of arity 0, we get the rewrite rules

[] ping tau C --> wait tau C.

[] wait tau C --> pong tau C.

1we only consider the monomorphic case for simplicity, adding polymorphism does not bring any di�culty

133

so the signal comes back when it reaches constructors of arity 0 such as O: ping nat O −→ wait

nat O −→ pong nat O.
The same idea can be used for values of built-in types int, char, and string:

[m] ping int (Diff m 0) --> wait int (Diff (ping nat m) 0).

[n] ping int (Diff 0 n) --> wait int (Diff 0 (ping nat n)).

[m] wait int (Diff (pong nat m) 0) --> pong int (Diff m 0).

[n] wait int (Diff 0 (pong nat n)) --> pong int (Diff 0 n).

[n] ping char (char_make n) --> wait char (char_make (ping nat n)).

[n] wait char (char_make (pong nat n)) --> pong char (char_make n).

[] ping string "" --> wait string "".

[c, s] ping string (string_cons c s) -->

wait string (string_cons (ping char c) (ping string s)).

[] wait string "" --> pong string "".

[c, s] wait string (string_cons (pong char c) (pong string s)) -->

pong string (string_cons c s).

For abstractions, which are values too, checking that they are values is even simpler as we do
not need to go through the wait state:

[A, B, f] ping (A -> B) (x => f x) --> pong (A -> B) (x => f x).

Thanks to value checking, we can recover termination by changing the de�nition of CBV as
follows:

def CBV : A : Type -> B : Type -> (A -> B) -> A -> B.

def CBV_wait : A : Type -> B : Type -> (A -> B) -> A -> B.

[A, B, f, x] CBV A B f x --> CBV_wait A B f (ping A x).

[A, B, f, x] CBV_wait A B f (pong A x) --> f x.

In Focalide, we never encountered an interesting terminating FoCaLiZe function which got trans-
lated to a diverging rewrite system so we did not implement value checking.

8.2.6 E�ciency and Limitations

The size of the code produced by Focalide is linear with respect to the input, the operational
semantics of FoCaLiZe is preserved and each reduction step in the input language corresponds to a
bounded number of rewriting steps in Dedukti, so the execution time for the translated program is
linear.

Our treatment of recursive de�nitions generalizes directly to mutual recursion. However, only
toplevel recursive de�nitions and recursive methods are accepted; local recursive de�nitions are not
handled because in Dedukti the rewrite system is only de�ned at toplevel. This limitation does
not reduce the expressive power of the language because local recursive de�nitions can always be
λ-lifted to toplevel but this lifting has not yet been implemented in Focalide.

Moreover, the understanding of datatypes by Zenon Modulo is still incomplete; it is able to per-
form computation using the rewrite rules de�ning destructors but it is not yet able to reason about
datatypes by induction or even case distinction; nor is it able to prove injectivity and distinctness
of constructors. These properties still need to be proved directly in Dedukti until Focalide is able
to automatically generate them from the datatype de�nition.

134

8.3 Related Work

� Coqine

In the context of Coqine, a translator from a fragment of Coq to Dedukti, Assaf [11] has
proposed several techniques to compile recursive functions and pattern matching in Dedukti.

Pattern matching is limited in Coq kernel to �at patterns so it is possible, in the context of
Coqine, to de�ne a single match symbol for each inductive type, which simpli�es greatly the
compilation of pattern matching to Dedukti and avoids the use of dynamic error handling.

However, it does not seem possible to de�ne a single fix symbol without breaking strong
normalization of the rewrite system so, as in our work, each �xpoint has to be named and
recursive unfolding has to be limited to expressions starting with a constructor. Assaf distin-
guishes two ways to achieve this; we can either wrap each constructor as proposed in [28] or
use a combinator similar to CBV (called a �lter function in [11]). Because of dependent typing,
function arguments have to be duplicated when using the latter solution so it is unclear which
solution (wrapping constructors or duplicating arguments) is the best in the context of Co-
qine. In our case, the input type system does not feature dependent types so this duplication
of argument is unnecessary.

� Termination of programs using rewrite systems

A lot of work has been done to compile programs (especially functional recursive de�nitions [79,
76, 117]) to rewrite systems. The focus has often been on termination preserving translations
to prove termination of recursive functions using termination checkers for TRSs. However,
these translations do not try to preserve the semantics of the programs so they can hardly be
adapted for handling translations of correctness proofs.

� Compilation of pattern matching to λ-calculus

The semantics of functional languages often rely on λ-calculus. Pattern matching is a common
feature in these languages so proving the correction of a compiler for a functional language
usually require to de�ne a translation function from pattern matching to λ-calculus. This
has been achieved by enriching the λ-calculus with simple forms of pattern matching. These
enriched λ-calculi are then used as intermediate compilation languages between the rich func-
tional language and the low-level λ-calculus.

� In [145], Peyton-Jones and Walder extend the λ-calculus with an abstraction over pattern
and internalize the list of patterns using a [] operator. Matching failure is represented by
the constant FAIL which is left-neutral for [] and non-exhaustiveness is represented by
the constant ERROR. We avoid the introduction of constants FAIL and [] for tracking
matching failure and so we avoid the appearance of some alien terms such as FAIL+ 2.
In our work, failure is replaced by the default behaviour of destructors. However, we still
rely on a dynamic error mechanism to test exhaustiveness of pattern coverage whereas
this property can be checked statically and even reduced to type-checking [105].

� In [106], Oostrom, Klop, and Vrijer generalize the enriched λ-calculus of Peyton-Jones
and Walder; they de�ne an other extension of the λ-calculus, the λ-calculus with pat-
terns, generalizing the shape of λ-terms allowed to build abstractions from variables to
terms verifying the Rigid Pattern Condition. However, they restrict their attention to

135

uniform patterns, in the sense that the order of the branches of pattern matching should
not matter, which we �nd to restrictive in the context of the compilation of functional
languages in general and FoCaLiZe in particular.

� More recently, Wolfram Kahl introduced [102] the Pattern Matching Calculus, focusing
on the notion of matchings (patterns, possibly fed with arguments) constituting a gram-
matical class distinct from terms. Like Peyton-Jones and Walder, [] and FAIL are part
of the calculus but matching success is easier to detect and alien terms are harder to
produce.

Following [145], we could add optimization steps to replace destructors by eliminators (called
case-expressions in [145]) which are considered more e�cient and would limit the use of dynamic
errors, in particular in the common case where, like in our �rst example of equality over lists, the
only pattern matchings used in the source �le are eliminators. However, we believe that keeping
destructors is the best choice when the last pattern of the matching is universal (a variable or a
wildcard), in which case we do not emit any ERROR.

Contrary to advanced techniques targeting at the e�ciency of the produced code such as [121],
we obtain a light translation, close to the compilation to Coq, predictable by the programmer, and
simple enough to be supported by Zenon.

136

Chapter 9

Logical Part: Interfacing FoCaLiZe with

Zenon Modulo

As already mentioned, Zenon Modulo is an extension of the �rst-order theorem prover Zenon to De-
duction modulo (hence the name). Checking Deduction modulo proofs requires to express rewriting
in the proof checker which naturally leads to replace Coq by Dedutki as backend proof checker.
This however also requires to add typing in Zenon, we present this work in Section 9.1. The built-in
�rst-order theory of FoCaLiZe is integrated into Zenon in the form of two Zenon extensions, the
FoCaLiZe extension and the induction extension. We present these extensions and the work needed
to adapt them to our context in Sections 9.2 and 9.3. Finally, the translation of pattern match-
ing and recursion that we have presented in the previous chapter escapes slightly the framework
of Deduction modulo because it relies on higher-order functions. In Section 9.4, we discuss our
implementation of higher-order right-hand sides in Zenon Modulo rewrite rules.

9.1 Extending Zenon to Typing

Zenon is a prover for the classical monosorted �rst-order logic. It might seem surprising to plug an
untyped prover in the FoCaLiZe backend to Coq since both FoCaLiZe and Coq are typed systems.
This is not an issue in practice for the following reasons:

� Zenon ignores but preserves type annotations on quanti�ers,

� Zenon is not expected to be trusted; if it produces an ill-typed (from Coq point of view) proof,
Coq fails and the theorem is not considered proven,

� missing type information in a well-typed Zenon proof can in most cases be inferred by Coq.

The two �rst points are equally valid in the context of Zenon Modulo and Dedukti but the third
one is not because Dedukti performs almost no type inference.

FoCaLiZe is not the only typed system discharging proofs to Zenon or Zenon Modulo. Zenon
Modulo has been developed in the context of the BWare project [62] in which it is used to provide
checkable proofs for industrially produced proof obligations in Atelier B, whose logical foundations
are a typed version of set theory. In this context, Zenon Modulo uses heuristics to turn most axioms
of set theory into rewrite rules [61, 38]. As we have seen in Section 1.3, only universally quanti�ed

137

equalities and equivalences can be turned into rewrite rules so translating typed formulae to untyped
ones is not an option because the translation does not preserve these shapes (translated formulae
are universally quanti�ed implications).

Lack of typing in Zenon also a�ected the ability to extend Zenon to arithmetic [38], even in the
context of Coq-checked proofs, because the meaning of the ordering relation greatly depends on the
type of the compared elements: n < m means n+ 1 ≤ m for natural numbers and integers but not
for rational numbers so we need ad-hoc polymorphism for understanding arithmetic formulae.

The extension of Zenon and Zenon Modulo to typing is a joint work with Halmagrand, the
developer of Zenon Modulo, and Bury, the developer of Zenon Arith, an extension of Zenon to
arithmetic. We have implemented the polymorphic extension of �rst-order logic of Section 1.1.3.
The implementation details have been published in [37].

The parts of this work which most directly a�ect Focalide are the following:

� Parsing

Contrary to the TFF1 format used for BWare and arithmetic problems, there is no syntactic
distinction in our input format (the fragment of Dedukti produced by Focalide) between
variables and constants. We cannot force Focalide to make a syntactic di�erence because
what is a variable in a problem can become a constant in another problem (if x is a constant
in the statement of a proof step s, then it is a variable in the statement of the proof step
assume x : τ s). For this reason, we need to distinguish a parsing, a scoping, and a typing
pass in the case of the Dedukti input.

� Extensions

Zenon is an extensible prover and two extensions are used by FoCaLiZe: the so-called FoCaLiZe
extension and the induction extension. These extensions are not used by Zenon Arith and
Zenon Modulo in the context of BWare. To be useable with a typed version of Zenon Modulo,
these extensions need to be typed (types have to be declared for the symbols introduced in
these extensions). This was easy for the FoCaLiZe extension but too hard for the induction
extension.

We now detail the other aspects of these two extensions.

9.2 The FoCaLiZe Extension

The FoCaLiZe extension aims at e�ciency of the behaviour of Zenon on FoCaLiZe built-in type
bool. Contrary to other classical systems such as HOL and PVS, bool is not identi�ed with the
type Prop of formulae (which is not part of FoCaLiZe syntax but is the type of formulae in both Coq
and Dedukti). FoCaLiZe atoms are injected into the syntax of formulae using the unary predicate
symbol istrue of type bool → Prop. For e�ciency reasons, the FoCaLiZe extension duplicates
every bool-valued function symbol f as a fresh predicate symbol istrue**f of the same arity. The
extension also integrates a lot of lemmata on the behaviour of istrue with common operations on
bool (negation, conjunction, disjunction, exclusive disjunction, equivalence, alternative, equality).

Apart from adding all the necessary type information, we also described the computational
behaviour of projectors of Cartesian product by rewrite rules.

138

9.3 The Induction Extension

The induction extension adds the treatment of datatypes, computation behaviour of pattern match-
ing, discrimination and injectivity of constructors, and the ability of instantiating induction princi-
ples. This extension is a higher-order extension in two respects:

� instantiation of induction principles requires second-order reasoning,

� pattern matching contains binding and computing with pattern matching requires to perform
substitutions.

The �rst point is forbidden by the scoping policy: while there is a priori no reason to forbid
quanti�cation over bool-valued functions, we do not allow to apply such quanti�ed functions to
arguments because variables cannot be applied.

The second point is also very problematic because the encoding of pattern-matching is untyped
and hard to type.

For these reasons, Focalide does not call the induction extension but replace (part of) its features
with Deduction modulo.

9.4 Higher-Order Right-Hand Sides

Zenon is a �rst-order theorem prover so it will refuse rewrite rules such as the ones de�ning de-
structors and CBV because they are of the form [. . .]F (. . . , f, x) −→ f(x) which does not �t in the
scope of �rst-order Deduction modulo because the left-hand-side parameter f is used as a function
symbol in the right-hand-side.

We can limit the problem to only one rewrite rule by introducing an explicit higher-order poly-
morphic application symbol @ of type Πα1, α2. (α1 → α2, α1) → α2 and replacing the above rule
by [. . .]F (. . . , f, x) −→ @(. . . , f, x).

In order for this rule to have the expected behaviour, we need to force some reasoning modulo
β-reduction, that is, we want the terms @ (α1, α2;λx : α1.t, a) and t{x\a} to be convertible from
Zenon Modulo's point of view. There are (at least) two ways to do so:

� Add a deduction rule for converting between @ (α1, α2;λx : α1.t, a) and t{x\a}

� Maintain the following invariant on the terms manipulated by Zenon Modulo: the �rst term
argument of @ is a variable. The only place where this invariant is susceptible to be broken is
in the substitution function, which has to be modi�ed in order to perform β-reduction when
the �rst term argument of @ is substituted by an abstraction.

The �rst option introduces many proof steps which correspond to nothing in the backend checker
but the second option might slow down the substitution function and is less modular so it can
impact the performances of Zenon Modulo, even on pure �rst-order problems. We have chosen and
implemented the second option.

139

Conclusion of Part III

We have extended the FoCaLiZe compiler to a new output language: Dedukti. Contrary to pre-
viously existing FoCaLiZe outputs OCaml and Coq, Dedukti is not a functional programming
language but an extension of a dependently-typed λ-calculus with rewriting so pattern matching
and recursion are not trivial to compile to Dedukti.

However, we have shown that ML pattern matching can easily and e�ciently be translated
to Dedukti using destructors. The compilation of pattern matching can be further optimized, in
particular to limit the use of dynamic error handling. For recursion, however, e�ciency comes at a
cost in term of normalization because we can not fully enforce the use of the call-by-value strategy
without loosing preservation of the complexity of the source code.

Our approach is general enough to be adapted to other functional languages because FoCaLiZe
language for implementing functions is an ML language without speci�c features. FoCaLiZe origi-
nality comes from its object-oriented mechanisms which are invisible to Focalide because they are
statically resolved in an earlier compilation pass. Moreover, it can also easily be adapted to other
rewriting formalisms, especially untyped and polymorphic rewrite engines because features speci�c
to Dedukti (such as higher-order rewriting or dependent typing) are not used.

In the introduction of this part, we claimed that Focalide would have better performances than
the Coq backend because Dedukti is a lightweight proof checker compared to Coq and because
Zenon Modulo is more e�cient at deductive program veri�cation than Zenon.

We can split this claim in two parts. First we want to compare Focalide to the Coq backend on
existing FoCaLiZe developments to evaluate the possible gain in performances that the FoCaLiZe
users can expect by changing replacing the Coq backend by Focalide. Second we give an example
of a problem which becomes solvable by using Focalide. This problem is almost instantly solved by
Focalide but extremely slow on the Coq side.

We evaluate Focalide by running it on di�erent available FoCaLiZe developments. When proofs
required features which are not yet implemented in Focalide, we commented the problematic lines
and ran both backends on the same input �les; the coverage column of Figure 9.1 indicates the
percentage of remaining lines.

FoCaLiZe ships with three libraries: the standard library (stdlib) which de�nes a hierarchy of
species for setoids, Cartesian products, disjoint unions, orderings and lattices, the external library
(extlib) which de�nes mathematical structures (algebraic structures and polynomials) and the user
contributions (contribs) which are a set of concrete applications. Unfortunately, none of these
library uses pattern matching and recursion extensively so the fact that Focalide gives comparable
or better results than the old backend is reassuring but does not tell much about the validity of our
approach.

The other developments are more interesting in this respect; they consist of a test suite for

140

Library FoCaLiZe Coverage Coq Dedukti
stdlib 163335 99.42% 1314934 4814011
extlib 158697 100% 162499 283939
contribs 126803 99.54% 966197 2557024
term-proof 24958 99.62% 227136 247559
ejcp 13979 95.16% 28095 239881
iterators 80312 88.33% 414282 972051

Figure 9.1: Size (in bytes) comparison of Focalide with the old backend on available FoCaLiZe
developments

Library Zenon ZMod Coq Dedukti Zenon + Coq ZMod + Dedukti
stdlib 11.73 32.87 17.41 1.46 29.14 34.33
extlib 9.48 26.50 19.45 1.64 28.93 28.14
contribs 5.38 9.96 26.92 1.17 32.30 11.13
term-proof 1.10 0.55 24.54 0.02 25.64 0.57
ejcp 0.44 0.86 11.13 0.06 11.57 0.92
iterators 2.58 3.85 6.59 0.27 9.17 4.12

Figure 9.2: Time (in seconds) comparison of Focalide with the old backend on available FoCaL-
iZe developments

termination proofs of recursive functions (term-proof), a pedagogical example of FoCaLiZe features
with several examples of functions de�ned by pattern matching (ejcp) and a speci�cation of Java-
like iterators together with an implementation by lists using both recursion and pattern matching
(iterators).

The results, shown in Figure 9.1 and Figure 9.2, show that on FoCaLiZe problems Zenon Modulo
is about twice slower than Zenon, which is not very bad considering that Zenon has been optimized
for FoCaLiZe since its beginning. The produced Dedukti code (column "Dedukti" in 9.1) is about
twice bigger than its Coq counterpart (column "Coq" in 9.1), which is not very surprising because
Coq is a proof assistant encouraging to omit information when it can be inferred; Dedukti however
is a mere checker and provides almost no inference so its input is more verbose but the Focalide user
gets a huge speedup in proof-checking time. Moreover, each time Coq checks a �le coming from
FoCaLiZe, it has to load a signi�cant part of its standard library which often takes the majority of
the checking time (about a second per �le). In the end, �nding a proof and checking it is usually
faster when using Focalide.

These �les have been developed prior to Focalide so they do not yet bene�t from Deduction
modulo as much as they could. The Coq backend going through Zenon is not very e�cient on
proofs requiring computation because all reduction steps are registered as proof steps in Zenon
leading to huge proofs which take a lot of time for Zenon to �nd and for Coq to check. For
example, if we de�ne a polymorphic datatype type wrap ('a) = | Wrap ('a), we can de�ne the

141

Value of n Zenon Coq Zenon Modulo Dedukti
10 31.48 4.63 0.04 0.00
11 63.05 11.04 0.04 0.00
12 99.55 7.55 0.05 0.00
13 197.80 10.97 0.04 0.00
14 348.87 1020.67 0.04 0.00
15 492.72 1087.13 0.04 0.00
16 724.46 > 2h 0.04 0.00
17 1111.10 1433.76 0.04 0.00
18 1589.10 >2h 0.07 0.00
19 2310.48 >2h 0.04 0.00

Figure 9.3: Time comparison (in seconds) for computation-based proofs

isomorphism f : 'a -> wrap('a) by let f (x) = Wrap(x) and its inverse g : wrap('a) ->

'a by let g(y) = match y with | Wrap (x) -> x. The time taken for our tools to deal with the
proof of (g ◦ f)n(x) = x for n from 10 to 19 is given in Figure 9.3; as we can see, the Coq backend
becomes quickly unusable whereas deduction modulo is so fast that it is even hard to measure it.

We also claimed at several occasions that FoCaLiZe and Focalide could be used as an interop-
erability platform for the exchange of proofs between di�erent logical systems. In the next part of
this dissertation, we will make this claim more precise by proposing an interoperability methodology
based on Focalide.

