An application of the Grönwall lemma avoiding exponential of the final time: a posteriori error estimates for the Stefan and Richards problems

Martin Vohralík

in collaboration with Daniele Di Pietro, Koondanibha Mitra, and Soleiman Yousef

Inria Paris & Ecole des Ponts

Pittsburgh, May 1, 2024

Outline

The heat equation

The Grönwall lemma

3 The Stefan equation

- A posteriori error estimates
- Numerical experiments
- Wrap up
- 4 The Richards equation
 - A posteriori error estimates
 - Numerical experiments
 - Wrap up
- 5 Two-phase porous media flows
- 6 Conclusions

The heat equation $(f \in L^2(0, T; L^2(\Omega)), u_0 \in L^2(\Omega))$

The heat equation

$$\partial_t u - \Delta u = f$$
 in $\Omega \times (0, T)$,
 $u = 0$ on $\partial \Omega \times (0, T)$,
 $u(0) = u_0$ in Ω

The heat equation $(f \in L^2(0, T; L^2(\Omega)), u_0 \in L^2(\Omega))$

The heat equation

$$\partial_t u - \Delta u = f \quad \text{in } \Omega \times (0, T),$$

 $u = 0 \quad \text{on } \partial \Omega \times (0, T),$
 $u(0) = u_0 \quad \text{in } \Omega$

Spaces

$$\begin{aligned} \mathbf{X} &:= L^2(0, T; H_0^1(\Omega)), \|\mathbf{v}\|_X^2 := \int_0^T \|\nabla \mathbf{v}\|^2 \, \mathrm{d}t, \\ \mathbf{Y} &:= L^2(0, T; H_0^1(\Omega)) \cap H^1(0, T; H^{-1}(\Omega)), \|\mathbf{v}\|_Y^2 := \int_0^T \|\partial_t \mathbf{v}\|_{H^{-1}(\Omega)}^2 + \|\nabla \mathbf{v}\|^2 \, \mathrm{d}t + \|\mathbf{v}(T)\|^2 \end{aligned}$$

Y norm error characterization, $u_{h au} \in X$

$$\|u-u_{h\tau}\|_{Y}^{2} = \sup_{v \in X, \|v\|_{X}=1} \left[\int_{0}^{T} (f,v) - \langle \partial_{t}u_{h\tau}, v \rangle - (\nabla u_{h\tau}, \nabla v) dt \right]^{2} + \underbrace{\|u_{0} - u_{h\tau}(0)\|^{2}}_{\text{initial condition}}$$

dual norm of the residual

M. Vohralík

Grönwall lemma avoiding e^T: a posteriori error estimates for the Stefan & Richards problems 2/32

The heat equation $(f \in L^2(0, T; L^2(\Omega)), u_0 \in L^2(\Omega))$

The heat equation

$$\partial_t u - \Delta u = f \quad \text{in } \Omega \times (0, T),$$

 $u = 0 \quad \text{on } \partial \Omega \times (0, T),$
 $u(0) = u_0 \quad \text{in } \Omega$

Spaces

$$\begin{aligned} \mathbf{X} &:= L^2(0, T; H_0^1(\Omega)), \|\mathbf{v}\|_X^2 := \int_0^T \|\nabla \mathbf{v}\|^2 \, \mathrm{d}t, \\ \mathbf{Y} &:= L^2(0, T; H_0^1(\Omega)) \cap H^1(0, T; H^{-1}(\Omega)), \|\mathbf{v}\|_Y^2 := \int_0^T \|\partial_t \mathbf{v}\|_{H^{-1}(\Omega)}^2 + \|\nabla \mathbf{v}\|^2 \, \mathrm{d}t + \|\mathbf{v}(T)\|^2 \, \mathrm{d}t. \end{aligned}$$

Y norm error characterization, $u_{h\tau} \in Y$

$$\|u-u_{h\tau}\|_{\boldsymbol{Y}}^{2} = \sup_{\boldsymbol{v}\in\boldsymbol{X}, \, \|v\|_{X}=1} \left[\int_{0}^{T} (f,v) - \langle \partial_{t}u_{h\tau}, v \rangle - (\nabla u_{h\tau}, \nabla v) \, \mathrm{d}t \right]^{2} + \underbrace{\|u_{0}-u_{h\tau}(0)\|^{2}}_{\text{initial condition}}$$

dual norm of the residual

The heat equation $(f \in L^2(0, T; L^2(\Omega)), u_0 \in L^2(\Omega))$

The heat equation

$$\partial_t u - \Delta u = f$$
 in $\Omega \times (0, T)$,
 $u = 0$ on $\partial \Omega \times (0, T)$,
 $u(0) = u_0$ in Ω