142

Part IV

Object-Oriented Interoperability

between Logical Systems

143

Formalization of mathematics is a very expensive task. The successes of the �eld � the four-color
theorem [84], Feit-Thomson theorem [85] and Kepler conjecture [89] � required entire teams to work
for respectively 5, 6, and 8 years. These considerable developments are unfortunately only available
for users of a single logical system or even worse to users of a speci�c version of a logical system.

Proof systems implement various logics. Coq, Agda, and NuPRL are constructive but PVS,
HOL, and Mizar are classical. Zenon, FoCaLiZe and Mizar are �rst-order but most interactive
provers are higher-order. Coq and NuPRL are proof relevant but Matita and HOL are proof
irrelevant.

Moreover, they are getting more and more specialized. Isabelle for example has very good
integration of countermodel and counterexample �nding to avoid loosing time at trying to prove
a false theorem and the Sledgehammer tool can be used to automatize a lot of tedious proofs by
calling, without trusting them, external automated theorem provers and SMT solvers [25]. The Coq
proof assistant features a very expressive tactic language [60] and has a very good library focusing
on the proof by re�ection technique [86]. Theorem provers are also specialized to speci�c theories
such as linear arithmetic, set theory, arrays, and bitvectors.

Unfortunately, all these features can hardly be used in combination, even between tools imple-
menting the same logic. The Flyspeck project has experimented this interoperability issue between
Isabelle/HOL and HOL Light in which signi�cant parts of the proof of Kepler conjecture have been
developed but could not be imported into the other proof assistant and required the development
of a new exchange format [103].

For proof systems agreeing on a common logic, proof exchange formats can be de�ned. The
TPTP Format for Derivation [164] used in the library of solutions for TPTP problems TSTP [162]
is used by a few theorem provers such as E [157], Vampire [109], and Zipperposition [56]. By
outputting proofs in these formats, these automatic theorem provers can integrated in interactive
proof assistants such as Mizar [6] and Isabelle/HOL [25] to automate �rst-order reasoning. Similarly,
as we mentioned in Section 2.3.2, the OpenTheory format can be used to exchange proofs between
the proof assistants of the HOL family.

Several tools have been developed in order to solve the problem of interoperability between proof
systems for di�erent logics:

� The ProofCert project [126, 127] aims at de�ning a universal format of proof certi�cates to be
checked by an independent checker called Checkers based on sequent calculus and focusing.
It currently accepts certi�cates for classical, intuitionistic, and modal logic [47, 129]. The
originality of ProofCert resides in the �exibility of the notion of certi�cates; whereas most
approaches to interoperability require extremely detailed proof objects, various levels of details
are allowed in certi�cates so that the checker can compensate for the imprecision of the system
producing the certi�cate. This point is of high importance for fully automated tools which
very rarely provide detailed proof objects but more often only proof traces. This �exibility
comes from the backtracking ability o�ered by the language λ-prolog in which Checkers is
implemented.

� The Logosphere project [158] aims at translating big formal libraries from proof systems and
relate them.

� The LATIN project [97] aims at representing formally the connections between logics, proof
assistants, theorem provers, SAT solvers, model checkers, and even programming languages.

144

� The MetaPRL system [95] is a logical framework built to relate NuPRL with HOL, Isabelle
and PVS. It integrates JProver, an intuitionistic theorem prover.

All these projects have a lot of common points. At their very base lies a logical framework
in which the di�erent logics can be represented, then a module system is used to relate di�erent
logics and theories and �nally proof search is used to automatically solve most of the proof
obligations required to �nish the development. For Logosphere and LATIN, the underlying logical
framework is Twelf, an implementation of the λΠ-calculus in which many logics can be encoded
using deep encodings in the sense of Section 3.5.1. MetaPRL is a logical framework de�ned as
an extension of the programming language OCaml. The logical framework underlying ProofCert
is λ-prolog. Once the logical framework is chosen, logics and theories are encoded in a modular
fashion: Logosphere uses the language of category theories, LATIN uses institutions and institution
morphisms from model theory, MetaPRL and ProofCert rely on modular programming languages.
Finally, interoperability tend in practice to generate a high number of simple proof holes. In
ProofCert, Logosphere, and LATIN, the underlying logical framework is an higher-order extensions
of prolog so it is able to perform proof search to �ll these holes. In MetaPRL, a �rst-order theorem
prover is integrated for this task.

Our approach follows a similar pattern. Our logical framework is Dedukti, our module system
is FoCaLiZe system of species. In the case study that we shall present in Chapter 11, only the
object-oriented mechanisms are taken from FoCaLiZe; we de�ne a hierarchy of species relying on
inheritance, paramerization, and early binding but we do not write FoCaLiZe programs in the
FoCaLiZe programming language. We use FoCaLiZe modularity independently of its programming
language as favored by Leroy in the modular module system [115] originally developed for ML but
easy to adapt to very di�erent languages such as Atelier B [144]. Moreover, similarly to the use
of the �rst-order theorem JProver in MetaPRL, we automate tedious proofs thanks to a �rst-order
theorem prover, Zenon Modulo. We see two main advantages of using Dedukti compared to the
other alternatives:

� Rewriting makes Dedukti very expressive so complex proof systems such as HOL and CIC
can be embedded by shallow encodings. Using shallow encodings, we loose the possibility to
express and prove meta-properties of the logical systems but we increase the scalability of the
approach.

� Meta-programming is available for transforming proofs during the exchange. This can be used
to simplify the translators when some parts of the proofs are easy to infer similarly to our
simpli�cation of Sigmaid in Section 6.4 and it can also be used to automatically eliminate
unnecessary axioms to avoid strengthening the �nal logical system too much such as the Law
of Excluded Middle, extensionality axioms, and the univalence axiom. It does however not
natively support backtracking since Dedukti is intended to be used with con�uent rewrite
systems.

In the rest of this part, we focus on interoperability between Coq and HOL. We are going to use
Dedukti as a common formalism in which HOL and Coq proofs can be translated and combined. We
start by merging Coq and HOL logics manually in Chapter 10, then we use Focalide to automate
this process in Chapter 11. Finally, in Chapter 12 we use Dedukti as a meta-language for automatic
elimination of classical axioms.

145

Chapter 10

Manual Interoperability between Coq

and HOL

This chapter is the result of a common work with Assaf [15]. The aim of this chapter is to provide a
�rst proof of concept of interoperability between Coq and HOL in order to discover the di�culties
that we are going to face in practice.

We �rst need to relate Coq and HOL type systems and logics in Dedukti. This mixing of Coq and
HOL logics is the topic of Section 10.1. We can then proceed to a toy example of interoperability
in Section 10.2: an implementation of the insertion sort algorithm in Coq instantiated with the
standard HOL de�nition of natural numbers. We conclude this �rst experiment by a discussion on
the limitations of this approach in Section 10.3.

10.1 Mixing Coq and HOL Logics

As we discussed in Section 3.5, Coq and HOL use very di�erent logics. Translators for both systems
to Dedukti exist but they use unrelated signatures coq.dk and hol.dk. We examine the di�erences
that set these two systems apart and show how we were able to bridge these gaps.

10.1.1 Type Inhabitation

The notion of types is di�erent between HOL and Coq. In HOL, types are those of the simply-
typed λ-calculus where every type is inhabited. In contrast, Coq allows the de�nition of empty
types, which in fact play an important role as they are used to represent falsehood. A naive union
of the two theories would therefore be inconsistent: the formula ∃x : α,>, where α is a free type
variable, is provable in HOL but its negation ¬∀α : Type,∃x : α,> is provable in Coq.

Instead, we match the notion of HOL types with that of Coq's inhabited types, as done by
Keller and Werner [104]. We de�ne inhabited types in the Coq module holtypes:

Inductive type : Type := inhabited : forall (A : Type), A -> type.

It is then easy to prove in Coq that given inhabited types A and B, the arrow type A → B is
also inhabited:

Definition carrier (A : type) : Type :=

match A with inhabited B b => B end.

146

Definition witness (A : type) : carrier A :=

match A with inhabited B b => b end.

Definition arrow (A : type) (B : type) : type :=

inhabited (carrier A -> carrier B) (fun _ => witness B).

This is all that we need to interpret hol.type, hol.term, and hol.arr using rewrite rules. The
symbol hol.type is a Dedukti type whereas holtypes.type represents a Coq type (in the universe
Type1) so it is a Dedukti term of type Coq.U (Coq.s Coq.z) (see Section 3.5.2) the Dedukti type
of its inhabitants is Coq.T (Coq.type (Coq.s Coq.z)) holtypes.type. We map hol.type to it using
the following rewrite rule:

[] hol.type --> Coq.T (Coq.type (Coq.s Coq.z)) holtypes.type.

Thanks to this rewrite rule, a term A of type hol.type is identi�ed with a Coq inhabited type
but we have to distinct ways to state that a term inhabits this type, that is we still have distinct
notions of belonging to a type in the sense of HOL and belonging to the carrier of an inhabited type
in the sense of Coq. We identify these two notions by the following rewrite rule:

[A] hol.term A --> Coq.T (Coq.type Coq.z) (holtypes.carrier A).

Finally, we identify the notions of arrow types:

[] hol.arr --> holtypes.arrow.

10.1.2 Booleans and Propositions

In Coq, there is a clear distinction between booleans and propositions. Booleans are de�ned as an
inductive type bool with two constructors true and false. The type bool lives in the universe
Set (which is another name for the universe Type0). In contrast, following the Curry-Howard
correspondence, propositions are represented as types with proofs as their inhabitants. These types
live in the universe Prop. Both Set and Prop live in the universe Type1. As a consequence,
Prop is not on the same level as other types such as bool or nat (the type of natural numbers), a
notorious feature of the calculus of constructions. Moreover, since Coq is an intuitionistic system,
there is no bijection between booleans and propositions. The excluded middle does not hold, though
it can be assumed as an axiom.

In HOL, there is no distinction between booleans and propositions and they are both represented
as a single type bool. Because the system is classical, it can be proved that there are only two
inhabitants > and ⊥, hence the name. Moreover, the type bool is just another simple type and
lives on the same level as other types such as nat.

To combine the two theories, one must therefore reconcile the two pictures in Figure 10.1, which
show how the types of HOL and Coq are organized.1 One solution is to interpret the types of HOL
as types in Set. To do this, we must rely on a re�ection mechanism that interprets booleans as
propositions, so that we can retrieve the theorems of HOL and interpret them as theorems in Coq.
In our case, it consists of a function istrue of type hol.bool→ coq.prop, which we use to de�ne
hol.proof:

def Is_true : b : hol.term hol.bool -> Coq.U Coq.prop.

[b] hol.proof b --> Coq.T Coq.prop (Is_true b).

1Since bool is the type of propositions, and propositions are the types of proofs in the Curry-Howard correspon-
dence, bool can be viewed as a universe [23, 78].

147

kind

type

bool nat list α

...

Type1

Prop Set

bool nat list α

HOL Coq

Figure 10.1: Booleans and propositions in HOL and Coq. Boxes represent universes.

Another solution is to translate hol.bool as coq.prop. To do this, we must therefore translate
the types of HOL as types in Type1 instead of Type0. In particular, if we want to identify hol.nat
and coq.nat, we must have coq.nat in Type1. Fortunately, we have this for free with cumulativity
since any element of Type0 is also an element of Type1.

We choose the �rst approach as it is more �exible and places less restrictions (e.g. regarding
Prop elimination in Coq) on what we can do with booleans. In particular, it allows us to build
lists by case analysis on booleans, which is needed in our case study.

10.2 Case Study: Sorting Coq Lists of HOL Numbers

We prove in Coq the correctness of the insertion sort algorithm on polymorphic lists and we in-
stantiate it with the canonical order of natural numbers de�ned in HOL. More precisely, on the
Coq side, we de�ne polymorphic lists, the insertion sort function, the sorted predicate, and the
permutation relation. We then prove the following two theorems:

Theorem sorted_insertion_sort: forall l, sorted (insertion_sort l).

Theorem perm_insertion_sort: forall l, permutation l (insertion_sort l).

with respect to a given (partial) order:

Variable A : Set.

Variable compare : A -> A -> bool.

Variable leq : A -> A -> Prop.

Hypothesis leq_trans : forall a b c, leq a b -> leq b c -> leq a c.

Hypothesis leq_total : forall a b, if compare a b then leq a b else leq b a.

The order comes in two �avors: a relation leq used for proofs, and a decidable version compare
which we can destruct for building lists. The totality assumptions relates leq and compare and
can be seen as a speci�cation of compare.

On the HOL side, we use booleans, natural numbers and the order relation on natural numbers
as de�ned in the OpenTheory packages bool.art and natural.art. By composing the results, we
obtain two Dedukti theorems:

148

def insertion_sort_sorted : l : Natlist ->

coq_proof (sorted (insertion_sort l))

:=

sort.insertion__sort__sorted

hol_nat

hol_compare

hol_Leq

hol_leq_trans

hol_leq_total.

def insertion_is_permutation : l : Natlist ->

coq_proof (permutation l (insertion_sort l))

:=

sort.perm__insertion__sort

hol_nat

hol_compare.

The composition takes place in a Dedukti �le named interop.dk. This �le takes care of matching
the interfaces of the proofs coming from Coq with the proofs coming from HOL. Most of the work
consists in proving that HOL's comparison is indeed a total order in Coq:

def leq_total (m : Nat)

(n : Nat)

: cproof

(cif_prop (compare m n)

(leq m n)

(leq n m)).

We prove it using the following theorems from OpenTheory:

∀m n : hol_nat. m < n⇒ m ≤ n
∀m n : hol_nat. m 6≤ n⇔ n < m

and some additional lemmata on if . . . then . . . else. We chose this example because the in-
teraction between Coq and HOL types is very limited thanks to polymorphism: there is no need
to reason about HOL natural numbers on the Coq side and no need to reason about lists on the
HOL side so the only interaction takes place at the level of booleans which we wanted to study.
Our implementation is illustrated in Figure 10.2. All the components are successfully veri�ed by
Dedukti.

Because of the verbosity of Dedukti and small style di�erences between HOL and Coq, this proof
is long (several hundreds of lines) for such a simple fact. However, most of it is �rst-order reasoning
and we will see in next section how we can integrate Zenon to automate it. This is needed to scale
to harder problems requiring for example to translate and link theorems about natural numbers in
HOL and theorems about natural numbers in Coq.

10.3 Limitations

We successfully translated a small Coq development to Dedukti and instanciated it with the HOL
de�nition of natural numbers. The results have been validated by Dedukti. Mixing the underlying
theories of Coq and HOL raised interesting questions but did not require a lot of human work: the

149

coq.dk

Logic.dkDatatypes.dk

holtypes.dk

sort.dkhol.dk

bool.dk nat.dk

Coq standard libraryOpenTheory
interop.dk

Figure 10.2: Components of the implementation. Solid frames represent source �les. Dashed
frames represent automatically generated �les. Arrows represent dependencies.

�le hol.dk is very close to the version included with Holide and the �le holtypes.v is very small.
In retrospect, the result looks a lot like an embedding of HOL in Coq but performed in Dedukti.
This is not surprising, as the theory of HOL is fairly simple compared to Coq and is in fact a subset
of the logic of Coq [23, 78, 104].

The interoperability layer interop.dk which is speci�c to our case study required a lot of work
which could be automated by Zenon as it is mostly simple �rst-order reasoning.

Interoperability raises more issues than mere proof rechecking and our translators to Dedukti
need to be improved. The translations produce code intended for machines that is not very usable
by humans. In particular, the OpenTheory article format lacks names for theorems; they are simply
numbered by Holide and the numbering changes when we include more article �les. Lack of name
is not a major issue for other uses of OpenTheory because good notations make output such as
the OpenTheory webpages at http://opentheory.gilith.com/packages/ readable but �nding a
lemma in a Dedukti �le generated by Holide takes a lot of time.

Another limitation of this example of interoperability is the lack of executability. Even though
we have constructed a sorting �algorithm� on lists of HOL natural numbers and we have proved it
correct, there is no way to actually execute this algorithm. Indeed, there is no notion of computation
in HOL, so when the sorting algorithm asks compare for a comparison between two numbers, it will
not return something which will unblock the computation. Therefore, insertion_sort [4, 1, 3, 2]
is not computationally equal to [1, 2, 3, 4]. However, the result is still provably equal to what is
expected: we can show that insertion_sort [4, 1, 3, 2] is equal to [1, 2, 3, 4]. Solving this issue
requires to change the presentation of HOL in order to get one that is both constructive and
computational. By constructive, we mean that it should present an intuitionistic version of Higher-
Order Logic and by computational we mean that it should contain a notion of reduction. We could
then de�ne a shallow, reduction-preserving encoding to Dedukti. The pure type system presentation
of HOL [23, 78] is a reasonable candidate for that but the proofs of OpenTheory will need to be
adapted. Holala [171] is an encouraging step in this direction, as it essentially takes the union of
Q0 and the PTS presentation.

Finally, the correctness proof of the sorting algorithm is performed in a logic which has more
axioms than both HOL and Coq. We avoided some choices when we realized that they would
lead to inconsistencies but we did not prove that the logic obtained by combining Coq and HOL
is consistent. Even if this logic is consistent, and we believe it is, we might want to limit the

150

http://opentheory.gilith.com/packages/

dependencies to axioms on a per-development basis so that they could be exchanged further with
other logics. In this particular case, we expect the correctness proof to depend on no controversial
axiom such as the Law of Excluded Middle or the Axiom of Choice so we would like to eliminate
them from this development.

151

Chapter 11

Automation using FoCaLiZe and Zenon

Modulo

We now consider a more complicated example: a proved version of the Sieve of Eratosthenes. We
have chosen this example because contrary to the previous one, HOL and Coq have to agree on the
type of natural numbers despite having slightly di�erent de�nitions for it:

� in Coq, the type of natural numbers is de�ned as an inductive type;

� in HOL, inductive types are not primitive and natural numbers are encoded.

We program the sieve in Coq in order to get the good reduction behaviour, we also prove most
of the correctness theorem in Coq but we want to use the arithmetic lemmata of OpenTheory
standard library. Moreover, we use FoCaLiZe, Focalide, and Zenon Modulo to automate most of
the interoperability layer. This example is intended as a proof of concept of interoperability to
demonstrate the role that FoCaLiZe, Zenon Modulo, Dedukti, and Focalide can play for making
logical systems communicate. The formal development presented in this chapter is available at the
following URL: http://dedukti-interop.gforge.inria.fr.

Despite being signi�cantly bigger than the previous example, this new proof of concept is still
too small to exploit a combination of the strengths of Coq and HOL. It is simpler to formally prove
the Sieve of Eratosthenes in either Coq or HOL than to setup the interoperability framework that
we are about to describe.

In Section 11.1, we give the Coq implementation of the sieve of Eratosthenes and highlight the
missing theorems that we want to import from OpenTheory. In Section 11.2, we connect the logic
of FoCaLiZe to the mixed logic of Coq and HOL that we de�ned in Section 10.1. In Section 11.3, we
explain how we improved readability of Holide in order to �nd the required lemmata. Section 11.4 is
devoted to our use of FoCaLiZe as an interoperability framework in this proof of concept, it presents
a hierarchy of FoCaLiZe species totally independent of Coq and HOL which then gets instantiated
to bridge arithmetic de�nitions and theorems between HOL and Coq. We conclude this chapter in
Section 11.5 where we discuss the limitations of our approach and what features we felt missing in
our tools for future interoperability developments.

152

http://dedukti-interop.gforge.inria.fr

11.1 An Implementation of the Sieve of Eratosthenes in Coq

The Sieve of Eratosthenes is an algorithmic method for listing all the prime numbers smaller than a
given bound. Its implementation in a functional programming language such as OCaml looks like:

(* interval a b is the sorted list of all numbers between a and b *)

let rec interval a b = if a > b then [] else a :: interval (a+1) b

(* The core of the Sieve of Eratosthenes *)

let rec sieve = function

| [] -> []

| a :: l -> a :: sieve (List.filter (fun b -> b mod a > 0) l)

(* The Sieve of Eratosthenes , eratosthenes n is the sorted list of all

primes smaller or equal to n. *)

let eratosthenes n = sieve (interval 2 n)

In this section, we propose a certi�ed implementation of this program in the Coq proof assistant.
We decompose this task in three: we have to program the sieve in Coq, to specify its correctness,
and to prove it. In Section 11.1.1, we program the sieve in Coq and in Section 11.1.2 we specify
it. In Section 11.1.3, we write an informal but rigorous proof of the correctness of the algorithm to
discover the mathematical theorems on which this correctness proof relies. In order to experiment
with interoperability, we will not prove these mathematical results in Coq but import them from
OpenTheory.

11.1.1 Programming the Sieve of Eratosthenes in Coq

Since only positive integers are used in this algorithm, we use the Coq type of natural numbers
because they have an inductive structure which is easy to reason about.

Inductive nat : Set := O | S of nat -> nat.

This de�nition is available in Coq standard library but as we discussed in Section 3.5.2, Coqine
is not able to translate a signi�cant part of Coq standard library so instead of including the library,
we just copy the de�nitions that we need from it.

Since we only need lists of natural numbers, we consider a monomorphic type of lists of natural
numbers:

Inductive list : Set :=

| Nil : list

| Cons : nat -> list -> list.

In Coq, we avoid the manipulation of empty intervals by a slight change in the de�nition: the
Coq version intervals takes two natural numbers a and b and returns the sorted list of natural
numbers between a and a + b. Because we use positive numbers only, we are guaranteed that the
upper bound of the interval is greater than the lower bound.

Fixpoint interval a b : list :=

match b with

| O => Cons a Nil

| S b => Cons a (interval (S a) b)

end.

153

The code of the �ltering function for lists is not surprising:

Fixpoint list_filter (p : nat -> bool) l :=

match l with

| Nil => Nil

| Cons a l =>

let l' := list_filter p l in

if p a then Cons a l' else l'

end.

Divisibility is a bit harder to get right. Divisibility plays two purposes in our development: we
need a divisibility test inside the �lter (corresponding to b mod a > 0 in our OCaml implementation)
and we also need divisibility to de�ne primality and specify the algorithm. In order to get a simple
de�nition of primality, we introduce strict divisibility: we say that a is a strict divisor of b if a
divides b, a > 1, and a < b. A natural number p > 1 is then called a prime number if and only if it
has no strict divisor.

Strict divisibility is characterized as follows:

∀a > 1. ∀b > 0. a strictly divides b⇔ ∃q > 1. aq = b

It is hence su�cient for this work to consider euclidean divisions in the case where the dividend,
the divisor, and the quotient are all positive. This restriction simpli�es a bit the de�nition of the
auxiliary function modaux computing the euclidean division. modaux a b returns a pair (q, r) such
that q+1 is the quotient of a+1 by b+1 and r is the complement of the remainder of this euclidean
division.

(* modaux a b = (q, r) <-> (q+1)(b+1) = a + 1 + r *)

Fixpoint modaux a b :=

match a with

| O => (O, b) (* 1*(b+1) = 0 + 1 + b *)

| S a' =>

let (q, r) := modaux a' b in (* (q+1)(b+1) = a' + 1 + r *)

match r with

| O => (S q, b) (* (q+1+1)(b+1) = (q+1)(b+1) + b + 1

= a' + 1 + r + b + 1 = a + 1 + b *)

| S r' => (q, r') (* (q+1)(b+1) = a' + 1 + r = a + r *)

end

end.

From modaux, it is easy to de�ne strict divisibility : for all a, b, and q,

modaux a b = (q, 0) ⇔ (q + 1)(b+ 1) = a+ 1
b+ 1 is a strict divisor of a+ 1 ⇔ b > 0 ∧ ∃q > 0, modaux a b = (q, 0)

hence the de�nition of strict divisibility (sd):

Definition sd b' a' :=

match a', b' with

| S a, S (S b) =>

match modaux a (S b) with

| (S _, 0) => true

| _ => false

end

154

| _, _ => false

end.

The regular notion of divisibility would equally be appropriate for �ltering in sieve's core but
strict divisibility gives a simpler de�nition of primality.

Since the sieve's core �lters the non-multiples of some number, we also need negation on
booleans:

Definition negb b := match b with true => false | false => true end.

We now have all the prerequisites for de�ning the sieve's core function. The simple Coq trans-
lation of the OCaml function

Fixpoint Sieve (l : list) : list :=

match l with

| Nil => Nil

| Cons a l => Cons a (Sieve (list_filter (fun b => negb (sd a b)) l))

end.

is rejected by Coq because list_filter (fun b => negb (sd a b)) l is not a strict subterm of
Cons a l. This can be �xed by adding a dummy parameter (fuel : nat) on which the function
Sieve recurses:

Fixpoint Sieve (l : list) (fuel : nat) {struct fuel} : list :=

match fuel with

| O => Nil

| S fuel =>

match l with

| Nil => Nil

| Cons a l =>

Cons a (Sieve (list_filter (fun b => negb (sd a b)) l) fuel)

end

end.

When fuel is bigger than the length of l, the Coq version Sieve l fuel behaves like the OCaml
version sieve l so the length of l is an interesting default value for fuel:

Fixpoint length l :=

match l with

| Nil => O

| Cons _ l => S (length l)

end.

Definition sieve_len l := Sieve l (length l).

Finally, the prime numbers smaller than 2 + n1 can be computed by

Definition eratosthenes n := sieve_len (interval 2 n).

11.1.2 Speci�cation

The speci�cation of the sieve of Eratosthenes is quite simple: a number p is a member of the list
returned by eratosthenes n if and only if p is a prime number smaller than 2 + n.

We need a few straightforward de�nitions in order to state this speci�cation:
1We recall that in our Coq implementation {interval a b} is the list of natural numbers between a and a + b.

155

Inductive le (n : nat) : nat -> Prop :=

| le_n : le n n

| le_S m : le n m -> le n (S m).

Infix "<=" := le.

Fixpoint In n l :=

match l with

| Nil => False

| Cons a l => n = a \/ In n l

end.

Inductive Istrue : bool -> Prop := ITT : Istrue true.

Definition prime p := 2 <= p /\ forall d, Istrue (negb (sd d p)).

We state the speci�cation of the sieve of Eratosthenes as three lemmata:

Lemma eratosthenes_sound_1 p n : In p (eratosthenes n) -> p <= 2 + n.

Lemma eratosthenes_sound_2 p n : In p (eratosthenes n) -> prime p.

Lemma eratosthenes_complete p n :

prime p ->

p <= 2 + n ->

In p (eratosthenes n).

11.1.3 Correctness proof

We start by a rather informal proof of the three lemmata forming the speci�cation of the sieve of
Eratosthenes in order to highlight the arithmetic results needed to complete the proof.

We start by completeness, that is, given a prime number p smaller than 2 +n, we want to prove
that p appears in the list returned by the function eratosthenes. For this, it is enough to prove that
the Sieve function preserves prime numbers (assuming it received enough fuel), which is obvious
because this function only removes a number when it found a strict divisor and by de�nition of
primality, p has no strict divisor.

The �rst soundness lemma also relies on an invariant of the Sieve function, namely that the
members of Sieve l fuel are all members of l. The proof is then concluded by a simple soundness
property of intervals : if p is a member of interval a b then p ≤ a+ b.

The second soundness lemma is where arithmetic is required. Let p be a member of
eratosthenes n, we can easily prove that 2 ≤ p by an argument similar to the proof of the �rst
soundness lemma. To prove that p has no strict divisor, we use the following standard arithmetic
result:

Theorem 15 (Smallest Prime Divisor). Let n be a natural number greater than 2, the smallest
divisor of n is prime.

Actually, the following corollary is enough for our proof:

Corollary 2. Let n be a natural number greater than 2, n has a prime divisor.

To conclude the proof, we remark the following facts:

� the Sieve function preserves and conserves the ordering: if a and b are two members of
Sieve l fuel, then a appears before b in Sieve l fuel if and only if a appears before b in l

156

� a appears before b in an interval [c, d] if and only if c ≤ a < b ≤ d

� if a appears before b in Sieve l fuel, then a is not a strict divisor of b

� let d be a prime divisor of p, if d = p we are done, otherwise d is a strict divisor of p and d is
prime so by the completeness lemma, d is a member of the list returned by the function but
since d is a strict divisor of p, d < p so d appears before p in the returned list.

This concludes our informal certi�cation of the Sieve of Eratoshenes. The required ingredient
from arithmetic is the existence of a prime divisor. For the sake of proof of concept, we shall not
prove this result in Coq but import it from OpenTheory.

We proved the correctness of the Sieve of Eratosthenes in Coq when Corollary 2 is considered
as a parameter. This development can be split into three parts of approximately the same size:

� straightforward arithmetic results such as commutativity of addition and multiplication, these
results are proved in both Coq standard library and Holide but they are so straightforward
that it was easier to reprove them than to import them and we wanted to limit the dependency
of this work to Coq standard library because Coqine lacks some features needed for it,

� correctness of auxiliary functions which could be reused in other developments (modaux, strict
divisibility and functions manipulating lists), and

� correctness of the functions Sieve and eratosthenes which are speci�c to this problem.

As in Chapter 10, the results that we want to import from HOL are hypotheses of the �nal
theorem that have to be provided in Dedukti.

The biggest part of the development is written in FoCaLiZe in which the arithmetic library of
OpenTheory is related to Coq natural numbers.

11.2 Relating FoCaLiZe Logic with Coq and HOL

As we bound the signatures of Coq and HOL in Section 10.1, we bind the FoCaLiZe built-in types
and constants that we used in our speci�cation of arithmetic operations to those available in Coq
and HOL.

Actually, FoCaLiZe logic can easily be injected into HOL:

� FoCaLiZe types bool and prop are mapped to hol.bool,

� FoCaLiZe logical connectives are mapped to their HOL de�nitions; in particular logical equiv-
alence is mapped to hol.eq hol.bool,

� FoCaLiZe equality is mapped to hol.eq.

Thanks to FoCaLiZe support for external languages, this mapping can almost completely be
done in FoCaLiZe itself: FoCaLiZe de�nitions of bool and eq are provided by the �rst �le in
FoCaLiZe standard library basics.fcl, their default de�nitions can thus be overridden by writing
another basics.fcl �le:

157

type bool =

internal

external

| dedukti -> {*

hol.bool.

def true := hol.true.

def false := hol.false

*}

;;

let (=) =

internal 'a -> 'a -> bool

external | dedukti -> {* hol.eq __var_a *}

;;

Because they a�ect the way Zenon Modulo proofs should be read, the mappings for logical
connectives have however to be overridden in Dedukti:

#NAME dk_logic.

def Prop := cc.eT hol.bool.

def eP : Prop -> Type := hol.proof.

def true := hol.true.

def false := hol.false.

def not := hol.not.

def and := hol.and.

def or := hol.or.

def imp := hol.imp.

def forall := hol.forall.

def exists := hol.exists.

def eqv := hol.eq hol.bool.

The lemmata corresponding to Zenon Modulo proof rules have to be reproved for these de�ni-
tions, this raises no major di�culty and takes approximately 200 lines of Dedukti code.

11.3 FoCaLiZe as a User Interface to HOL

As we have seen in the previous chapter, a limitation of the OpenTheory format is the lack of
names which makes hard to �nd lemmata. While this is not much of a problem when looking at
the content of an OpenTheory package online on http://opentheory.gilith.com/packages/, it
becomes very unpractical when we need to �nd the theorem number in the Dedukti �le generated
by Holide.

To alleviate this burden, we patched Holide so that it could produce a FoCaLiZe �le alongside
the usual Dedukti �le. Only the statements of the theorems are translated in FoCaLiZe, the proofs
are pointers to the Dedukti �le. For this reason, the FoCaLiZe �le is small enough to be readable.

For real HOL developments such as OpenTheory standard library, the generated FoCaLiZe �le
will usually be ill-typed because of name con�icts for example. This is not a problem for this work
because we are only interested in very few lemmata, which happen not to break typing.

158

http://opentheory.gilith.com/packages/

For example, if we want to import the property of injectivity of the successor operation, we can
look for the theorems containing the symbol suc in the FoCaLiZe �le produced by Holide and we
quickly �nd the one we need:

theorem thm_3523 : all m n : natural , (suc(m) = suc(n)) <-> (m = n)

proof = dedukti proof {* natural__div__full.thm_3523. *};;

Since Zenon Modulo is a �rst-order theorem prover, we do not translate all statements of Higher-
Order Logic to FoCaLiZe but �lter the statements to print only those who are �rst-order.

This is done by traversing the formula from its root to its leaves using two translation modes
called formula mode and term mode. In formula mode, boolean connectives are interpreted as
logical connectives and quanti�cation is allowed. Equality is interpreted as logical equivalence if its
arguments have type bool and as a binary predicate symbol otherwise. When a predicate symbol is
traversed, term mode is activated and boolean connectives become interpreted as boolean functions;
quanti�cation is no more allowed. Variables are not allowed to be applied to argument in either
mode.

The portion of OpenTheory standard library that we translated for this study contains 114
theorems among which only 10 are not �rst-order theorems.

11.4 Specifying Arithmetic as a FoCaLiZe Hierarchy of Species

The FoCaLiZe part of the development can be divided in �ve parts:

� an abstract speci�cation of arithmetic structures designed as a hierarchy of species starting
at Peano axioms and culminating at the prime divisor theorem, this part is presented in
Section 11.4.1,

� a corresponding hierarchy of species isomorphisms, this part is presented in Section 11.4.2,

� a partial instantiation of the hierarchy of arithmetic structures by the de�nitions of Coq, this
part is presented in Section 11.4.3,

� a full instantiation of the hierarchy of arithmetic structures by the de�nitions and theorems
of OpenTheory, this part is presented in Section 11.4.4,

� a full instantiation of the hierarchy of isomorphisms relating the Coq and the HOL de�nitions,
this provides a version of the prime divisor theorem talking about Coq numbers and operations,
this part is presented in Section 11.4.5.

11.4.1 Abstract arithmetic structures

On the FoCaLiZe side, we de�ne a hierarchy of species which axiomatize natural numbers and
arithmetic to various extents. Thanks to the object-oriented features of FoCaLiZe, we can provide
default implementations for arithmetic operations and rede�ne methods to map them to external
de�nitions coming from Coq, HOL, or any proof system featuring a Dedukti output.

The �rst building block of our hierarchy of species speci�es what it means to be a representation
of natural numbers; there should be a constant zero and a function succ such that the axioms of
Peano hold:

159

(* The basic block: Peano axiomatization of natural numbers *)

species NatDecl =

signature zero : Self;

signature succ : Self -> Self;

property zero_succ : all n : Self , ~(zero = succ(n));

property succ_inj : all m n : Self , succ(m) = succ(n) -> m = n;

property ind : all p : Self -> prop ,

p(zero) ->

(all n : Self , p(n) -> p(succ(n))) ->

all n : Self , p(n);

end;;

The logical method ind is out of the scope of the presentation of FoCaLiZe that we gave in
Chapter 7 because it uses higher-order quanti�cation over p. Actually, FoCaLiZe does not enforce
formulae to stay in �rst-order but higher-order properties are discouraged because Zenon and Zenon
Modulo are �rst-order theorem provers. The only place where we can use ind is in an external
Dedukti proof.

For example, we can use induction to derive the particular case where the induction hypothesis
is not used. This particular case has the advantage of being expressible as a �rst-order formula
∀n. n = 0 ∨ ∃m. n = 1 +m:

species NatCase =

inherit NatDecl;

(* When the induction hypothesis is not needed , we can use

reasoning by case which is better supported by Zenon *)

logical let casep (n : Self) = n = zero \/ ex m : Self , n = succ(m);

theorem case : all n : Self , n = zero \/ ex m : Self , n = succ(m)

proof =

<1>1 assume n : Self ,

prove casep(n) <-> (n = zero \/ ex m : Self , n = succ(m))

by definition of casep

<1>2 prove casep(zero) ->

(all n : Self , casep(n) -> casep(succ(n))) ->

all n : Self , casep(n)

dedukti proof property ind {* abst_ind abst_casep *}

<1>3 prove casep(zero) by step <1>1

<1>4 assume n : Self , prove casep(succ(n)) by step <1>1

<1>f conclude;

end;;

In this proof, Dedukti is only used to instantiate the induction principle with the predicate
casep, all the rest of the proof is �rst-order reasoning and is handled by Zenon Modulo.

We further extend the species NatCase by introducing an iteration operation; iter(f, a, n) is
our notation for f(. . . (f(a))) where f is iterated n times:

let (@) (f, x) = f(x);;

species NatIter =

inherit NatCase;

signature iter : (Self -> Self) -> Self -> Self -> Self;

property iter_zero : all f : (Self -> Self), all z : Self ,

160

iter(f, z, zero) = z;

property iter_succ : all f : (Self -> Self), all z n : Self ,

iter(f, z, succ(n)) = f @ iter(f, z, n);

end;;

To formulate the speci�cation of iter at �rst-order, we use an explicit in�x symbol @ for appli-
cation.

Iteration is used to provide default de�nitions for addition and multiplication. Large ordering
is de�ned from addition ((a ≤ b) := (∃c. a + c = b)) and divisibility is de�ned from multiplication
((a|b) := (∃c. a ∗ c = b)). Strict ordering is de�ned by (a < b) := (1 + a ≤ b) and strict divisibility
by (a strictly divides b) := (1 < a < b ∧ a|b). Finally, a number p is prime if 1 < p and p has no
strict divisor. Each de�nition is added in a di�erent species as pictured in Figure 11.1.

The last block of the hierarchy of abstract arithmetic structures states the prime divisor theorem:

species NatPrimeDiv =

inherit NatPrime;

signature primediv : Self -> Self;

property primediv_prime : all n : Self ,

(~ n = succ(zero)) -> prime(primediv(n));

property primediv_divides : all n : Self ,

(~ n = succ(zero)) -> divides(primediv(n), n);

end;;

11.4.2 Morphisms Between Representations

The hierarchy of abstract arithmetic structures can be instantiated with Coq and HOL arithmetic
libraries as we will see in Sections 11.4.3 and 11.4.4 but to relate these two instantiations, we need
to study morphisms between abstract arithmetic structures.

A morphism from a NatDecl to another NatDecl B is de�ned by a function morph of type
Self -> B preserving zero and successors.

species NatMorph (B is NatDecl) =

inherit NatDecl;

signature morph : Self -> B;

property morph_zero : morph(zero) = B!zero;

property morph_succ : all n : Self , morph(succ(n)) = B!succ(morph(n));

end;;

From the axioms of Peano assumed in both the current species and in the parameter B, we can
prove that morph is bijective.

We follow the hierarchy of arithmetic structures to produce a hierarchy of morphisms. We prove
that all operations are preserved by the morphisms, Zenon Modulo is extensively for this task. This
hierarchy is depicted on Figure 11.2, it culminates with the following species:

species NatPrimeDivMorph (B is NatPrimeDiv) =

inherit NatPrimeDiv , NatPrimeMorph(B);

let primediv (n) = ...;

proof of primediv_prime = ...;

161

In this �gure, frames represent species and there is an arrow from a species A to a species B if
A directly inherits from B.

Figure 11.1: A hierarchy of FoCaLiZe species for arithmetic properties

162

proof of primediv_divides : ...;

end;;

where the dots stand for relatively long de�nitions and proofs.