Guaranteed error upper bound (reliability) ($u_{h\tau}$ FE in space, DG in time approx.)

$$\underbrace{\||u-u_{h\tau}||}_{\mathcal{H}} \leq \underbrace{\eta}$$

unknown error

computable estimator

• C_{eff} a generic constant independent of Ω , u, $u_{h\tau}$, h, p, τ , q,

The heat equation $(f \in L^2(0, T; L^2(\Omega)), u_0 \in L^2(\Omega))$

The heat equation

$$\partial_t u - \Delta u = f$$
 in $\Omega \times (0, T)$,
 $u = 0$ on $\partial \Omega \times (0, T)$,
 $u(0) = u_0$ in Ω

Guaranteed error upper bound (reliability) ($u_{h\tau}$ FE in space, DG in time approx.)

$$||| u - u_{h\tau} ||| \leq \eta(u_h)$$

unknown error

computable estimator

• C_{eff} a generic constant independent of Ω , u, $u_{h\tau}$, h, p, τ , q,

The heat equation $(f \in L^2(0, T; L^2(\Omega)), u_0 \in L^2(\Omega))$

The heat equation

$$\partial_t u - \Delta u = f$$
 in $\Omega \times (0, T)$,
 $u = 0$ on $\partial \Omega \times (0, T)$,
 $u(0) = u_0$ in Ω

Guaranteed error upper bound (reliability) ($u_{h\tau}$ FE in space, DG in time approx.)

$$||| u - u_{h\tau} ||| \leq \eta(u_{h\tau})$$

unknown error computable estimator

Robust local in space and in time error lower bound (efficiency)

 $\eta_{\mathcal{K}, l_n}(u_{h\tau}) \leq C_{\mathsf{eff}} \| u - u_{h\tau} \|_{\omega_{\mathcal{K}} \times l_n}$

• C_{eff} a generic constant independent of Ω , u, $u_{h\tau}$, h, p, τ , q,

Verfürlih (2003), Bergam, Bernardi, and Mghazil (2005), Makridakis and Nochatto (2006), Em and Vohralik (2010), Em, Smears, and Vohralik (20

The heat equation $(f \in L^2(0, T; L^2(\Omega)), u_0 \in L^2(\Omega))$

The heat equation

$$\partial_t u - \Delta u = f$$
 in $\Omega \times (0, T)$,
 $u = 0$ on $\partial \Omega \times (0, T)$,
 $u(0) = u_0$ in Ω

Guaranteed error upper bound (reliability) ($u_{h\tau}$ FE in space, DG in time approx.)

$$\underbrace{\||\boldsymbol{u} - \boldsymbol{u}_{h\tau}||}_{\text{unknown error}} \leq \underbrace{\eta(\boldsymbol{u}_{h\tau})}_{\text{computable estimator}}$$

Robust local in space and in time error lower bound (efficiency)

 $\eta_{\mathcal{K}, l_n}(u_{h\tau}) \leq \frac{\mathcal{C}_{\mathsf{eff}}}{\|u - u_{h\tau}\|}_{\omega_{\mathcal{K}} \times l_n}$

- C_{eff} a generic constant independent of Ω , u, $u_{h\tau}$, h, p, τ , q, T
- Verfürth (2003), Bergam, Bernardi, and Mghazli (2005), Makridakis and Nochetto (2006), Ern and Vohralík (2010), Ern, Smears, and Vohralík (2017)

The heat equation $(f \in L^2(0, T; L^2(\Omega)), u_0 \in L^2(\Omega))$

The heat equation

$$\partial_t u - \Delta u = f$$
 in $\Omega \times (0, T)$,
 $u = 0$ on $\partial \Omega \times (0, T)$,
 $u(0) = u_0$ in Ω

Guaranteed error upper bound (reliability) ($u_{h\tau}$ FE in space, DG in time approx.)

$$\underbrace{\||\boldsymbol{u} - \boldsymbol{u}_{h\tau}||}_{\text{unknown error}} \leq \underbrace{\eta(\boldsymbol{u}_{h\tau})}_{\text{computable estimator}}$$

Robust local in space and in time error lower bound (efficiency)

 $\eta_{\mathcal{K}, \mathit{l}_{n}}(\mathit{u}_{h\tau}) \leq \textit{C}_{\mathsf{eff}} |||\mathit{u} - \mathit{u}_{h\tau}|||_{\omega_{\mathcal{K}} \times \mathit{l}_{n}}$

• C_{eff} a generic constant independent of Ω , u, $u_{h\tau}$, h, p, τ , q, T

 Verfürth (2003), Bergam, Bernardi, and Mghazli (2005), Makridakis and Nochetto (2006), Ern and Vohralík (2010), Ern, Smears, and Vohralík (2017)

The heat equation $(f \in L^2(0, T; L^2(\Omega)), u_0 \in L^2(\Omega))$

The heat equation

$$\partial_t u - \Delta u = f$$
 in $\Omega \times (0, T)$,
 $u = 0$ on $\partial \Omega \times (0, T)$,
 $u(0) = u_0$ in Ω

Guaranteed error upper bound (reliability) ($u_{h\tau}$ FE in space, DG in time approx.)

$$\underbrace{\||\boldsymbol{u} - \boldsymbol{u}_{h\tau}||}_{\text{unknown error}} \leq \underbrace{\eta(\boldsymbol{u}_{h\tau})}_{\text{computable estimator}}$$

Robust local in space and in time error lower bound (efficiency)

 $\eta_{\mathsf{K},\mathsf{I}_{\mathsf{n}}}(\mathsf{u}_{\mathsf{h}\tau}) \leq \frac{\mathsf{C}_{\mathsf{eff}}}{\|\mathsf{u} - \mathsf{u}_{\mathsf{h}\tau}\|}_{\omega_{\mathsf{K}} \times \mathsf{I}_{\mathsf{n}}}$

• C_{eff} a generic constant independent of Ω , u, $u_{h\tau}$, h, p, τ , q, T

 Verfürth (2003), Bergam, Bernardi, and Mghazli (2005), Makridakis and Nochetto (2006), Ern and Vohralík (2010), Ern, Smears, and Vohralík (2017)

The heat equation $(f \in L^2(0, T; L^2(\Omega)), u_0 \in L^2(\Omega))$

The heat equation

$$\partial_t u - \Delta u = f$$
 in $\Omega \times (0, T)$,
 $u = 0$ on $\partial \Omega \times (0, T)$,
 $u(0) = u_0$ in Ω

Guaranteed error upper bound (reliability) ($u_{h\tau}$ FE in space, DG in time approx.)

$$\underbrace{\||\boldsymbol{u} - \boldsymbol{u}_{h\tau}||}_{\text{unknown error}} \leq \underbrace{\eta(\boldsymbol{u}_{h\tau})}_{\text{computable estimator}}$$

Robust local in space and in time error lower bound (efficiency)

 $\eta_{\mathsf{K},\mathsf{I}_{\mathsf{n}}}(\mathsf{u}_{\mathsf{h}\tau}) \leq \mathsf{C}_{\mathsf{eff}} \| ||\mathsf{u} - \mathsf{u}_{\mathsf{h}\tau}|||_{\omega_{\mathsf{K}} \times \mathsf{I}_{\mathsf{n}}}$

- C_{eff} a generic constant independent of Ω , u, $u_{h\tau}$, h, p, τ , q, T
- Verfürth (2003), Bergam, Bernardi, and Mghazli (2005), Makridakis and Nochetto (2006), Ern and Vohralík (2010), Ern, Smears, and Vohralík (2017)

Time dependency, nonsymmetry

guaranteed error upper bound (reliability)

Ímaía

- guaranteed error upper bound (reliability)
- Iocal in space and in time efficiency

- guaranteed error upper bound (reliability)
- Iocal in space and in time efficiency
- ✓ robustness w.r.t. the final time T

- guaranteed error upper bound (reliability)
- Iocal in space and in time efficiency
- ✓ robustness w.r.t. the final time T
- robustness w.r.t. the spatial and temporal polynomial degrees

- guaranteed error upper bound (reliability)
- Iocal in space and in time efficiency
- robustness w.r.t. the final time T
- robustness w.r.t. the spatial and temporal polynomial degrees
- robustness w.r.t. time-varying meshes (refinement and derefinement)