11.4.3 Instantiation of Coq Natural Numbers

We can instantiate the hierarchy of species on the Coq side using FoCaLiZe external Dedukti
de�nitions mapping directly the symbols to their Coqine translation in Dedukti.

For example, the �rst species is (partially) instantiated by

type coq_nat =

internal

external

| dedukti -> {* holtypes.inhabited

Coq__Init__Datatypes.nat

Coq__Init__Datatypes.O *};;

species CoqNat =

inherit NatDecl;

representation = coq_nat;

let zero = internal coq_nat

external

| dedukti -> {* Coq__Init__Datatypes.O *};

let succ(n : coq_nat) = internal coq_nat

external

| dedukti -> {* Coq__Init__Datatypes.S n *};

proof of ind =

dedukti proof definition of zero , succ

{* (p : (hol.term abst_T -> hol.term hol.bool) =>

Coq__Init__Datatypes.nat__ind

(n : hol.term abst_T => hol_to_coq.Is_true (p n))). *};

end;;

Our need for the symbols holtypes.inhabited and hol_to_coq.Is_true has been discussed in
previous chapter.

To prove an equality, we can use conversion at the level of Dedukti by using a Dedukti proof of
re�exivity. An example is given by the predecessor function, which is introduced to prove injectivity
of the successor:

species CoqPred =

inherit NatPred , CoqNat;

let pred(n : coq_nat) = internal coq_nat

external

| dedukti -> {* Coq__Init__Peano.pred n *};

theorem pred_succ : all n : Self , pred(succ(n)) = n

proof = dedukti proof definition of pred , succ

163

In this �gure, frames represent species and there is an arrow from a species A to a species B if
A directly inherits from B. Inheritance arrows of Figure 11.1 are ommited.

Figure 11.2: A hierarchy of FoCaLiZe species for arithmetic properties

164

{* (n : hol.term abst_T => hol.REFL abst_T n). *};

end;;

Harder theorems such as the prime divisor theorems are not proven directly on the Coq side but
are imported by a morphism from HOL.

11.4.4 Instantiation of HOL Natural Numbers

Thanks to FoCaLiZe external de�nitions and thanks to our FoCaLiZe-generating version of Holide,
we can import in FoCaLiZe the HOL de�nition of natural numbers coming from OpenTheory:

type hol_natural =

internal

external

| dedukti -> {* natural__div__full.Number_2ENatural_2Enatural *};;

let hol_zero =

internal hol_natural

external

| dedukti -> {* natural__div__full.Number_2ENatural_2Ezero *};;

let hol_succ =

internal hol_natural -> hol_natural

external

| dedukti -> {* natural__div__full.Number_2ENatural_2Esuc *};;

theorem hol_induction :

all p : hol_natural -> bool ,

(p(hol_zero) /\ (all n : hol_natural , p(n) -> p(hol_succ(n)))) ->

(all n : hol_natural , p(n))

proof = dedukti proof {* natural__div__full.thm_3723. *};;

This almost gives us the required interface for implementing NatDecl using HOL natural num-
bers. The only di�erence is a matter of curry�cation in the statement of hol_induction. Unfor-
tunately, Zenon Modulo cannot deal with this simple curry�cation because it refuses higher-order
problems so we prove the property directly in Dedukti. This is the most complicated theorem that
we had to prove in Dedukti. However it is considerably simpler than the theorems we had to prove
in the previous chapter.

species HolNat =

inherit NatDecl;

representation = hol_natural;

let zero = hol_zero;

let succ = hol_succ;

proof of ind =

dedukti proof

definition of zero , succ

{* (p : (cc.eT abst_T -> cc.eT hol.bool) =>

H0 : hol.proof (p abst_zero) =>

HS : (n : cc.eT abst_T ->

hol.proof (p n) ->

hol.proof (p (abst_succ n))) =>

165

hol_induction p

(hol.and_intro

(p abst_zero)

(hol.forall abst_T (n : hol.term abst_T =>

hol.imp (p n) (p (abst_succ n))))

H0 HS)). *};

end;;

The hierarchy is fully implemented and can be turned in a collection:

species HolPrimeDiv =

inherit NatPrimeDiv , HolPrime;

...

end;;

collection HolPrimeDivColl = implement HolPrimeDiv; end;;

11.4.5 Instantiation of the Morphism

Since the iteration operator that we imported from OpenTheorey and Coq is polymorphic, we can
also use it for de�ning morphisms:

let coq_iter =

internal coq_nat -> 'a -> ('a -> 'a) -> 'a

external

| dedukti -> {* ... *};;

species CoqMorph (B is NatPrimeDiv) =

inherit NatPrimeDivMorph(B), CoqLe , CoqTimes;

let morph(n) = coq_iter(n, B!zero , B!succ);

proof of morph_zero =

dedukti proof

definition of morph , zero

{* hol.REFL _p_B_T _p_B_zero. *};

proof of morph_succ =

dedukti proof

definition of morph , succ

{* (n : (hol.term coq_nat__t) =>

hol.REFL _p_B_T (abst_morph (abst_succ n))). *};

end;;

At this point, we observe a small duplication of proof work due to the lack of polymorphic
methods in FoCaLiZe. If such methods were allowed we could have derived morph from iter before
instantiation with HOL and Coq naturals. Polymorphic methods are forbidden in FoCaLiZe because,
as shown by Prevosto [150], specializing the type of a polymorphic method through inheritance can
break the type system.

11.5 Discussion

We achieved our goal of certifying a Coq implementation of the sieve of Eratosthenes using the
arithmetic results from OpenTheory. Doing so, the object-oriented mechanisms of FoCaLiZe allowed

166

us to devise a hierarchy of arithmetic species with default de�nitions for arithmetic operations.
Zenon Modulo was of great help during this formalization since a lot of small steps of equational
reasoning were needed and proving them in Dedukti would have been very painful. The whole
power of Zenon Modulo was however clearly not used in this development since we did not take
pro�t of Deduction modulo. For this use case, we believe that Zenon Modulo could be replaced by
less powerful provers such as Waldmeister [9], which happens to output constructive proofs.

In the course of this development, we had to work around some limitations of FoCaLiZe and
Zenon Modulo. We have already discussed the discouraged use of higher-order in FoCaLiZe. The
other limitations of FoCaLiZe come from its treatment of polymorphism:

� As we have seen, Prevosto showed in [150] that instantiating the type of a polymorphic
method during inheritance is inconsistent and it is the reason why polymorphic methods are
forbidden in FoCaLiZe. It is however possible to extend FoCaLiZe by polymorphic methods
without allowing their type to change during inheritance at all. We believe this extension to
be consistent because it does not seem to violate the translation scheme to Coq and Dedukti.

� The handling of polymorphism inside Zenon Modulo should be improved. During the in-
stantiation of HOL and Coq representations of natural numbers, we used Dedukti proofs to
instantiate polymorphic theorems because bugs in Zenon Modulo made it fail to �nd these
proofs. These bugs should be �xed, they are critical for using FoCaLiZe in combination with
HOL.

We try to do as much work as possible in a system independent way. Our hierarchy of species
and morphisms is totally independent of HOL and Coq and could be reused in similar situations.
The fact that most of the development is totally symmetric between Coq and Hol is also very
encouraging with respect to the generality of this approach. At the base layer of merging of logics,
we however strongly commit to merge FoCaLiZe logic with HOL, thus breaking the symmetry. We
map FoCaLiZe equality to HOL equality because we only consider terms which are convertible on
the Coq side. Since Coqine is a shallow encoding, two convertible Coq terms t1 and t2 of type A are
translated to convertible Dedukti terms t′1 and t′2 of type A′ and hol.REFL A′ t′1 is of type hol.eq
A′ t′1 t

′
2. If we wanted to study interoperability of two systems using di�erent axiomatizations of

equality, we would rather specify it on the FoCaLiZe side. Such an axiomatization of equality is
very common in FoCaLiZe.

Contrary to the previous example from Chapter 10, the sieve function that we de�ned in pure Coq
in Section 11.1 is a certi�ed program which can be run in Coq, Dedukti or, through Coq extraction,
in OCaml. The lack of reduction behaviour on the HOL side does not impact the runnability of
the function because HOL functions are only used for certifying the sieve function, they are called
by the sieve function as was the case of the sorting function in Chapter 10. FoCaLiZe compilation
to OCaml is however not usable because we did not express the sieve function in FoCaLiZe. Our
abstract treatment of natural numbers could in principle be used to replace the representation of
numbers to a more e�ective one such as binary or machine integers if the e�ciency of the run code
becomes an issue.

167

Chapter 12

Proof Constructivization

When merging two theories T1 and T2 as we did for Coq and HOL, we end up with a theory T3

which is stronger than both of T1 and T2. As we have seen when dealing with type inhabitation (see
Section 10.1.1), this common theory can quickly become inconsistent if we are not careful enough.

For a given existing formal development, all the axioms of the theory might not be useful. For
example, a recent index of the OpenTheory standard library1 by the Proof Cloud search engine [172]
revealed that 44.75% of the theorems (541 / 1209) do not depend on the law of excluded middle.

If an axiom is especially problematic or if its removal brings good properties, we can try to
transform proofs depending on it in order to remove the dependency to the axiom. In this chapter,
we focus on the classical axioms because their elimination is important for both the integration of
classical proof assistants into intuitionistic proof assistants (in particular into proof assistants based
in intuitionistic type theory such as Coq) and for interoperability between classical and intuitionistic
proof assistants (such as interoperability between Coq and HOL).

Intuitionistic logic is usually presented as the fragment of classical logic obtained by removing
the Law of Excluded Middle (or equivalent principles such as the Law of Double Negation) from the
primitive axioms. Interestingly, it can also be seen as a supersystem of classical logic in the sense
that classical formulae and proofs can be translated in intuitionistic logic thanks to double-negation
translations [107, 83, 77, 112, 110, 33, 68, 81].

Unfortunately, neither point of view is very practical when we want to use a classical theorem
prover together with a constructive proof assistant. In the �rst interpretation, the classical prover is
only usable if the Law of Excluded Middle is added as an axiom in the proof assistant thus limiting
the interpretation of the proof as an algorithm. In the second interpretation, the classical prover
is seen as only able to produce proofs for formulae belonging to a fragment of the syntax where
double-negations are mandatory at certain positions.

In practice, classical provers often use the refutation method which consists in adding the nega-
tion of the goal as hypothesis and trying to prove the inconsistency of the set of hypotheses. The
justi�cation for this simpli�cation is exactly the Law of Double Negation, hence every proof coming
from a refutation-based theorem prover contains at least one occurrence of a classical principle.
However, a lot of automatically generated classical proofs are believed to be only accidentally clas-
sical in the sense that they use classical principles at non-critical places so constructive proofs can
be extracted from them; we call this proof constructivization. One goal of this section is to give an
experimental lower-bound on the number of proofs which can be constructivized.

1See https://airobert.github.io/proofcloud/hol_stdlib.html

168

https://airobert.github.io/proofcloud/hol_stdlib.html

Proof constructivization is an inherently incomplete activity. It obviously has to fail when the
classically proved formula is not constructively provable but also when intuitionistic proofs of the
formula require ingredients which are not present in the classical proof.

Type theory usually attaches no computational behaviour to axioms. We propose however to
interpret axioms such as the Law of Excluded Middle as partial functions de�ned by a set of meta-
level rewrite rules in Dedukti. Normalizing a proof relying on some axiom with respect to this
rewrite system may (or not) lead to an axiom-free proof of the same theorem.

In this section, we focus on the case of constructivization in �rst-order logic because it is the
standard framework for automatic theorem provers such as Zenon and benchmarks such as the
TPTP database are available for validating our approach. First-order logic is represented by the
deep encoding of Section 3.5.1.

The work described in this section has been presented at the LFMTP workshop [41].
In Section 12.1, we propose rewrite systems interpreting two classical axioms as partial func-

tions. Normalizing classical proofs with respect to these rewrite systems might lead to constructive
proofs. To increase the success rate, we propose additional rewrite rules in Section 12.2 that use
higher-order rewriting to inspect the shape of the proof. We explain in Section 12.3 how we de�ne
strategies by choosing between di�erent combinations of our rewrite systems. We then detail the
constructivization process on the example of the proof of A =⇒ A automatically produced by
Zenon in Section 12.4. We evaluate in Section 12.5 our tool on the TPTP benchmark and discuss
related work in Section 8.3.

12.1 Partial De�nitions of Classical Axioms

There are a lot of possible axiom schemes for turning intuitionistic logic into classical logic, we will
focus on two of them:

� the Law of Excluded Middle: ϕ ∨ ¬ϕ

� the Law of Double Negation: ¬¬ϕ⇒ ϕ

Contrary to other schemes such as Pierce's law ((ϕ1 ⇒ ϕ2) ⇒ ϕ1) ⇒ ϕ1, instantiating these
schemes is done by providing just one formula. These schemes are equivalent but their instances
are not: for a given formula ϕ, ϕ ∨ ¬ϕ constructively implies ¬¬ϕ ⇒ ϕ but the converse is false.
Because of this, both schemes do not have the same computational behaviour.

12.1.1 A Rewrite System for the Law of Excluded Middle

Let us abbreviate by LEM(ϕ) the formula ϕ ∨ ¬ϕ. The following are easy constructive theorems,
their proofs are not very interesting but we give them in Figure 12.1 for the sake of completeness:

� l0 : LEM(>)

� l1 : LEM(⊥)

� l2 : (LEM(A) ∧ LEM(B))⇒ LEM(A ∧B)

� l3 : (LEM(A) ∧ LEM(B))⇒ LEM(A ∨B)

� l4 : (LEM(A) ∧ LEM(B))⇒ LEM(A⇒ B)

169

def LEM (A : prop) := or A (not A).

def PLEM (A : prop) := proof (LEM A).

def left (A : prop) : proof A -> PLEM A := or_intro_1 A (not A).

def right (A : prop) (p : proof A -> proof false) : PLEM A

:= or_intro_2 A (not A) (imp_intro A false p).

def l0 : PLEM true := left true true_intro.

def l1 : PLEM false := right false (p => p).

def l2_nA (A : prop) (B : prop) (p : proof (not A)) : PLEM (and A B)

:= right (and A B) (q => imp_elim A false p (and_elim_1 A B q)).

def l2_nB (A : prop) (B : prop) (p : proof (not B)) : PLEM (and A B)

:= right (and A B) (q => imp_elim B false p (and_elim_2 A B q)).

def l2 (A : prop) (B : prop) (p : PLEM A) (q : PLEM B) : PLEM (and A B)

:= or_elim A (not A) (LEM (and A B))

(r => or_elim B (not B) (LEM (and A B))

(s => left (and A B) (and_intro A B r s))

(s => l2_nB A B s)

q)

(r => l2_nA A B r)

p.

def l3_nAnB (A : prop) (B : prop)

(p : proof (not A)) (q : proof (not B)) : PLEM (or A B)

:= right (or A B)

(or_elim A B false (imp_elim A false p) (imp_elim B false q)).

def l3 (A : prop) (B : prop) (p : PLEM A) (q : PLEM B) : PLEM (or A B)

:= or_elim A (not A) (LEM (or A B))

(r => left (or A B) (or_intro_1 A B r))

(r => or_elim B (not B) (LEM (or A B))

(s => left (or A B) (or_intro_2 A B s))

(s => l3_nAnB A B r s)

q)

p.

def l4_B (A : prop) (B : prop) (p : proof B) : PLEM (imp A B)

:= left (imp A B) (imp_intro A B (q => p)).

def l4_AnB (A : prop) (B : prop)

(p : proof A) (q : proof (not B)) : PLEM (imp A B)

:= right (imp A B) (r => imp_elim B false q (imp_elim A B r p)).

def l4_nA (A : prop) (B : prop) (p : proof (not A)) : PLEM (imp A B)

:= left (imp A B)

(imp_intro A B (q => false_elim B (imp_elim A false p q))).

def l4 (A : prop) (B : prop) (p : PLEM A) (q : PLEM B) : PLEM (imp A B)

:= or_elim A (not A) (LEM (imp A B))

(r => or_elim B (not B) (LEM (imp A B))

(s => l4_B A B s)

(s => l4_AnB A B r s)

q)

(r => l4_nA A B r)

p.

Figure 12.1: Constructive instances of the Law of Excluded Middle

170

Thanks to these theorems, we can de�ne a �rst rewrite system Rlem pushing the classical axiom
through the propositional connectives:

def lem : A : prop -> PLEM A.

[] lem true --> l0

[] lem false --> l1

[A,B] lem (and A B) --> l2 A B (lem A) (lem B)

[A,B] lem (or A B) --> l3 A B (lem A) (lem B)

[A,B] lem (imp A B) --> l4 A B (lem A) (lem B).

12.1.2 A Rewrite System for the Law of Double Negation

We can do the same job for other classical axioms such as the Law of Double Negation. Let DN(A)
abbreviate ¬¬A⇒ A, the following are constructive theorems proved in Figure 12.2:

� d0 : DN(>)

� d1 : DN(⊥)

� d2 : (DN(A) ∧ DN(B))⇒ DN(A ∧B)

� d3 : DN(B)⇒ DN(A⇒ B)

� d4 : (∀x. DN(P (x)))⇒ DN(∀x. P (x))

This leads to the following rewrite system Rdn:

def dn : A : prop -> DN A.

[p] dn true p --> d0 p

[p] dn false p --> d1 p

[A,B,p] dn (and A B) p --> d2 A B (dn A) (dn B) p

[A,B,p] dn (imp A B) p --> d3 A B (dn B) p

[a,A,p] dn (all a A) p --> d4 a A (x : term a => dn (A x)) p.

These two rewrite systems are not very e�cient at constructivizing proofs because they can
do nothing smart on atoms. The rewrite system Rlem is only able to constructivize proofs for
formulae without atoms or quanti�ers; it simply computes boolean values. The rewrite system
Rdn performs a bit better because the rewrite rule for implication A ⇒ B works for any A; in
particular dn(¬A) reduces to a constructive proof so the rewrite system constructivizes proofs of
double-negated formulae. Fortunately, we can go further by inspecting the proof term.

12.2 Inspecting the Proof

Seen as a function symbol in type theory, the symbol dn is a function of two parameters; the �rst
one is a formula A, the second one is a proof of the formula ¬¬A. The rewrite system that we have
just presented only inspects the �rst argument A and acts independently of the second one. Thanks
to higher-order rewriting, it is also possible to inspect the second one.

171

def DN (A : prop)

:= ((proof A -> proof false) -> proof false) -> proof A.

def d0 : DN true := p => true_intro.

def d1 : DN false := p => p (q => q).

def d2_A (A : prop) (B : prop) (p : DN A)

(q : (proof (and A B) -> proof false) -> proof false)

: proof A

:= p (r => q (s => r (and_elim_1 A B s))).

def d2_B (A : prop) (B : prop) (p : DN B)

(q : (proof (and A B) -> proof false) -> proof false)

: proof B

:= p (r => q (s => r (and_elim_2 A B s))).

def d2 (A : prop) (B : prop) (p : DN A) (q : DN B) : DN (and A B)

:= r : ((proof (and A B) -> proof false) -> proof false) =>

and_intro A B (d2_A A B p r) (d2_B A B q r).

def d3 (A : prop) (B : prop) (p : DN B) : DN (imp A B)

:= q : ((proof (imp A B) -> proof false) -> proof false) =>

imp_intro A B (r => p (s => q (t => s (imp_elim A B t r)))).

def d4 (a : type) (A : term a -> prop)

(p : x : term a -> DN (A x))

: DN (all a A)

:= q : ((proof (all a A) -> proof false) -> proof false) =>

all_intro a A (x => p x (s => q (t => s (all_elim a A t x)))).

Figure 12.2: Constructive instances of the Law of Double Negation

172

12.2.1 Two Trivial Special Cases

Regardless of the shape of A, there are two trivial ways in which a proof π¬¬A of ¬¬A can be
constructivized into a proof of A:

� seen as a function from ¬A to ⊥, π¬¬A does not use its argument, hence the current context
is inconsistent so we can build a proof of A

� π¬¬A is an instance of the canonical constructive proof of A ⇒ ¬¬A (which is λp : A. λq :
¬A. q p)

These two special cases can be written in Dedukti as higher-order rewrite rules R1 and R2:

[A,p] dn A (q => p) --> false_elim A p

[A,p] dn A (q => q p) --> p.

These rules restrict the positions in which the assumption q of ¬A is allowed to appear; in
order to favor their application, we consider proof transformations which make some proofs of ¬A
disappear.

12.2.2 Eliminating Negation Proofs

The typical case where a proof of ¬A is useless is when it is eliminated to build a proof of A using
the following rewrite rule R3:

[A,p] false_elim A (imp_elim A false _ p) --> p.

In turn, to favor the application of this rewrite rule, we can give false_elim some freedom by
adding the usual rewrite rules Rabort−@ and Rabort−λ which interpret elimination of falsehood as
error propagation:

[A,B,p] imp_elim A B (false_elim _ p) _ --> false_elim B p.

[A,B,p] imp_intro A B (x => false_elim _ p) --> false_elim (imp A B) p.

Similar rewrite rules for all introduction and elimination rules can be added this way.
Another option for eliminating dn is to make it progress toward the leaves in the hope that R1

will be applicable in some branches and R2 in others; this is the topic of next subsection.

12.2.3 Exchanging Elimination Rules

We further inspect the proof of ⊥ that missed to be captured by the pattern p in R1 and the pattern
q p in R2 by looking at where it does use the hypothesis p. ⊥ has no introduction rule so it can only
be proved by an elimination rule. Elimination rules for disjunction and existential can be traversed
by dn if the required proof of B ∨ C and ∃x : τ. ϕ respectively do not use the assumption p:

[A,B,C,q,r,s]

dn A (p => or_elim B C _ (q p) (r p) s)

-->

or_elim B C A (t => dn A (p => q p t)) (t => dn A (p => r p t)) s

[A,B,C,q,r,s]

dn A (p => ex_elim a B _ (q p) r)

-->

ex_elim a B A (x => s => dn A (p => q p x s)) r.

173

To ease triggering of these new rules, we want to push elimination rules for disjunction and
existential toward the root of the formula in the hope that they will meet the dn symbol and help
it progress toward the leaves of the proof.

We avoid commuting with introduction rules because it goes a lot against cut-elimination and
does not seem useful in practice for normal forms with respect to the rewrite systemRdn. Commuting
with other elimination rules is however achieved easily:

[A,B,C,p,q,r]

false_elim C (or_elim A B _ p q r)

-->

or_elim A B C (s => false_elim C (p s)) (s => false_elim C (q s)) r.

[A,B,C,D,p,q,r]

and_elim_1 C D (or_elim A B _ p q r)

-->

or_elim A B C (s => and_elim_1 C D (p s)) (s => and_elim_1 C D (q s)) r.

[A,B,C,D,p,q,r]

and_elim_2 C D (or_elim A B _ p q r)

-->

or_elim A B D (s => and_elim_2 C D (p s)) (s => and_elim_2 C D (q s)) r.

[A,B,C,D,p,q,r,s]

imp_elim C D (or_elim A B _ p q r) s

-->

or_elim A B D (t => imp_elim C D (p t) s) (t => imp_elim C D (q t) s) r.

[A,B,a,C,p,q,r,x]

all_elim a C (or_elim A B _ p q r) x

-->

or_elim A B (C x) (t => all_elim a C (p t) x) (t => all_elim a C (q t) x) r.

[a,A,B,p,q]

false_elim B (ex_elim a A _ p q)

-->

ex_elim a A B (x => r => false_elim B (p x r)) q.

[a,A,B,C,p,q]

and_elim_1 B C (ex_elim a A _ p q)

-->

ex_elim a A B (x => r => and_elim_1 B C (p x r)) q.

[a,A,B,C,p,q]

and_elim_2 B C (ex_elim a A _ p q)

-->

ex_elim a A C (x => r => and_elim_2 B C (p x r)) q.

[a,A,B,C,p,q,r]

imp_elim B C (ex_elim a A _ p q) r

-->

ex_elim a A C (x => s => imp_elim B C (p x s) r) q.

[a,A,b,B,p,q,y]

all_elim b B (ex_elim a A _ p q) y

-->

ex_elim a A (B y) (x => s => all_elim b B (p x s) y) q.

174

12.2.4 Con�uence

The rules R1 and R2 are not con�uent with the rewrite system Rdn of Section 12.1. For
example, the term p : proof false => dn true (q => p) reduces to p => true_intro with re-
spect to Rdn and to p => false_elim true p with respect to R1. Even worse, the rules of
Section 12.2.2 are to be used together but they form a non-con�uent rewrite system: the
term imp_elim A B (false_elim (imp A B) (imp_elim (imp A B) false p q)) r reduces to both
imp_elim q r (using R3) and false_elim B (imp_elim (imp A B) false p q) (using Rabort−@).

In order to obtain the best behaviour out of our rewrite systems, we need to give them priorities.

12.3 Combining Rewrite Systems

As we have seen in Section 3.3, Dedukti is intended to be used with con�uent rewrite systems so it
does not provide a way for controlling the strategy. It does however provide a command for printing
a normal form of a term with respect to a rewrite system; this gives us two ways of combining two
rewrite systems RA and RB:

� union: we can ask Dedukti to compute −→∗RA∪RB
by writing both systems in the same �le

� sequence: by calling Dedukti twice, we can reduce terms using the relation −→∗RA
× −→∗RB

,
that is we can ask for normal forms with respect to RB of normal forms with respect to RA.

Moreover, the order in which the rewrite rules are given in a non-con�uent Dedukti �le is
relevant: the earlier a rule is declared the higher its priority. For giving the rule R3 priority over
Rabort−@ and Rabort−λ, we just have to declare it �rst.

In which way to combine the rewrite systems of previous sections is a matter of heuristic choice;
in practice, a good strategy consists in trying �rst the rules which remove axioms (R1 ∪ R′2), then
rules reducing the formula (Rdn), then rules pushing the axioms toward the leaves at the expanse of
exchanging the order of the elimination rules (the rewrite system of Section 12.2.3) and �nally the
union of all the rewrite systems for dn presented in this paper together with cut-elimination rules.

12.4 Example: Zenon Classical Proof of A⇒ A

Once translated to natural deduction, the classical proof of A⇒ A that comes out of Zenon is the
following term:

A : prop.

def example_1 : proof (imp A A)

:= dn (imp A A)

(p =>

p (imp_intro A A (q =>

false_elim A ((r : proof A => p (imp_intro A A (s => r))) q)))).

Two rules apply here, the rule for implication from system Rdn and the rule R3 for elimination
of ⊥E . Following the heuristic strategy of Section 12.3, the �rst step (R1 ∪ R2) is skipped and we
apply the rule in Rdn leading to the following term:

def example_2 : proof (imp A A)

:= d3 A A (dn A)

175

(p =>

p (imp_intro A A (q =>

false_elim A ((r : proof A => p (imp_intro A A (s => r))) q)))).

we now need to unfold the de�nition of d3:

def d3 (A : prop) (B : prop) (p : DN B) : DN (imp A B)

:= q : ((proof (imp A B) -> proof false) -> proof false) =>

imp_intro A B (r => p (s => q (t => s (imp_elim A B t r)))).

so our proof of A⇒ A is now

def example_3 : proof (imp A A)

:= imp_intro A A (t => dn A (u : (proof A -> proof false) =>

(p : (proof (imp A A) -> proof false) =>

p (imp_intro A A (q =>

false_elim A ((r : proof A => p (imp_intro A A (s => r))) q))))

(v : proof (imp A A) => u (imp_elim A A v t)))).

we now perform elimination of false_elim (R3), which has priority over cut elimination for
implication:

def example_4 : proof (imp A A)

:= imp_intro A A (t => dn A (u : (proof A -> proof false) =>

(p : (proof (imp A A) -> proof false) =>

p (imp_intro A A (q => q)))

(v : proof (imp A A) => u (imp_elim A A v t)))).

we now perform cut elimination:

def example_5 : proof (imp A A)

:= imp_intro A A (t => dn A (u : (proof A -> proof false) => u t)).

and �nally apply R2, getting rid of the classical axiom:

def example_6 : proof (imp A A)

:= imp_intro A A (t => t).

As we can see, the translation to natural deduction has introduced a fortunate cut. Reducing
this cut would forbid to �re R3 but we need cut elimination to simplify the resulting proof so that
R2 can in turn be �red.

12.5 Experimental Results

We have performed tests on the latest version (v6.3.0) of the reference library for �rst-order prob-
lems: TPTP. This library contains 6528 problems for �rst-order logic (TPTP FOF format). We
�ltered these problems by running Zenon with a short timeout2. Zenon claimed to have proved
1371 problems which form our starting benchmark. For every problems in this benchmark but two,
Zenon provided a proof in classical sequent calculus that we type-checked in Dedukti. Among these
1369 proofs, 1258 (91.9%) were translated to classical natural deduction. Among these natural
deduction proofs, 1240 (98.6%) were normalized by the combination of rewrite systems presented

2The choice of this timeout does not a�ect much the results because the number of proofs found by Zenon in more
than a few seconds is very low. It has however a direct impact on the time needed for running the benchmark since
this timeout is reached on most TPTP problems.

176

in Section 12.3. All these normalized natural deduction proofs were rechecked in Dedukti and 856
(69.0% of the normalized classical proofs) were checked in intuitionistic natural deduction.

As a constructivization tool for natural deduction, our approach succeeded for 68.0% of the
classical proofs. We can distinguish four sources of failure:

1. normalization reaches memory or time limits because matching of higher-order patterns can
be costly;

2. some TPTP problems are classical theorems but have no constructive proofs;

3. some problems have constructive proofs but these proofs require ingredients that are not
present in the classical proof provided by Zenon, a typical example would be a formula of the
form ϕ∨P ∨¬P where ϕ has a complex intuitionistic proof, �nding such proofs would require
intuitionistic proof search and is out of the scope of our approach;

4. because our approach is heuristic, it is fundamentally incomplete so other proofs are missed,
these problems are a good source of inspiration for further improving our heuristics.

The �rst source of failure a�ects only 21 proofs (1.7% of the proofs in classical natural deduction).
The second source is very hard to count: one goal of the ILTP library [151] was to associate a
constructive status to TPTP problems but the majority of them (69.7% for ILTP v1.1) remains
unsolved or open. Finally, when an intuitionistically valid problem fails to be constructivized by
our approach, it is not always clear whether the failure comes from the third or the fourth source
because we did not formalize the notion of ingredient present in a classical proof; for example, the
formula P ⇒ (P ∨¬P) has two classical proofs, a constructive one and a non-constructive one, our
technique fails to constructivize the non-constructive one λHA. lem(A) as it requires to query the
proof context, an operation which can be seen as a very limited form of proof search.

The details for each TPTP category of problem are summarized in Figure 12.3.
The experimental conditions for this study were the following:

� Processor: Intel Core i5-4310M @ 2.70GHz

� Timeouts: 10 seconds for Zenon �ltering phase, 10 minutes for each Dedukti call

� Tools versions: We used development versions of the tools built from their respective
git repositories (git://scm.gforge.inria.fr/dedukti/dedukti.git for Dedukti and git:

//scm.gforge.inria.fr/zenon/zenon.git for Zenon). More precisely, Dedukti was built
from branch develop (latest commit: April 11th 2016), Zenon was built from branch
modulo_intuit (latest commit: February 5th 2016).

12.5.1 B Proof Obligations

Our approach is very easy to adapt to Deduction modulo and typing so we can also benchmark it
on the proofs produced by Zenon Modulo. The main benchmark for Zenon Modulo is generated
from the proof obligations of Atelier B [62]. In the same conditions as before, Zenon Modulo is able
to prove 8687 problems among which 6823 can be translated in natural deduction in the required
amount of time and memory. The word "problem" is here to be understood as we de�ned it in
Chapter 1.1, that is a �rst-order theory in Deduction modulo consisting of axioms and rewrite rules

177

git://scm.gforge.inria.fr/dedukti/dedukti.git
git://scm.gforge.inria.fr/zenon/zenon.git
git://scm.gforge.inria.fr/zenon/zenon.git

LK NK Normalized NJ

AGT 17 17 17 13
ALG 23 13 11 7
CAT 2 2 2 2
COM 11 11 11 11
CSR 91 91 87 57
GEO 213 210 210 203
GRA 3 2 2 2
GRP 4 4 4 3
HWV 3 3 3 0
KLE 6 6 6 2
KRS 62 62 62 12
LAT 9 9 8 7
LCL 28 8 8 6
MED 4 4 4 3
MGT 39 38 35 23
MSC 5 5 5 3
NLP 11 11 11 6
NUM 101 92 92 78
PUZ 11 11 10 6
RNG 24 24 24 21
SCT 7 7 7 6
SET 135 135 135 105
SEU 84 80 80 66
SWB 21 21 21 20
SWC 43 43 43 1
SWV 132 132 131 111
SWW 11 11 11 10
SYN 264 201 195 67
SYO 2 2 2 2
TOP 3 3 3 3
Total 1369 1258 1240 856

Each line is a TPTP category of problems;

� the LK column contains the number of proofs found by Zenon in classical sequent calculus

� the NK column contains the number of proofs translated in classical natural deduction

� the Normalized column contains the number of classical proofs which have been normal-
ized with respect to our rewrite systems

� the NJ column contains the number of proofs for which constructivization has succeeded
in a proof in intuitionistic natural deduction

Figure 12.3: Per-category results

178

together with a formula called the goal of the problem which Zenon Modulo is asked to prove in the
given theory. Our constructivization procedure is then able to normalize 5398 of them and only 20
of the �nal proofs depend on classical axioms.

As a constructivization procedure for natural deduction, we get a constructivization rate of
78.8%.

12.5.2 FoCaLiZe Standard Library

In FoCaLiZe, the user is encouraged to write decidable predicates as functions to the primitive type
bool because such predicates can be exported to OCaml. The type bool is injected into the syntax
of formulae by an implicit predicate Is_true

bool : type.

btrue : term bool.

bfalse : term bool.

def Is_true : term bool -> prop.

[] Is_true btrue --> true

[] Is_true bfalse --> false.

For this reason, we get a high constructivization rate on FoCaLiZe problems by simply adding
the following rewrite rule in Rlem:

def lem_b : b : term bool -> PLEM (Is_true b).

[] lem_b btrue --> l0

[] lem_b bfalse --> l1.

[b] lem (Is_true b) --> lem_b b.

Note that the lemma lem_b is perfectly valid in intuitionistic logic.
FoCaLiZe standard library contains 437 �rst-order problems in Deduction modulo which are all

proved by Zenon Modulo. Among the produced proofs, 422 are translated in natural deduction.
We were able to normalize 387 of them and only 3 proofs still required classical axioms.

As a constructivization procedure for natural deduction, we get a constructivization rate of
91.0%.

12.6 Related Work

The di�erences between classical and intuitionistic logic have been deeply studied since the early
days of intuitionistic logic leading to the discovery of double-negation translations and extensions of
the Curry-Howard correspondence to classical logic. Concretely, a few automated theorem provers,
iLeanCoP in particular, can be used for intuitionistic logic but their integration in intuitionistic
proof assistants is far from easy because they do not yet provide proof certi�cates in a checkable
format. We know only one exception to this rule: a constructivization module for Zenon called
Zenonide which is able to produce proofs in Dedukti format.

12.6.1 Double-Negation Translations

It is usually easy to test whether a formula is in the image of a given double-negation translation.
Since for such formulae intuitionistic provability corresponds to classical provability, this provides a
simple criterion for proof constructivization which does not depend on the classical proof but only

179

on the proven formula. This criterion is not very powerful but it is very e�cient: typically in linear
time and �nite memory.

Our �rst rewrite system for the Law of Double Negation Rdn is related to the way one can
replace a double-negation translation by another one. Because the right-hand side of the rule for
dn(A ⇒ B) uses dn(B) but not dn(A), the correct way to look at Rdn is as a transformer for
polarized double-negation translations [33].

In the particular case of Zenon proofs in classical sequent calculus and their translation to
classical natural deduction, the Law of Double Negation is used at the head of the proof and after
introduction of universal quanti�cation only. Because Zenon �nds cut-free proofs in sequent calculus,
the subformula property guarantees that all double negations corresponding to these classical axioms
appear in positions where the polarized version of Gödel-Gentzen double-negation translation would
also have added a double-negation. After normalization by our rewrite system Rdn, they are placed
at positions where a lighter translation, Gilbert's double-negation translation [81], would also put
double-negations.

12.6.2 Intuitionistic Provers

A few automated theorem provers for intuitionistic logic have been developed. The ILTP li-
brary [151] is a benchmark constructed from the TPTP problems in FOF format (non-clausal
�rst-order formulae) to evaluate intuitionistic provers. The most performant intuitionistic �rst-
order prover on this benchmark is by far the iLeanCoP prover. It is noticeable that iLeanCoP is
built as a constructivization extension of a classical prover, LeanCoP.

The main di�erence between our work and an intuitionistic prover such as iLeanCoP is that,
in case of failure, iLeanCoP can ask LeanCoP to provide another classical proof. For example, our
technique fails to constructivize the following proof of A ⇒ (A ∨ ¬A): λHA. lem(A). Backtrack-
ing makes however iLeanCoP complete for �rst-order intuitionistic logic. According to [138], this
backtracking feature is rarely used because the �rst classical proof is usually constructive.

Unfortunately, intuitionistic provers such as iLeanCoP do not produce certi�cates so we can not
easily integrate them in intuitionistic proof assistants.

12.6.3 Zenonide

Zenonide is a constructivization module for Zenon developed by Frédéric Gilbert. Because Zenonide
has access to the internal representation of proofs in Zenon, it has access to the proof context for
each proof node so the constructivization of Zenon proof of A⇒ A is trivial for Zenonide whereas
we have seen in Section 12.4 that it required some work in our case.

Zenonide is however not able to backtrack to another classical proof as iLeanCoP so it is an
interesting middle point between our approach to constructivization and intuitionistic proof search.

Zenonide does not need to translate the classical proof to natural deduction, it tries to transform
a proof in classical sequent calculus to a proof in intuitionistic sequent calculus so it avoids the
combinatorial explosion appearing with some problems of the syntactic category of TPTP which
have been especially designed to have no small proof in natural deduction. The price to pay for
using sequent calculus is that more commutations of deduction rules have to be taken into account.

Zenon, as many theorem provers, searches for cut-free proofs; this is a very good point for
Zenonide since the cut rule in sequent calculus behaves very badly with proof constructivization.

180

Our input proofs do however use natural deduction cuts and these cuts are, as we have seen,
sometimes welcomed.

For all these reasons, Zenonide globally performs better than our rewrite systems but also fails
on some proofs that we manage to constructivize: on the set of 1371 problems proved by Zenon
on TPTP, Zenonide proves 915 problems constructively but a very fair amount of proofs (113) was
constructivized by our rewrite systems despite Zenonide lacks to prove it. If we use our rewrite
systems together with Zenonide, we obtain a total constructivization rate of 81.7% of the tableau
proofs found by Zenon on TPTP.

12.6.4 Extensions of the Curry-Howard Correspondence for Classical Logic

The Curry-Howard correspondence, which is at the heart of the use of logical frameworks such as
Dedukti for checking proofs, has been extended to classical reasoning in several ways.