- guaranteed error upper bound (reliability)
- Iocal in space and in time efficiency
- robustness w.r.t. the final time T
- robustness w.r.t. the spatial and temporal polynomial degrees
- robustness w.r.t. time-varying meshes (refinement and derefinement)
- Iocalization of space-time negative norms

- guaranteed error upper bound (reliability)
- Iocal in space and in time efficiency
- ✓ robustness w.r.t. the final time T
- robustness w.r.t. the spatial and temporal polynomial degrees
- robustness w.r.t. time-varying meshes (refinement and derefinement)
- Iocalization of space-time negative norms
- Details in Ern, Smears, and Vohralík, SINUM (2017)

Outline

The heat equation

2 The Grönwall lemma

3 The Stefan equation

- A posteriori error estimates
- Numerical experiments
- Wrap up
- 4 The Richards equation
 - A posteriori error estimates
 - Numerical experiments
 - Wrap up
- 5 Two-phase porous media flows
- 6 Conclusions

The Grönwall lemma

The Grönwall lemma (common form, $\alpha \ge 0$ nondecreasing)

$$\xi(t) \leq lpha(t) + \int_0^t \xi(s) \mathrm{d}s \Longrightarrow \xi(t) \leq e^t lpha(t)$$

Ínaía

The Grönwall lemma

The Grönwall lemma (common form, $\alpha \ge 0$ nondecreasing)

$$\xi(t) \leq \alpha(t) + \int_0^t \xi(s) \mathrm{d}s \Longrightarrow \xi(t) \leq e^t \alpha(t)$$

• used for $t = T \Longrightarrow$ exponential of the final time T, e^T

Ínaía

The Grönwall lemma

The Grönwall lemma (common form, $\alpha \ge 0$ nondecreasing)

$$\xi(t) \leq lpha(t) + \int_0^t \xi(s) \mathrm{d}s \Longrightarrow \xi(t) \leq e^t lpha(t)$$

- used for $t = T \Longrightarrow$ exponential of the final time T, e^T
- useless for a posteriori error control, overestimation factor explodes

The Grönwall lemma

The Grönwall lemma (common form, $\alpha \ge 0$ nondecreasing)

$$\xi(t) \leq lpha(t) + \int_0^t \xi(s) \mathrm{d}s \Longrightarrow \xi(t) \leq e^t lpha(t)$$

- used for $t = T \Longrightarrow$ exponential of the final time T, e^T
- useless for a posteriori error control, overestimation factor explodes

The Grönwall lemma (sharp form)

$$\xi(t) \leq \alpha(t) + \int_0^t \xi(s) \mathrm{d}s \Longrightarrow \xi(t) \leq \alpha(t) + \int_0^t \alpha(s) e^{t-s} \mathrm{d}s$$

The Grönwall lemma

The Grönwall lemma (common form, $\alpha \ge 0$ nondecreasing)

$$\xi(t) \leq lpha(t) + \int_0^t \xi(s) \mathrm{d}s \Longrightarrow \xi(t) \leq e^t lpha(t)$$

- used for $t = T \Longrightarrow$ exponential of the final time T, e^T
- useless for a posteriori error control, overestimation factor explodes

The Grönwall lemma (sharp form)

$$\xi(t) \leq \alpha(t) + \int_0^t \xi(s) \mathrm{d}s \Longrightarrow \xi(t) \leq \alpha(t) + \int_0^t \alpha(s) e^{t-s} \mathrm{d}s$$

• avoids appearance of e^{T} (other than in the data oscillation term corresponding to the approximation of the initial condition)

The Grönwall lemma

The Grönwall lemma (common form, $\alpha \ge 0$ nondecreasing)

$$\xi(t) \leq lpha(t) + \int_0^t \xi(s) \mathrm{d}s \Longrightarrow \xi(t) \leq e^t lpha(t)$$

- used for $t = T \Longrightarrow$ exponential of the final time T, e^T
- useless for a posteriori error control, overestimation factor explodes

The Grönwall lemma (sharp form)

$$\xi(t) \leq \alpha(t) + \int_0^t \xi(s) \mathrm{d}s \Longrightarrow \xi(t) \leq \alpha(t) + \int_0^t \alpha(s) e^{t-s} \mathrm{d}s$$

- avoids appearance of e^{T} (other than in the data oscillation term corresponding to the approximation of the initial condition)
- gives rise to time-integrated and exponentially weighted norms

Outline

- The heat equation
- The Grönwall lemma
- 3 The Stefan equation
 - A posteriori error estimates
 - Numerical experiments
 - Wrap up
- 4 The Richards equation
 - A posteriori error estimates
 - Numerical experiments
 - Wrap up
- 5 Two-phase porous media flows
- 6 Conclusions

Modelling problems with evolving interfaces and phase changes

The Stefan equation

Find $u: \Omega \times (0, T) \rightarrow \mathbb{R}$ such that $\partial_t u - \Delta \beta(u) = f \quad \text{in } \Omega \times (0, T),$ $\beta(u) = 0 \quad \text{on } \partial \Omega \times (0, T),$ $u(0) = u_0 \quad \text{in } \Omega.$

Modelling problems with evolving interfaces and phase changes

The Stefan equation

Find $u: \Omega \times (0, T) \to \mathbb{R}$ such that $\partial_t u - \Delta \beta(u) = f \quad \text{in } \Omega \times (0, T),$ $\beta(u) = 0 \quad \text{on } \partial \Omega \times (0, T),$ $u(0) = u_0 \quad \text{in } \Omega.$

Setting

- *u*: enthalpy
- $\beta(u)$: temperature
- $\Omega \subset \mathbb{R}^d$, $1 \le d \le 3$, open polytope with Lipschitz boundary $\partial \Omega$
- T: final time
- source term $f \in L^2(0, T; L^2(\Omega))$, initial enthalpy $u_0 \in L^2(\Omega)$
- **nonlinear (degenerate) function** β : L_{β} -Lipschitz continuous, $\beta(s) = 0$ in (0, 1), strictly increasing otherwise

Modelling problems with evolving interfaces and phase changes

The Stefan equation

Find $u: \Omega \times (0, T) \to \mathbb{R}$ such that $\partial_t u - \Delta \beta(u) = f \quad \text{in } \Omega \times (0, T),$ $\beta(u) = 0 \quad \text{on } \partial \Omega \times (0, T),$ $u(0) = u_0 \quad \text{in } \Omega.$

Setting

- *u*: enthalpy
- $\beta(u)$: temperature
- $\Omega \subset \mathbb{R}^d$, $1 \le d \le 3$, open polytope with Lipschitz boundary $\partial \Omega$
- T: final time
- source term $f \in L^2(0, T; L^2(\Omega))$, initial enthalpy $u_0 \in L^2(\Omega)$
- nonlinear (degenerate) function β: L_β-Lipschitz continuous, β(s) = 0 in (0, 1), strictly increasing otherwise

Modelling problems with evolving interfaces and phase changes

The Stefan equation

Find $u: \Omega \times (0, T) \to \mathbb{R}$ such that $\partial_t u - \Delta \beta(u) = f \quad \text{in } \Omega \times (0, T),$ $\beta(u) = 0 \quad \text{on } \partial \Omega \times (0, T),$ $u(0) = u_0 \quad \text{in } \Omega.$

Setting

- *u*: enthalpy
- $\beta(u)$: temperature
- $\Omega \subset \mathbb{R}^d$, $1 \le d \le 3$, open polytope with Lipschitz boundary $\partial \Omega$
- T: final time
- source term $f \in L^2(0, T; L^2(\Omega))$, initial enthalpy $u_0 \in L^2(\Omega)$
- nonlinear (degenerate) function β: L_β-Lipschitz continuous, β(s) = 0 in (0, 1), strictly increasing otherwise

Modelling problems with evolving interfaces and phase changes

The Stefan equation

Find $u: \Omega \times (0, T) \rightarrow \mathbb{R}$ such that $\partial_t u - \Delta \beta(u) = f \text{ in } \Omega \times (0, T),$ $\beta(u) = 0 \text{ on } \partial \Omega \times (0, T),$ $u(0) = u_0 \text{ in } \Omega.$ Nonlinear (degenerate) function β

Modelling problems with evolving interfaces and phase changes

The Stefan equation

Find $u: \Omega \times (0, T) \rightarrow \mathbb{R}$ such that $\partial_t u - \Delta \beta(u) = f$ in $\Omega \times (0, T)$, $\beta(u) = 0$ on $\partial \Omega \times (0, T)$, $u(0) = u_0$ in Ω . Nonlinear (degenerate) function β and its (later adaptive) regularization β^{ϵ} 0.5 0.5 $\beta(u)$ $\beta(u), \beta^{\epsilon}(u)$ 0.5 1.5 0.5 1.5 _1 -0.52 -0.5-0.5 -0.5 _1 _1