Minimal logic can be extended to a classical logic of implication by Pierce Law ((A ⇒ B) ⇒
A)⇒ A which is a possible type for the call-cc control operator found in the Scheme programming
language for example. This remark led to Parigot's λµ-calculus which corresponds to a classical
extension of minimal natural deduction where several formulae are allowed at the right side of
sequents [140].

Classical sequent calculus has also been the subject of interpretations through the Curry-Howard
correspondence leading to Curien and Herbelin's λ̄µµ̃-calculus for minimal classical sequent calcu-
lus [57].

An interpretation of classical logic in terms of stack manipulations is also investigated in the
context of classical realizability [111].

All these systems su�er, as we do, from a lack of con�uence but this is directly connected with
non-con�uence of classical cut elimination whereas we do not even need to consider cut-elimination
to loose con�uence.

As extensions of typed λ-calculus, it is possible to ask in these systems whether a given term (that
is, a classical proof) reduces to a pure λ-term (that is, a constructive proof). Conversely, the rewrite
systems that we have proposed can be seen as alternative semantics or program transformations in
these systems.

We believe that Dedukti is a good framework for studying extensions of these systems to �rst-
order logic.

181

Conclusion of Part IV

In Chapter 10, we have achieved a simple interoperability proof of concept consisting in an instan-
tiation of a certi�ed Coq sorting program by the datatype of natural numbers imported from the
OpenTheory library of HOL proofs. Despite the very restricted interaction between Coq and HOL
in this �rst example, gluing the developments in Dedukti to obtain our �nal theorem was tedious.
Dedukti is a mere proof checker, not an interactive proof assistant; it features almost no automation.

In order to scale to a more reasonable example where non-logical operations such as arithmetic
operations are de�ned on both sides of the development and need to be related in Dedukti, we
added FoCaLiZe and Zenon to our toolbox in Chapter 11 in order to exploit the automation they
o�er. The main contribution of this second proof of concept of interoperability in Dedukti is a
methodology for proof exchange based on FoCaLiZe object-oriented structures.

When combining logical systems, we should pay particular attention to avoid bringing inconsis-
tencies in the combined logic otherwise the logical validity of the resulting theorems is compromised.
To facilitate this task, we propose Meta-Dedukti as a general axiom eliminator which can be used
to remove dependencies on unwanted axioms in existing formal developments. We have focused on
classical axioms in Chapter 12 for two reasons. First, they are important for interoperability between
type theoretical proof assistants on one side and both automatic and interactive classical theorem
provers on the other side. Second, constructivization is easy to evaluate because large libraries of
classical proofs are available in Dedukti. Now that automatic constructivization through Meta-
Dedukti normalization has been validated on various benchmarks for �rst-order theorem provers,
the method is ready to be adapted to higher-order logic and to other axioms. According to Proof
Cloud [172], the HOL proofs that we imported from OpenTheory in Chapters 10 and 11 are classi-
cal. We believe that a large part of the OpenTheory library still remains to be constructivized but
the rewrite system of Chapter 12 will probably require adaptations. Automatic elimination of other
axioms such as functional extensionality and univalence is the topic of ongoing research [45].

182

Conclusion

In this thesis, we have embedded an object-calculus in Coq and Dedukti in Part II. We have taken
advantage of the ability of Dedukti to model computation by rewriting to translate the operational
semantics of the ς-calculus by a non-terminating rewrite system. Doing so, we can use Dedukti as an
evaluator for object-oriented programs. We have extended the encoding to handle object subtyping
using explicit coercions de�ned by partial functions in Dedukti. Our �rst naive implementation
was quite ine�cient; it spent about 99% of its time doing string comparisons. Using Dedukti as a
meta-programming tool, we have achieved a considerable speed-up.

In Part III, we have proposed a translation to Dedukti for one of the few object-oriented logical
systems, FoCaLiZe. Compiling a polymorphic λ-calculus such as the one of Section 2.3.1 in Dedukti
is an easy exercise but real implementations of functional languages feature pattern matching and
recursion for which some work is needed. We have integrated this translation as an extension of
the FoCaLiZe compiler which improves its performances and opens the way to new applications of
FoCaLiZe such as highly computational program veri�cation.

The development of Dedukti and translation tools to the Dedukti language are motivated by
interoperability of proof systems. As such, this thesis is a direct continuation of those of Sail-
lard [155] and Assaf [11]. Saillard made Dedukti a lot more e�cient so that it became possible
to recheck in Dedukti large libraries of proofs such as OpenTheory standard library, FoCaLiZe
standard library and various libraries generated by the automatic theorem provers Zenon Modulo
and iProver Modulo. He also added higher-order rewriting in Dedukti, which we intensively used
in Chapter 12 and bridged Dedukti with higher-order con�uence checkers such as CSI�HO. Assaf
developed Holide and Coqine, the translators that we used in case studies described in Chapters 10
and 11. Thanks to Saillard and Assaf, Dedukti, Holide, and Coqine were mature enough to start
working on interoperability.

In Part IV, we have conducted a �rst experiment with Assaf presented in Chapter 10. While
successful, this experiment has shown that modularity and automation are required for scalability.
We have then combined more existing tools producing Dedukti code: Coqine, Holide, Zenon Mod-
ulo, and Focalide. We have managed to develop a non-trivial proof in this combination and we
have drawn a methodology for interoperability of proof systems out of this experimentation. Fo-
CaLiZe has many interesting aspects which make it a good interoperability framework. FoCaLiZe
is a compiled language which already featured a shallow translation to Coq. External de�nitions
and proofs facilitate to link to the code of the target languages, the usability of FoCaLiZe for our
interoperability experiment would have signi�cantly decreased if it did not implement this feature.
The integration of Zenon (Modulo) is a nice bonus which certainly saved us a lot of time compared
to writing the interoperability proofs directly in Dedukti but we felt it harder to predict than the
tactic-based interaction of Coq. We appreciate however the simplicity of FoCaLiZe proof language.

183

FoCaLiZe object-oriented structuration mechanisms help to ful�ll the requirements and we believe it
has made an important part of our development directly reusable for other similar proof exchanges,
even between other proof systems. Since FoCaLiZe has not been developed with this particular
application in mind we faced some limitations related to polymorphism and higher-order program-
ming and reasoning but these were quite easy to work around in our use case. If these issues slow
down future bigger interoperability developments in FoCaLiZe, we believe that it will be possible
without too much work to extend FoCaLiZe toward polymorphism and higher-order reasoning. For
example, FoCaLiZe could be able to handle the instantiation of second-order induction principles
and discharge to Zenon (Modulo) the required proofs.

Combining logical systems quickly leads to inconsistency. In Chapter 10, we have avoided
some relatively simple inconsistencies but we did not formally prove that the combined logic is
consistent. In general, when combining two logics, consistency is the most important property of the
combination to prove because it allows not to translate back the proofs obtained by interoperability
into one of the original systems. To simplify such consistency proofs, we propose to �rst minimize
the dependencies to the axioms which are present in only one of the systems. In the particular
case of the classical axioms, Wang showed that about half of OpenTheory standard library does not
depend on classical axioms and we obtained in Chapter 12 constructivization rates ranging from
68 to 91% depending on the benchmarks. These good results show that it is reasonable to try to
eliminate the classical axioms from classical developments before transferring these developments
to a constructive system so that these classical axioms are not needed in the combined logic. We
believe that the approach to axiom elimination that we adopted in Chapter 12 can be generalized
to other common axioms such as extensionality, choice, and univalence axioms. Important Dedukti
libraries of proofs using these axioms are however �rst needed because in our experience the best
way to discover which rewrite rules are helpful is to inspect the normal forms resulting from axiom
elimination failures. The Dedukti translation of OpenTheory standard library given by Holide is a
good starting point for elimination of functional extensionality and choice axioms. Future work in
this direction would consist in de�ning rewrite systems similar to the one that we have proposed
for proof constructivization but specialized to these two axioms.

In this thesis, we often took an important deviation from the orthodox use of Dedukti consisting
of �rst de�ning a con�uent and terminating rewrite system and then devising translations for terms
and proofs that preserve typing modulo this rewrite system. The main advantage of Dedukti com-
pared to other logical frameworks is the possibility to devise very shallow encodings preserving the
notion of reduction of the object languages. In the case of programming languages, no terminating
rewrite system can support a shallow encoding so we have to choose between keeping the translation
shallow at the price of decidability of type-checking or returning to deeper encodings. Actually, the
question of the termination of a term in a rewrite system is only worth asking when the rewrite
system is not terminating. Our shallow encodings of programming languages in Dedukti can be
used to reduce termination of object-oriented and functional programs to termination of terms in
non-terminating higher-order rewrite systems.

The meta-theory of the λΠ-calculus modulo gets greatly simpli�ed if we restrict the syntax of
terms to the λ-free fragment. In this fragment, functions are still de�nable by rewriting, β-reduction
is vacuous so the conversion relation is simply de�ned by the congruence generated by the rewrite
system. Con�uence of the untyped system becomes decidable when the rewrite system terminates.
If higher-order rewrite rules are not used, all the �rst-order termination and con�uence checkers are
available.

184

In the case of FoCaLiZe, we can hope for using Focalide together with automated termination
tools to automatically prove the termination of functions. These termination proofs should then be
communicated back to FoCaLiZe so that they could be used in the Coq backend for which termina-
tion proofs are mandatory. Automation of termination proofs in the Coq backend of FoCaLiZe has
been considerably improved recently [71] with the possibility of proving termination of functions
using measures and well ordering. Zenon can be used to solve some generated proof obligations but
it does not guess the required de�nition of the well-founded ordering or the measure that currently
needs to be provided by the user. Certifying termination checkers such as AProVE [80] could hope-
fully be used for providing the de�nitions of the required measures and well orderings. Focalide
could be used to express FoCaLiZe recursive functions as rewrite systems that termination checkers
understand.

We often hacked what could be considered de�ciencies of Dedukti and turned them into use-
ful features. We de�ned rewrite systems transgressing all the usual and reasonable requirements
on purpose: termination, con�uence, totality of functions, and even consistency. All these badly
behaved rewrite systems have their utility, notably in term of e�ciency.

We also pioneered the use of Dedukti as a meta-language. We have shown in Chapter 6 that
Meta-Dedukti can help deciding properties in Sigmaid to increase the e�ciency and the readability
of generated code and we presented in Chapter 12 rewrite systems for eliminating axioms at the
meta-level. These applications are very di�erent in nature and we hope that many other applications
of Dedukti as a meta-language will be discovered. In particular, we expect meta-level rewrite rules
to be helpful for the interactive development of Dedukti terms.

This thesis opens many perspectives. The study of Dedukti encodings of other programming
paradigms such as imperative programming and other program veri�cation logics such as Hoare
logic, separation logic, and temporal logic would support Dedukti's claim to universality, contribute
to more interoperability in program veri�cation, and facilitate the development of more complex
Dedukti programs. We believe that Meta-Dedukti and encodings of programming languages in De-
dukti can bene�t each other: we have seen in Chapter 6 that Meta-Dedukti can simplify and improve
the e�ciency of a translator and the issues related to termination of the shallow encodings are less
relevant at the meta-level where consistency is not required. Meta-Dedukti itself can be improved
in many ways. To deal with non-con�uent rewrite systems such as our rewrite system for proof
constructivization, backtracking abilities would be appreciated. With respect to interoperability of
proof systems, and more particularly interoperability of interactive proof assistants, the generality
of our approach should be stressed by trying di�erent combinations of proof systems in particular
Matita and PVS for which formal libraries are being translated to Dedukti and Agda, LEAN, and
Isabelle whose logical foundations are understood as fragments of CIC and HOL for which Dedukti
translators are available. Finally Dedukti should become more liberal in its input in order to ease
the development of Dedukti backends for automatic tools which often provide incomplete traces.
We believe this objective can be achieved by establishing a connection between Dedukti and the
certi�cate checker Checkers of the ProofCert project.

185

Bibliography

[1] Martín Abadi and Luca Cardelli. A theory of primitive objects: Untyped and �rst-order
systems. In TACS'94, Theoretical Aspects of Computing Sofware, pages 296�320, 1994.

[2] Martín Abadi and Luca Cardelli. A Theory of Objects. Monographs in Computer Science.
Springer New York, 1996.

[3] Azriel Levy Abraham A. Fraenkel, Yehoshua Bar-Hillel. Foundations of Set Theory. Studies
in Logic and the Foundations of Mathematics. Elsevier, Academic Press, 2 edition, 1973.

[4] Jean-Raymond Abrial. The B-Book, Assigning Programs to Meanings. Cambridge University
Press, 1996.

[5] Stephen Adams. Functional Pearls: E�cient sets�a balancing act. Journal of functional
programming, 3(4):553�562, 1993.

[6] Jesse Alama. Escape to Mizar from ATPs. In Pascal Fontaine, Renate A. Schmidt, and
Stephan Schulz, editors, Third Workshop on Practical Aspects of Automated Reasoning,
PAAR-2012, Manchester, UK, June 30 - July 1, 2012, volume 21 of EPiC Series in Comput-
ing, pages 3�11. EasyChair, 2012.

[7] Peter D. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth
through Proof. In Computer Science and Applied Mathematics Series. Academic Press, 1986.

[8] Jesús Aransay-Azofra, Jose Divasón, Jónathan Heras, Laureano Lambán, María Vico Pascual,
Angel Luis Rubio, and Julio Rubio. Obtaining an ACL2 speci�cation from an isabelle/hol
theory. In Gonzalo A. Aranda-Corral, Jacques Calmet, and Francisco J. Martín-Mateos,
editors, Arti�cial Intelligence and Symbolic Computation - 12th International Conference,
AISC 2014, Seville, Spain, December 11-13, 2014. Proceedings, volume 8884 of Lecture Notes
in Computer Science, pages 49�63. Springer, 2014.

[9] Alasdair Armstrong, Simon Foster, and Georg Struth. Dependently Typed Programming
based on Automated Theorem Proving. CoRR, abs/1112.3833, 2011.

[10] Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico Tassi. The Matita
Interactive Theorem Prover. In Nikolaj Bjørner and Viorica Sofronie-Stokkermans, editors,
Automated Deduction - CADE-23 - 23rd International Conference on Automated Deduction,
Wroclaw, Poland, July 31 - August 5, 2011. Proceedings, volume 6803 of Lecture Notes in
Computer Science, pages 64�69. Springer, 2011.

186

[11] Ali Assaf. A Framework for De�ning Computational Higher-Order Logics. PhD thesis, École
Polytechnique, 2015.

[12] Ali Assaf. Conservativity of Embeddings in the lambda Pi Calculus Modulo Rewriting. In
Thorsten Altenkirch, editor, 13th International Conference on Typed Lambda Calculi and
Applications, TLCA 2015, July 1-3, 2015, Warsaw, Poland, volume 38 of LIPIcs, pages 31�
44. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[13] Ali Assaf and Guillaume Burel. Translating HOL to Dedukti. In Cezary Kaliszyk and Andrei
Paskevich, editors, Proceedings Fourth Workshop on Proof eXchange for Theorem Proving,
Berlin, Germany, August 2-3, 2015, volume 186 of Electronic Proceedings in Theoretical Com-
puter Science, pages 74�88, Berlin, Germany, August 2015. Open Publishing Association.

[14] Ali Assaf, Guillaume Burel, Raphaël Cauderlier, David Delahaye, Gilles Dowek, Catherine
Dubois, Frédéric Gilbert, Pierre Halmagrand, Olivier Hermant, and Ronan Saillard. Express-
ing Theories in the λΠ-Calculus Modulo Theory and in the Dedukti System. Draft available
online at http://www.lsv.ens-cachan.fr/~dowek/Publi/expressing.pdf, 2016.

[15] Ali Assaf and Raphaël Cauderlier. Mixing HOL and Coq in Dedukti. In Kaliszyk, Cezary and
Paskevich, Andrei, editor, Proceedings 4th Workshop on Proof eXchange for Theorem Prov-
ing, Berlin, Germany, August 2-3, 2015, volume 186 of Electronic Proceedings in Theoretical
Computer Science, pages 89�96, Berlin, Germany, August 2015. Open Publishing Association.

[16] Ali Assaf, Gilles Dowek, Jean-Pierre Jouannaud, and Jiaxiang Liu. Encoding Proofs in De-
dukti: the case of Coq proofs. In Proceedings Hammers for Type Theories, Proc. Higher-Order
rewriting Workshop, Coimbra, Portugal, July 2016. Easy Chair.

[17] Ali Assaf, Gilles Dowek, Jean-Pierre Jouannaud, and Jiaxiang Liu. Untyped Con�uence in
Dependent Type Theories. In Proceedings Higher-Order Rewriting Workshop, Proc. Higher-
Order rewriting Workshop, Porto, Portugal, June 2016. Easy-Chair.

[18] Lennart Augustsson. Cayenne - a Language with Dependent Types. In Matthias Felleisen,
Paul Hudak, and Christian Queinnec, editors, Proceedings of the third ACM SIGPLAN In-
ternational Conference on Functional Programming (ICFP '98), Baltimore, Maryland, USA,
September 27-29, 1998., pages 239�250. ACM, 1998.

[19] Brian E. Aydemir, Aaron Bohannon, and Stephanie Weirich. Nominal Reasoning Techniques
in Coq: (Extended Abstract). Electr. Notes Theor. Comput. Sci., 174(5):69�77, 2007.

[20] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University Press,
1998.

[21] Stefan Banach and Alfred Tarski. Sur la décomposition des ensembles de points en parties
respectivement congruentes. Fundamenta Mathematicae, 6:244 � 277, 1924.

[22] Henk Barendregt. Introduction to Generalized Type Systems. J. Funct. Program., 1(2):125�
154, 1991.

[23] Henk Barendregt. Lambda calculi with types. In Samson Abramsky, Dov M. Gabbay, and
Thomas S. E. Maibaum, editors, Handbook of Logic in Computer Science, volume 2, pages
117�309. Oxford University Press, 1992.

187

http://www.lsv.ens-cachan.fr/~dowek/Publi/expressing.pdf

[24] Henk Barendregt and Erik Barendsen. Autarkic Computations in Formal Proofs. Journal of
Automated Reasoning (JAR), 28, 2002.

[25] Jasmin Christian Blanchette, Lukas Bulwahn, and Tobias Nipkow. Automatic Proof and Dis-
proof in Isabelle/HOL. In Cesare Tinelli and Viorica Sofronie-Stokkermans, editors, Frontiers
of Combining Systems, 8th International Symposium, FroCoS 2011, Saarbrücken, Germany,
October 5-7, 2011. Proceedings, volume 6989 of Lecture Notes in Computer Science, pages
12�27. Springer, 2011.

[26] Jasmin Christian Blanchette and Andrei Paskevich. TFF1: the TPTP typed �rst-order form
with rank-1 polymorphism. In Maria Paola Bonacina, editor, Automated Deduction - CADE-
24 - 24th International Conference on Automated Deduction, Lake Placid, NY, USA, June
9-14, 2013. Proceedings, volume 7898 of Lecture Notes in Computer Science, pages 414�420.
Springer, 2013.

[27] François Bobot, Sylvain Conchon, Évelyne Contejean, and Stéphane Lescuyer. Implementing
Polymorphism in SMT solvers. In SMT 2008: 6th International Workshop on Satis�ability
Modulo, 2008.

[28] Mathieu Boesp�ug and Guillaume Burel. CoqInE : Translating the calculus of inductive con-
structions into the λΠ-calculus modulo. In Proceedings of the Second International Workshop
on Proof Exchange for Theorem Proving, page 44, 2012.

[29] Mathieu Boesp�ug, Quentin Carbonneaux, and Olivier Hermant. The λΠ-calculus Modulo as
a Universal Proof Language. In Tjark Weber David Pichardie, editor, the Second International
Workshop on Proof Exchange for Theorem Proving (PxTP 2012), volume Vol. 878, pages pp.
28�43, Manchester, United Kingdom, June 2012.

[30] Bernard Bolzano. Paradoxien des Unendlichen. C.H. Reclam sen., 1851.

[31] Richard Bonichon, David Delahaye, and Damien Doligez. Zenon: An Extensible Automated
Theorem Prover Producing Checkable Proofs. In Logic for Programming, Arti�cial Intelli-
gence, and Reasoning, 14th International Conference, LPAR 2007, volume 4790 of LNCS/L-
NAI, pages 151�165. Springer, 2007.

[32] Viviana Bono, Michele Bugliesi, and Luigi Liquori. A Lambda Calculus of Incomplete Objects.
In Proceedings of the 21st International Symposium on Mathematical Foundations of Computer
Science, MFCS '96, pages 218�229, London, UK, UK, 1996. Springer-Verlag.

[33] Mélanie Boudard and Olivier Hermant. Polarizing Double Negation Translations. CoRR,
abs/1312.5420, 2013.

[34] Luitzen E. J. Brouwer. On the Signi�cance of Principle of Excluded Middle in Mathematics,
Especialy in Function Theory. In in van Heijenoort 1967, pages 302�334, 1923.

[35] Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing Object Encodings. Infor-
mation and Computation, 155(1/2):108�133, November 1999.

188

[36] Guillaume Burel. A Shallow Embedding of Resolution and Superposition Proofs into the
λΠ-Calculus Modulo. In Jasmin Christian Blanchette and Josef Urban, editors, PxTP 2013.
3rd International Workshop on Proof Exchange for Theorem Proving, volume 14 of EasyChair
Proceedings in Computing, pages 43�57, Lake Placid, USA, June 2013. EasyChair.

[37] Guillaume Bury, Raphaël Caudelier, and Pierre Halmagrand. Implementing Polymorphism in
Zenon. In 11th International Workshop on the Implementation of Logics (IWIL), Suva, Fiji,
November 2015.

[38] Guillaume Bury, David Delahaye, Damien Doligez, Pierre Halmagrand, and Olivier Hermant.
Automated Deduction in the B Set Theory using Typed Proof Search and Deduction Modulo.
In LPAR 20 : 20th International Conference on Logic for Programming, Arti�cial Intelligence
and Reasoning , Suva, Fiji, November 2015.

[39] Georg Cantor. Über eine Eigenschaft des Inbegri�s aller reellen algebraischen Zahlen. Journal
für die reine und angewandte Mathematik (Crelle's Journal), pages 258�262, 1874.

[40] G. Castagna. Surcharge, sous-typage et liaison tardive : fondements fonctionnels de la pro-
grammation orientée objets. Phd. thesis, Université Paris 7, jan 1994. (in English).

[41] Raphaël Cauderlier. A rewrite system for proof constructivization. In Proceedings of the 2016
International Workshop on Logical Frameworks and Meta-languages: Theory and Practice.
ACM, 2016. To appear.

[42] Raphaël Cauderlier and Catherine Dubois. Objects and subtyping in the λΠ-calculus modulo.
In Post-proceedings of the 20th International Conference on Types for Proofs and Programs
(TYPES 2014), Leibniz International Proceedings in Informatics (LIPIcs), Paris, 2014. Schloss
Dagstuhl.

[43] Raphaël Cauderlier and Catherine Dubois. ML pattern-matching, recursion, and rewriting:
from FoCaLiZe to Dedukti. In Theoretical Aspects of Computing - ICTAC 2016, LNCS.
Springer Berlin Heidelberg, 2016. To appear.

[44] Raphaël Cauderlier and Pierre Halmagrand. Checking Zenon Modulo Proofs in Dedukti. In
Kaliszyk, Cezary and Paskevich, Andrei, editor, Proceedings 4th Workshop on Proof eX-
change for Theorem Proving, Berlin, Germany, August 2-3, 2015, volume 186 of Electronic
Proceedings in Theoretical Computer Science, pages 57�73, Berlin, Germany, August 2015.
Open Publishing Association.

[45] Raphaël Cauderlier. A rewrite system for elimination of the functional extensionality
and univalence axioms. Draft available online at https://who.rocq.inria.fr/Raphael.

Cauderlier/, 2016.

[46] James Cheney and Christian Urban. alpha-Prolog: A Logic Programming Language with
Names, Binding and a-Equivalence. In Bart Demoen and Vladimir Lifschitz, editors, Logic
Programming, 20th International Conference, ICLP 2004, Saint-Malo, France, September 6-
10, 2004, Proceedings, volume 3132 of Lecture Notes in Computer Science, pages 269�283.
Springer, 2004.

189

https://who.rocq.inria.fr/Raphael.Cauderlier/
https://who.rocq.inria.fr/Raphael.Cauderlier/

[47] Zakaria Chihani. Certi�cation of First-order proofs in classical and intuitionistic logics. PhD
thesis, EDX École Polytechnique, 2015.

[48] Alonzo Church and John B. Rosser. Some properties of conversion. In Transactions of the
American Mathematical Society, volume 39, pages 472�482, 1936.

[49] Alberto Cia�aglione, Luigi Liquori, and Marino Miculan. Reasoning About Object-based
Calculi in (Co)Inductive Type Theory and the Theory of Contexts. J. Autom. Reason.,
39(1):1�47, July 2007.

[50] Horatiu Cirstea, Claude Kirchner, and Luigi Liquori. Matching Power. In Proceedings of
RTA'2001, Lecture Notes in Computer Science. Springer-Verlag, May 2001.

[51] Horatiu Cirstea, Luigi Liquori, and Benjamin Wack. Rewriting Calculus with Fixpoints:
Untyped and First-order Systems. In TYPES, volume 3085. Springer, 2003.

[52] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José
Meseguer, and Carolyn Talcott. The Maude 2.0 System. In Robert Nieuwenhuis, editor,
Rewriting Techniques and Applications (RTA 2003), number 2706 in Lecture Notes in Com-
puter Science, pages 76�87. Springer-Verlag, June 2003.

[53] Dominique Clément, Joëlle Despeyroux, Thierry Despeyroux, and Gilles Kahn. A simple
applicative language: Mini-ML. Research Report RR-0529, INRIA, 1986.

[54] Robert L. Constable, Stuart F. Allen, Mark Bromley, Rance Cleaveland, J. F. Cremer, R. W.
Harper, Douglas J. Howe, Todd B. Knoblock, N. P. Mendler, Prakash Panangaden, James T.
Sasaki, and Scott F. Smith. Implementing mathematics with the Nuprl proof development
system. Prentice Hall, 1986.

[55] Denis Cousineau and Gilles Dowek. Embedding Pure Type Systems in the Lambda-Pi-
Calculus Modulo. In Simona Ronchi Della Rocca, editor, TLCA, volume 4583 of LNCS,
pages 102�117. Springer, 2007.

[56] Simon Cruanes. Extending Superposition with Integer Arithmetic, Structural Induction, and
Beyond. PhD thesis, Ecole Polytechnique, 2015.

[57] Pierre-Louis Curien and Hugo Herbelin. The Duality of Computation. SIGPLAN Not.,
35(9):233�243, September 2000.

[58] Haskell B. Curry. Functionality in Combinatory Logic. In In Proceedings of the National
Academy of Sciences of the United States of America, pages 584�590, 1934.

[59] Luís Damas and Robin Milner. Principal Type-Schemes for Functional Programs. In
Richard A. DeMillo, editor, Conference Record of the Ninth Annual ACM Symposium on
Principles of Programming Languages, Albuquerque, New Mexico, USA, January 1982, pages
207�212. ACM Press, 1982.

[60] David Delahaye. A Tactic Language for the System Coq. In Michel Parigot and Andrei
Voronkov, editors, Logic for Programming and Automated Reasoning (LPAR), volume 1955 of
Lecture Notes in Computer Science (LNCS)/Lecture Notes in Arti�cial Intelligence (LNAI),
pages 85�95, Reunion Island (France), November 2000. Springer.

190

[61] David Delahaye, Damien Doligez, Frédéric Gilbert, Pierre Halmagrand, and Olivier Hermant.
Zenon Modulo: When Achilles Outruns the Tortoise using Deduction Modulo. In Ken McMil-
lan, Aart Middeldorp, and Andrei Voronkov, editors, Logic for Programming Arti�cial In-
telligence and Reasoning (LPAR), volume 8312 of LNCS/ARCoSS, pages 274�290. Springer
Berlin Heidelberg, dec 2013.

[62] David Delahaye, Catherine Dubois, Claude Marché, and David Mentré. The BWare Project:
Building a Proof Platform for the Automated Veri�cation of B Proof Obligations. In Abstract
State Machines, Alloy, B, VDM, and Z (ABZ), LNCS. Springer, 2014.

[63] The Coq development team. The Coq Reference Manual, version 8.4, August 2012.

[64] Pietro Di Gianantonio, Furio Honsell, and Luigi Liquori. A Lambda Calculus of Objects with
Self-in�icted Extension. SIGPLAN Not., 33(10):166�178, October 1998.

[65] Radu Diaconescu. Axiom of choice and complementation. In Proceedings of the American
Mathematical Society, volume 51, pages 176�178, August 1975.

[66] Gilles Dowek. Proofs and Algorithms - An Introduction to Logic and Computability. Under-
graduate Topics in Computer Science. Springer, 2011.

[67] Gilles Dowek. Deduction modulo theory. In All about proofs, proofs for all, 2014.

[68] Gilles Dowek. On the de�nition of the classical connectives and quanti�ers. In Why is this a
Proof? Festschrift for Luiz Carlos Pereira. College Publication, 2015.

[69] Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Theorem Proving Modulo. Journal of
Automated Reasoning (JAR), 31, 2003.

[70] Gilles Dowek and Benjamin Werner. Proof normalization modulo. The Journal of Symbolic
Logic, 68(4):1289�1316, 2003.

[71] Catherine Dubois and François Pessaux. Termination proofs for recursive functions in fo-
calize. In Manuel Serrano and Jurriaan Hage, editors, Trends in Functional Programming -
16th International Symposium, TFP 2015, Sophia Antipolis, France, June 3-5, 2015. Revised
Selected Papers, volume 9547 of Lecture Notes in Computer Science, pages 136�156. Springer,
2016.

[72] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 - where programs meet provers. In
ESOP, volume 7792 of Lecture Notes in Computer Science, pages 125�128. Springer, 2013.

[73] Kathleen Fisher, Furio Honsell, and John C. Mitchell. A lambda Calculus of Objects and
Method Specialization. Nordic Journal of Computing, 1:3�37, 1994.

[74] Kathleen Fisher and John C. Mitchell. A Delegation-based Object Calculus with Subtyping.
In In Proc. of FCT, pages 42�61. Springer-Verlag, 1995.

[75] J. Nathan Foster and Dimitrios Vytiniotis. A Theory of Featherweight Java in Isabelle/HOL.
Archive of Formal Proofs, March 2006. http://afp.sf.net/entries/FeatherweightJava.

shtml, Formal proof development.

191

http://afp.sf.net/entries/FeatherweightJava.shtml
http://afp.sf.net/entries/FeatherweightJava.shtml

[76] Thomas Genet, Barbara Kordy, and Amaury Vansyngel. Vers un outil de véri�cation formelle
légère pour OCaml. In Frédéric Dadeau and Pascale Le Gall, editors, AFADL 2015, pages
28�33, Bordeaux, France, May 2015.

[77] Gerhard Gentzen. Über das verhältnis zwischen intuitionistischer und klassischer arithmetik.
Archiv für mathematische Logik und Grundlagenforschung, 16(3):119�132, 1974.

[78] Herman Geuvers. Logics and type systems. PhD thesis, University of Nijmegen, 1993.

[79] Jürgen Giesl, Matthias Ra�elsieper, Peter Schneider-Kamp, Stephan Swiderski, and René
Thiemann. Automated Termination Proofs for Haskell by Term Rewriting. ACM Trans.
Program. Lang. Syst., 33(2):7:1�7:39, February 2011.

[80] Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, and Stephan Falke. Automated termi-
nation proofs with aprove. In RTA, volume 3091 of Lecture Notes in Computer Science, pages
210�220. Springer, 2004.

[81] Frederic Gilbert. A Lightweight Double-negation Translation. In Ansgar Fehnker, Annabelle
McIver, Geo� Sutcli�e, and Andrei Voronkov, editors, LPAR-20. 20th International Confer-
ences on Logic for Programming, Arti�cial Intelligence and Reasoning - Short Presentations,
volume 35 of EPiC Series in Computing, pages 81�93. EasyChair, 2015.

[82] Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de l'arithmétique
d'ordre supérieur. PhD thesis, Université Paris 7, 1972.

[83] Kurt Gödel. Zur intuitionistischen Arithmetik und Zahlentheorie. Ergebnisse eines mathema-
tischen Kolloquiums, 4(1933):34�38, 1933.

[84] Georges Gonthier. The Four Colour Theorem: Engineering of a Formal Proof. In Deepak
Kapur, editor, Computer Mathematics, 8th Asian Symposium, ASCM 2007, Singapore, De-
cember 15-17, 2007. Revised and Invited Papers, volume 5081 of Lecture Notes in Computer
Science, page 333. Springer, 2007.

[85] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen, François Gar-
illot, Stéphane Le Roux, Assia Mahboubi, Russell O'Connor, Sidi Ould Biha, Ioana Pasca,
Laurence Rideau, Alexey Solovyev, Enrico Tassi, and Laurent Théry. A Machine-Checked
Proof of the Odd Order Theorem. In Sandrine Blazy, Christine Paulin-Mohring, and David
Pichardie, editors, Interactive Theorem Proving - 4th International Conference, ITP 2013,
Rennes, France, July 22-26, 2013. Proceedings, volume 7998 of Lecture Notes in Computer
Science, pages 163�179. Springer, 2013.

[86] Georges Gonthier, Assia Mahboubi, and Enrico Tassi. A Small Scale Re�ection Extension for
the Coq system. Research Report RR-6455, Inria Saclay Ile de France, 2015.

[87] Mike Gordon. From LCF to HOL: a short history. In Gordon D. Plotkin, Colin Stirling, and
Mads Tofte, editors, Proof, Language, and Interaction, Essays in Honour of Robin Milner,
pages 169�186. The MIT Press, 2000.

[88] Albert Gräf. Pure Quick Reference, 2013.

192

[89] Thomas C. Hales, Mark Adams, Gertrud Bauer, Dat Tat Dang, John Harrison, Truong Le
Hoang, Cezary Kaliszyk, Victor Magron, Sean McLaughlin, Thang Tat Nguyen, Truong Quang
Nguyen, Tobias Nipkow, Steven Obua, Joseph Pleso, Jason Rute, Alexey Solovyev,
An Hoai Thi Ta, Trung Nam Tran, Diep Thi Trieu, Josef Urban, Ky Khac Vu, and Roland
Zumkeller. A formal proof of the Kepler conjecture. CoRR, abs/1501.02155, 2015.

[90] Robert Harper, Furio Honsell, and Gordon Plotkin. A Framework for De�ning Logics. Journal
of the ACM, 40(1):143�184, January 1993.

[91] Robert Harper and Daniel R. Licata. Mechanizing metatheory in a logical framework. J.
Funct. Program., 17(4-5):613�673, 2007.

[92] Felix Hausdor�. Bemerkung über den inhalt von punktmengen. Mathematische Annalen,
75:428 � 434, 1914.

[93] Ludovic Henrio, Florian Kammüller, Bianca Lutz, and Henry Sudhof. Locally Nameless
Sigma Calculus. Archive of Formal Proofs, April 2010. http://afp.sf.net/entries/

Locally-Nameless-Sigma.shtml, Formal proof development.

[94] Arend Heyting. Die formalen Regeln der intuitionistischen Logik. I, II, III. Sitzungsberichte
Akad. Berlin, pages 42�56, 1930.

[95] Jason Hickey, Aleksey Nogin, Robert L. Constable, Brian E. Aydemir, Eli Barzilay, Yegor
Bryukhov, Richard Eaton, Adam Granicz, Alexei Kopylov, Christoph Kreitz, Vladimir Krup-
ski, Lori Lorigo, Stephan Schmitt, Carl Witty, and Xin Yu. MetaPRL - A Modular Logical
Environment. In David A. Basin and Burkhart Wol�, editors, Theorem Proving in Higher Or-
der Logics, 16th International Conference, TPHOLs 2003, Rom, Italy, September 8-12, 2003,
Proceedings, volume 2758 of Lecture Notes in Computer Science, pages 287�303. Springer,
2003.

[96] J. Roger Hindley. The principal type-scheme of an object in combinatory logic. Transactions
of the American Mathematical Society, 146:29�60, 1969.

[97] Fulya Horozal and Florian Rabe. Representing model theory in a type-theoretical logical
framework. Theoretical Computer Science, 412:4919�4945, 2011.

[98] William A. Howard. The Formulae-as-types Notion of Construction. In J. P. Seldin and
J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, pages 479�490. Academic Press, 1980. Reprint of a manuscript written in 1969.

[99] Joe Hurd. The OpenTheory Standard Theory Library. In NASA Formal Methods, pages
177�191, 2011.

[100] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java - A Minimal Core
Calculus for Java and GJ. In ACM Transactions on Programming Languages and Systems,
pages 132�146, 1999.

[101] Thomas Johnsson. Lambda Lifting: Transforming Programs to Recursive Equations. In Proc.
Of a Conference on Functional Programming Languages and Computer Architecture, pages
190�203, New York, NY, USA, 1985. Springer-Verlag New York, Inc.

193

http://afp.sf.net/entries/Locally-Nameless-Sigma.shtml
http://afp.sf.net/entries/Locally-Nameless-Sigma.shtml

[102] Wolfram Kahl. Basic Pattern Matching Calculi: A Fresh View on Matching Failure. In
Yukiyoshi Kameyama and Peter Stuckey, editors, Functional and Logic Programming, Pro-
ceedings of FLOPS 2004, volume 2998 of LNCS, pages 276�290. Springer, 2004.

[103] Cezary Kaliszyk and Alexander Krauss. Scalable LCF-style proof translation. In Sandrine
Blazy, Christine Paulin-Mohring, and David Pichardie, editors, Interactive Theorem Proving,
number 7998 in LNCS, pages 51�66. Springer Berlin Heidelberg, 2013.

[104] Chantal Keller and Benjamin Werner. Importing HOL Light into Coq. In Matt Kaufmann
and Lawrence C. Paulson, editors, ITP, number 6172 in LNCS, pages 307�322. Springer Berlin
Heidelberg, 2010.

[105] Delia Kesner, Laurence Puel, and Val Tannen. A Typed Pattern Calculus. Information and
Computation, 124(1):32�61, 1996.

[106] Jan Willem Klop, Vincent van Oostrom, and Roel de Vrijer. Lambda calculus with patterns.
Theoretical Computer Science, 398(1�3):16�31, 2008. Calculi, Types and Applications: Essays
in honour of M. Coppo, M. Dezani-Ciancaglini and S. Ronchi Della Rocca.

[107] Andrey N. Kolmogorov. On the principle of the excluded middle. In Jean van Heijenoort,
editor, A Source Book in Mathematical Logic, 1879�1931, pages 414�437. Harvard Univ., 1925.

[108] Andrey N. Kolmogorov. Zur deutung der intuitionistischen logik. mathematische zeitschrift,
35:5865. In English translation in Selected works of A.N. Kolmogorov. Volume I: Mathematics
and Mechanics, 1932.

[109] Laura Kovács and Andrei Voronkov. First-Order Theorem Proving and Vampire. In Natasha
Sharygina and Helmut Veith, editors, Computer Aided Veri�cation - 25th International Con-
ference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings, volume 8044 of
Lecture Notes in Computer Science, pages 1�35. Springer, 2013.