Grönwall lemma avoiding e^{t} : a posteriori error estimates for the Stefan & Bichards problems

2

M. Vohralík

Weak formulation

Spaces

$$X := L^2(0, T; H_0^1(\Omega)), \qquad Z := H^1(0, T; H^{-1}(\Omega))$$

Weak formulation

$$u \in Z \quad \text{with } \beta(u) \in X$$

$$u(0) = u_0 \quad \text{in } \Omega$$

$$\int_0^T \langle \partial_t u, v \rangle(s) \, \mathrm{d} s + \int_0^T (\nabla \beta(u), \nabla v)(s) \, \mathrm{d} s = \int_0^T (f, v)(s) \, \mathrm{d} s \qquad \forall v \in X$$

Residual $\mathcal{R}(u_{h\tau}) \in X'$, for $u_{h\tau} \in Z$ such that $\beta(u_{h\tau}) \in X$

$$\langle \mathcal{R}(u_{h\tau}), v \rangle_{X',X} := \int_0^T \{(f, v) - \langle \partial_t u_{h\tau}, v \rangle - (\nabla \beta(u_{h\tau}), \nabla v)\}(s) \,\mathrm{d}s \qquad v \in X$$

Dual norm of the residual

$$\|\mathcal{R}(u_{h\tau})\|_{X'} := \sup_{v \in X, \|v\|_X = 1} \langle \mathcal{R}(u_{h\tau}), v \rangle_{X', X}$$

Ímaía

Weak formulation

Spaces

$$X := L^2(0, T; H_0^1(\Omega)), \qquad Z := H^1(0, T; H^{-1}(\Omega))$$

Weak formulation

$$u \in Z \quad \text{with } \beta(u) \in X$$

$$u(0) = u_0 \quad \text{in } \Omega$$

$$\int_0^T \langle \partial_t u, v \rangle(s) \, \mathrm{d}s + \int_0^T (\nabla \beta(u), \nabla v)(s) \, \mathrm{d}s = \int_0^T (f, v)(s) \, \mathrm{d}s \qquad \forall v \in X$$

Residual $\mathcal{R}(u_{h\tau}) \in X'$, for $u_{h\tau} \in Z$ such that $\beta(u_{h\tau}) \in X$

$$\langle \mathcal{R}(\boldsymbol{u}_{h\tau}), \boldsymbol{v} \rangle_{X',X} := \int_0^T \{(f, \boldsymbol{v}) - \langle \partial_t \boldsymbol{u}_{h\tau}, \boldsymbol{v} \rangle - (\nabla \beta(\boldsymbol{u}_{h\tau}), \nabla \boldsymbol{v})\} (\boldsymbol{s}) \, \mathrm{d} \boldsymbol{s} \qquad \boldsymbol{v} \in X$$

Dual norm of the residual

$$\|\mathcal{R}(u_{h\tau})\|_{X'} := \sup_{v \in X, \|v\|_X=1} \langle \mathcal{R}(u_{h\tau}), v \rangle_{X', X}$$

Innia

Weak formulation

Spaces

$$X := L^2(0, T; H_0^1(\Omega)), \qquad Z := H^1(0, T; H^{-1}(\Omega))$$

Weak formulation

$$u \in Z \quad \text{with } \beta(u) \in X$$

$$u(0) = u_0 \quad \text{in } \Omega$$

$$\int_0^T \langle \partial_t u, v \rangle(s) \, \mathrm{d}s + \int_0^T (\nabla \beta(u), \nabla v)(s) \, \mathrm{d}s = \int_0^T (f, v)(s) \, \mathrm{d}s \qquad \forall v \in X$$

Residual $\mathcal{R}(u_{h\tau}) \in X'$, for $u_{h\tau} \in Z$ such that $\beta(u_{h\tau}) \in X$

$$\langle \mathcal{R}(u_{h\tau}), v \rangle_{X',X} := \int_0^T \{(f, v) - \langle \partial_t u_{h\tau}, v \rangle - (\nabla \beta(u_{h\tau}), \nabla v)\}(s) \,\mathrm{d}s \qquad v \in X$$

Dual norm of the residual

$$\|\mathcal{R}(u_{h\tau})\|_{X'} := \sup_{v \in \mathbf{X}, \|v\|_X = 1} \langle \mathcal{R}(u_{h\tau}), v \rangle_{X', X}$$