[110] Jean-Louis Krivine. Opérateurs de mise en mémoire et traduction de gödel. Archive for
Mathematical Logic, 30(4):241�267, 1990.

[111] Jean-Louis Krivine. Typed lambda-calculus in classical Zermelo-Frænkel set theory. Archive
for Mathematical Logic, 40(3):189�205, 2001.

[112] Sigekatu Kuroda. Intuitionistische untersuchungen der formalistischen logik. Nagoya Math.
J., 2:35�47, 1951.

[113] Daniel K. Lee, Karl Crary, and Robert Harper. Towards a mechanized metatheory of stan-
dard ML. In Martin Hofmann and Matthias Felleisen, editors, Proceedings of the 34th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2007, Nice,
France, January 17-19, 2007, pages 173�184. ACM, 2007.

[114] Xavier Leroy. Introduction to types in compilation. In Xavier Leroy and Atsushi Ohori, editors,
Types in Compilation, Second International Workshop, TIC '98, Kyoto, Japan, March 25-27,
1998, Proceedings, volume 1473 of Lecture Notes in Computer Science, pages 1�8. Springer,
1998.

194

[115] Xavier Leroy. A modular module system. J. Funct. Program., 10(3):269�303, 2000.

[116] Luigi Liquori and Giuseppe Castagna. A typed Lambda Calculus of Objects. In Concurrency
and Parallelism, Programming, Networking, and Security: Second Asian Computing Science
Conference, volume ASIAN'96 Singapore, pages 129�141, Berlin, Heidelberg, December 1996.
Springer Berlin Heidelberg.

[117] Salvador Lucas and Ricardo Peña. Rewriting Techniques for Analysing Termination and
Complexity Bounds of SAFE Programs. In LOPSTR'08, pages 43�57, Valencia, Spain, July
2008.

[118] Zhaohui Luo. Logical Foundations of Computer Science � Tver '92: Second International
Symposium Tver, Russia, July 20�24, 1992 Proceedings, chapter A unifying theory of de-
pendent types: the schematic approach, pages 293�304. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1992.

[119] Zhaohui Luo. PAL+: a lambda-free logical framework. J. Funct. Program., 13(2):317�338,
2003.

[120] Julian Mackay, Hannes Mehnert, Alex Potanin, Lindsay Groves, and Nicholas Cameron. En-
coding Featherweight Java with Assignment and Immutability Using the Coq Proof Assistant.
InWorkshop on Formal Techniques for Java-like Programs, FTfJP '12, pages 11�19, New York,
NY, USA, 2012. ACM.

[121] Luc Maranget. Compiling Pattern Matching to Good Decision Trees. In Workshop on the
Language ML. ACM Press, September 2008.

[122] Per Martin-Löf. An Intuitionistic Theory of Types: Predicative Part. In H.E. Rose and J.C.
Shepherdson, editors, Logic Colloquium '73, Proceedings of the Logic Colloquium, volume 80
of Studies in Logic and the Foundations of Mathematics, pages 73�118. North-Holland, 1975.

[123] Per Martin-Löf. An Intuitionistic Theory of Types. Twenty-�ve years of constructive type
theory, 36:127�172, 1998.

[124] Richard Mayr and Tobias Nipkow. Higher-Order Rewrite Systems and their Con�uence.
Theoretical Computer Science, 192:3�29, 1998.

[125] Dale Miller. A Logic Programming Language with Lambda-Abstraction, Function Variables,
and Simple Uni�cation. Journal of Logic and Computation, 1:253�281, 1991.

[126] Dale Miller. A proposal for broad spectrum proof certi�cates. In Certi�ed Programs and
Proofs (CPP). Springer, 2011.

[127] Dale Miller. Foundational proof certi�cates: making proof universal and permanent. In
Alberto Momigliano, Brigitte Pientka, and Randy Pollack, editors, Proceedings of the Eighth
ACM SIGPLAN International Workshop on Logical Frameworks & Meta-languages: Theory &
Practice, LFMTP 2013, Boston, Massachusetts, USA, September 23, 2013, pages 1�2. ACM,
2013.

[128] Dale Miller and Gopalan Nadathur. Programming with Higher-Order Logic. Cambridge Uni-
versity Press, 2012.

195

[129] Dale Miller and Marco Volpe. Focused labeled proof systems for modal logic. In Martin Davis,
Ansgar Fehnker, Annabelle McIver, and Andrei Voronkov, editors, Logic for Programming,
Arti�cial Intelligence, and Reasoning - 20th International Conference, LPAR-20 2015, Suva,
Fiji, November 24-28, 2015, Proceedings, volume 9450 of Lecture Notes in Computer Science,
pages 266�280. Springer, 2015.

[130] Julian Nagele. CoCo 2015 Participant: CSI�ho 0.1 . In Ashish Tiwari and Takahito Aoto,
editors, IWC 2015, 4th International Workshop on Con�uence, Proceedings, page 47, 2015.

[131] Pavel Naumov, Mark-Oliver Stehr, and José Meseguer. The HOL/NuPRL proof translator.
In Richard J. Boulton and Paul B. Jackson, editors, Theorem Proving in Higher Order Logics,
number 2152 in LNCS, pages 329�345. Springer Berlin Heidelberg, 2001.

[132] R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer. Selected papers on Automath. Elsevier,
Amsterdam, 1994.

[133] Bengt Nordstrom, Kent Petersson, and Jan M Smith. Programming in Martin-Lof's Type
Theory. An Introduction. In Number 7 in International series of monographs on computer
science. Oxford University Press, 1989.

[134] Ulf Norell. Dependently Typed Programming in Agda. In Andrew Kennedy and Amal Ahmed,
editors, Proceedings of TLDI'09: 2009 ACM SIGPLAN International Workshop on Types in
Languages Design and Implementation, Savannah, GA, USA, January 24, 2009, pages 1�2.
ACM, 2009.

[135] Steven Obua and Sebastian Skalberg. Importing HOL into Isabelle/HOL. In Ulrich Furbach
and Natarajan Shankar, editors, Automated Reasoning, number 4130 in LNCS, pages 298�302.
Springer Berlin Heidelberg, 2006.

[136] Hans Jürgen Ohlbach. Extensions of �rst-order logic, maria manzano. Journal of Logic,
Language and Information, 7(3):389�391, 1998.

[137] Kouta Onozawa, Kentaro Kikuchi, Takahito Aoto, and Yoshihito Toyama. ACPH: System
Description. In Ashish Tiwari and Takahito Aoto, editors, IWC 2015, 4th International
Workshop on Con�uence, Proceedings, page 39, 2015.

[138] Jens Otten. Clausal Connection-Based Theorem Proving in Intuitionistic First-Order Logic.
In Bernhard Beckert, editor, Automated Reasoning with Analytic Tableaux and Related Meth-
ods, International Conference, TABLEAUX 2005, Koblenz, Germany, September 14-17, 2005,
Proceedings, volume 3702 of Lecture Notes in Computer Science, pages 245�261. Springer,
2005.

[139] Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A prototype veri�cation system.
In CADE, volume 607 of Lecture Notes in Computer Science, pages 748�752. Springer, 1992.

[140] Michel Parigot. Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical Natu-
ral Deduction. In Andrei Voronkov, editor, Logic Programming and Automated Reason-
ing,International Conference LPAR'92, St. Petersburg, Russia, July 15-20, 1992, Proceedings,
volume 624 of Lecture Notes in Computer Science, pages 190�201. Springer, 1992.

196

[141] Christine Paulin-Mohring. Introduction to the Calculus of Inductive Constructions. In
Bruno Woltzenlogel Paleo and David Delahaye, editors, All about Proofs, Proofs for All,
volume 55 of Studies in Logic (Mathematical logic and foundations). College Publications,
January 2015.

[142] Francis Je�ry Pelletier, Geo� Sutcli�e, and Christian B. Suttner. The development of CASC.
AI Commun., 15(2-3):79�90, 2002.

[143] François Pessaux. FoCaLiZe: Inside an F-IDE. In Catherine Dubois, Dimitra Giannakopoulou,
and Dominique Méry, editors, Proceedings 1st Workshop on Formal Integrated Development
Environment, F-IDE 2014, Grenoble, France, April 6, 2014., volume 149 of EPTCS, pages
64�78, 2014.

[144] Dorian Petit, Vincent Poirriez, and Georges Mariano. Reuse of SML module system for the
B language. In Forum on speci�cation and Design Languages, FDL 2004, September 14-17,
2004, Lille, France, Proceedings, pages 637�649. ECSI, 2004.

[145] Simon L. Peyton Jones. The Implementation of Functional Programming Languages (Prentice-
Hall International Series in Computer Science). Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1987.

[146] Frank Pfenning and Conal Elliott. Higher-Order Abstract Syntax. In Programming Language
Design and Implementation, 1988.

[147] Frank Pfenning and Carsten Schürmann. System description: Twelf � a meta-logical frame-
work for deductive systems. In International Conference on Automated Deduction (CADE-16),
number 1632 in LNCS, pages 202�206. Springer Berlin Heidelberg, 1999.

[148] Benjamin C. Pierce and David N. Turner. Simple Type-Theoretic Foundations for Object-
Oriented Programming. Journal of Functional Programming, 4(2):207�247, April 1994.

[149] Andrew M. Pitts. Nominal logic, a �rst order theory of names and binding. Inf. Comput.,
186(2):165�193, 2003.

[150] Virgile Prevosto. Conception et Implantation du langage FoC pour le développement de logiciels
certi�és. Thèse de doctorat, Université Paris 6, September 2003.

[151] Thomas Raths, Jens Otten, and Christoph Kreitz. The ILTP library: Benchmarking auto-
mated theorem provers for intuitionistic logic. In Bernhard Beckert, editor, Automated Rea-
soning with Analytic Tableaux and Related Methods, International Conference, TABLEAUX
2005, Koblenz, Germany, September 14-17, 2005, Proceedings, volume 3702 of Lecture Notes
in Computer Science, pages 333�337. Springer, 2005.

[152] John Alan Robinson. A Machine-Oriented Logic Based on the Resolution Principle. J. ACM,
12(1):23�41, January 1965.

[153] Bertrand Russell. Mathematical logic as based on the theory of types. American Journal of
Mathematics, 30, 1908.

[154] Ronan Saillard. Towards explicit rewrite rules in the λΠ-calculus modulo. In IWIL - 10th
International Workshop on the Implementation of Logics, 2013.

197

[155] Ronan Saillard. Type Checking in the Lambda-Pi-Calculus Modulo: Theory and Practice. PhD
thesis, MINES Paritech, 2015.

[156] Ronan Saillard. User Manual for Dedukti v2.5, 2015.

[157] Stephan Schulz. System Description: E 1.8. In Ken McMillan, Aart Middeldorp, and Andrei
Voronkov, editors, Proc. of the 19th LPAR, Stellenbosch, volume 8312 of LNCS, pages 735�
743. Springer, 2013.

[158] Carsten Schürmann and Mark-Oliver Stehr. An Executable Formalization of the HOL/Nuprl
Connection in the Metalogical Framework Twelf. In Miki Hermann and Andrei Voronkov,
editors, Logic for Programming, Arti�cial Intelligence, and Reasoning, number 4246 in LNCS,
pages 150�166. Springer Berlin Heidelberg, 2006.

[159] Dana Scott. Constructive Validity, pages 237�275. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 1970.

[160] Tim Sheard. Languages of the future. SIGPLAN Notices, 39(12):119�132, 2004.

[161] Raymond M Smullyan. First-order logic. Courier Corporation, 1995.

[162] Geo� Sutcli�e. TPTP, TSTP, CASC, etc. In V. Diekert, M. Volkov, and A. Voronkov, editors,
Proceedings of the 2nd International Computer Science Symposium in Russia, number 4649
in Lecture Notes in Computer Science, pages 7�23. Springer-Verlag, 2007.

[163] Geo� Sutcli�e. The TPTP Problem Library and Associated Infrastructure: The FOF and
CNF Parts, v3.5.0. Journal of Automated Reasoning, 43(4):337�362, 2009.

[164] Geo� Sutcli�e, Stephan Schulz, Koen Claessen, and Allen Van Gelder. Using the TPTP
Language for Writing Derivations and Finite Interpretations. In Ulrich Furbach and Natarajan
Shankar, editors, Automated Reasoning, volume 4130 of LNCS, pages 67�81. Springer Berlin
Heidelberg, 2006.

[165] Geo� Sutcli�e and Christian B. Suttner. The state of CASC. AI Communications, 19(1):35�
48, 2006.

[166] Christian Urban and Christine Tasson. Nominal Techniques in Isabelle/HOL. In Robert
Nieuwenhuis, editor, Automated Deduction - CADE-20, 20th International Conference on
Automated Deduction, Tallinn, Estonia, July 22-27, 2005, Proceedings, volume 3632 of Lecture
Notes in Computer Science, pages 38�53. Springer, 2005.

[167] Vincent van Oostrom. Developing developments. Theoretical Computer Science, 175(1):159 �
181, 1997.

[168] Vincent van Oostrom and Femke van Raamsdonk. Weak Orthogonality Implies Con�uence:
The Higher Order Case. In Anil Nerode and Yuri Matiyasevich, editors, Logical Foundations
of Computer Science, Third International Symposium, LFCS'94, St. Petersburg, Russia, July
11-14, 1994, Proceedings, volume 813 of Lecture Notes in Computer Science, pages 379�392.
Springer, 1994.

198

[169] Je�rey A. Vaughan. A Review of Three Techniques for Formally Representing Variable Bind-
ing. Technical report, University of Pennsylvania, December 2006.

[170] Daniel Wand. Polymorphic+Typeclass Superposition. In Boris Konev, Leonardo de Moura,
and Stephan Schulz, editors, 4th Workshop on Practical Aspects of Automated Reasoning
(PAAR 2014), Vienna, Austria, 2014.

[171] Shuai Wang. A Quantitative Analysis of Kernel Extension for Higher Order Proof Checking.
Draft available online at https://airobert.github.io/holala.pdf.

[172] Shuai Wang. Higher Order Proof Engineering: Proof Collaboration, Transformation, Checking
and Retrieval. In AITP 2016 - Conference on Arti�cial Intelligence and Theorem Proving,
Obergurgl, Austria, April 2016.

[173] Alfred North Whitehead and Bertrand Russell. Principia Mathematica, volume Volume 1.
Cambridge University Press, 1st edition, 1910.

[174] Hongwei Xi. Applied Type System: Extended Abstract. In Stefano Berardi, Mario Coppo, and
Ferruccio Damiani, editors, Types for Proofs and Programs, International Workshop, TYPES
2003, Torino, Italy, April 30 - May 4, 2003, Revised Selected Papers, volume 3085 of Lecture
Notes in Computer Science, pages 394�408. Springer, 2003.

[175] Ernst Zermelo. Untersuchungen über die grundlagen der mengenlehre. i. Mathematische
Annalen, 65(2):261�281, 1908.

[176] Jan Zwanenburg. Object-Oriented Concepts and Proof Rules: Formalization in Type Theory
and Implementation in Yarrow. PhD thesis, Eindhoven University of Technology, 1999.

199

https://airobert.github.io/holala.pdf

	I Background
	First-Order Logic and First-Order Rewriting
	First-Order Logic
	Syntax
	A Proof System for First-Order Logic: Natural Deduction
	Polymorphic First-Order Logic

	Term Rewriting
	Deduction Modulo
	Presentation
	Extending First-Order Logic
	Termination and Consistency

	Zenon Modulo

	Lambda-Calculus and Type Theory
	Lambda-Calculus
	Simple Types
	Polymorphism
	Damas-Hindley-Milner Type System
	HOL

	Dependent Types
	Martin-Löf Type Theory
	Curry-Howard Correspondence for Natural Deduction
	The Calculus of Inductive Constructions

	Logical Frameworks
	Representing Binding
	Edinburgh Logical Framework
	Martin-Löf's Logical Framework
	Internal vs. External Conversion
	Proposition-as-Type vs. Judgment-as-Type

	Dedukti: a Universal Proof Checker
	Higher-Order Rewriting
	The Lambda-Pi-Calculus Modulo
	Dedukti
	Syntax
	Commands
	Confluence Checking

	Proving and Programming in Dedukti
	Smart Constructors
	Partial Functions
	Encoding Polymorphism
	Overfull Definitions
	Meta-Programming

	Translating Logical Systems in Dedukti
	First-Order Logic in Dedukti
	Coqine
	Holide

	II Object Calculi in Dedukti
	Simply-Typed Sigma-Calculus in Dedukti
	Simply-Typed Sigma-Calculus
	Syntax
	Typing
	Operational Semantics
	Examples

	Translation of Types in Dedukti
	Membership as an Inductive Relation
	Terminating Translation of Terms
	Objects, Methods, and Preobjects
	Method Selection and Update
	Translation Function for Terms
	Typing Preservation

	Shallow Embedding

	Object Subtyping in Dedukti
	Simply-Typed Sigma-Calculus with Subtyping
	Example
	Translation of the Subtyping Relation
	Explicit Coercions
	Reverse Translation
	Canonicity

	The Implementation Sigmaid
	Initiating Objects
	Decidability
	Efficiency
	Optimization at the Meta-Level

	III From FoCaLiZe to Dedukti
	FoCaLiZe
	FoCaLiZe Computational Language
	Types
	Expressions

	Logical Language: FOL
	Formulae
	Proofs

	Object-Oriented Mechanisms
	Species
	Methods
	Inheritance
	Undefined methods
	Redefinition
	Collections
	Parameters

	Compilation
	Compilation Passes
	Lifting and Dependency Calculus
	Backend Input Language
	Compilation of Proofs to Coq

	Computational Part: Compiling ML to Dedukti
	Pattern Matching
	Lifting of Pattern Matchings
	Serialization
	Compiling Patterns to Destructors
	Destructors in Dedukti

	Recursive Functions
	Examples
	Naive Translation
	Call-by-Value Application Combinator
	Local Recursion
	Termination
	Efficiency and Limitations

	Related Work

	Logical Part: Interfacing FoCaLiZe with Zenon Modulo
	Extending Zenon to Typing
	The FoCaLiZe Extension
	The Induction Extension
	Higher-Order Right-Hand Sides

	IV Object-Oriented Interoperability between Logical Systems
	Manual Interoperability between Coq and HOL
	Mixing Coq and HOL Logics
	Type Inhabitation
	Booleans and Propositions

	Case Study: Sorting Coq Lists of HOL Numbers
	Limitations

	Automation using FoCaLiZe and Zenon Modulo
	An Implementation of the Sieve of Eratosthenes in Coq
	Programming the Sieve of Eratosthenes in Coq
	Specification
	Correctness proof

	Relating FoCaLiZe Logic with Coq and HOL
	FoCaLiZe as a User Interface to HOL
	Specifying Arithmetic as a FoCaLiZe Hierarchy of Species
	Abstract arithmetic structures
	Morphisms Between Representations
	Instantiation of Coq Natural Numbers
	Instantiation of HOL Natural Numbers
	Instantiation of the Morphism

	Discussion

	Proof Constructivization
	Partial Definitions of Classical Axioms
	A Rewrite System for the Law of Excluded Middle
	A Rewrite System for the Law of Double Negation

	Inspecting the Proof
	Two Trivial Special Cases
	Eliminating Negation Proofs
	Exchanging Elimination Rules
	Confluence

	Combining Rewrite Systems
	Example: Zenon Classical Proof of A Implies A
	Experimental Results
	B Proof Obligations
	FoCaLiZe Standard Library

	Related Work
	Double-Negation Translations
	Intuitionistic Provers
	Zenonide
	Extensions of the Curry-Howard Correspondence for Classical Logic