Innia
Weak formulation

Spaces

$$X := L^2(0, T; H_0^1(\Omega)), \qquad Z := H^1(0, T; H^{-1}(\Omega))$$

Weak formulation

$$u \in Z \quad \text{with } \beta(u) \in X$$

$$u(0) = u_0 \quad \text{in } \Omega$$

$$\int_0^T \langle \partial_t u, v \rangle(s) \, \mathrm{d}s + \int_0^T (\nabla \beta(u), \nabla v)(s) \, \mathrm{d}s = \int_0^T (f, v)(s) \, \mathrm{d}s \qquad \forall v \in X$$

Residual $\mathcal{R}(u_{h\tau}) \in X'$, for $u_{h\tau} \in Z$ such that $\beta(u_{h\tau}) \in X$

$$\langle \mathcal{R}(u_{h\tau}), v \rangle_{X',X} := \int_0^T \{(f, v) - \langle \partial_t u_{h\tau}, v \rangle - (\nabla \beta(u_{h\tau}), \nabla v)\}(s) \,\mathrm{d}s \qquad v \in X$$

Dual norm of the residual

$$\|\mathcal{R}(u_{h\tau})\|_{X'} := \sup_{v \in \mathbf{X}, \, \|v\|_X = 1} \langle \mathcal{R}(u_{h\tau}), v \rangle_{X', X}$$

Ímaía

Outline

- The heat equation
- 2 The Grönwall lemma
- 3 The Stefan equation
 - A posteriori error estimates
 - Numerical experiments
 - Wrap up
- 4 The Richards equation
 - A posteriori error estimates
 - Numerical experiments
 - Wrap up
- 5 Two-phase porous media flows
- 6 Conclusions

Duality estimate

Lemma (Duality estimate)

Let
$$u_{h\tau} \in Z$$
 be such that $\beta(u_{h\tau}) \in X$. Then, for a.e. $t \in (0, T)$,
 $\frac{2}{L_{\beta}} \|\beta(u) - \beta(u_{h\tau})\|_{Q_{t}}^{2} + \|(u - u_{h\tau})(t)\|_{H^{-1}(\Omega)}^{2}$
 $\leq \|(u - u_{h\tau})(0)\|_{H^{-1}(\Omega)}^{2} + \|\mathcal{R}(u_{h\tau})\|_{X_{t}'}^{2} + \|u - u_{h\tau}\|_{X_{t}'}^{2}.$

• $W(t) \in H_0^1(\Omega)$ the solution to:

$$(\nabla W(t), \nabla \psi) = ((u - u_{h\tau})(t), \psi) \qquad \forall \psi \in H^1_0(\Omega)$$

• duality:

$$\|\nabla W(t)\| = \|(u - u_{h\tau})(t)\|_{H^{-1}(\Omega)}$$

• there holds

$$\langle \mathcal{R}(u_{h\tau}), W \rangle_{X'_t, X_t} \leq \frac{1}{2} \| \mathcal{R}(u_{h\tau}) \|_{X'_t}^2 + \frac{1}{2} \| u - u_{h\tau} \|_X^2$$

Ínría terester

Duality estimate

Lemma (Duality estimate)

Let
$$u_{h\tau} \in Z$$
 be such that $\beta(u_{h\tau}) \in X$. Then, for a.e. $t \in (0, T)$,
 $\frac{2}{L_{\beta}} \|\beta(u) - \beta(u_{h\tau})\|_{Q_{t}}^{2} + \|(u - u_{h\tau})(t)\|_{H^{-1}(\Omega)}^{2}$
 $\leq \|(u - u_{h\tau})(0)\|_{H^{-1}(\Omega)}^{2} + \|\mathcal{R}(u_{h\tau})\|_{X_{t}'}^{2} + \|u - u_{h\tau}\|_{X_{t}'}^{2}$

• $W(t) \in H_0^1(\Omega)$ the solution to:

$$(\nabla W(t), \nabla \psi) = ((u - u_{h\tau})(t), \psi) \qquad \forall \psi \in H^1_0(\Omega)$$

• duality:

$$\|
abla W(t)\| = \|(u - u_{h\tau})(t)\|_{H^{-1}(\Omega)}$$

• there holds

$$\langle \mathcal{R}(u_{h au}), W
angle_{X'_t, X_t} \leq rac{1}{2} \| \mathcal{R}(u_{h au}) \|^2_{X'_t} + rac{1}{2} \| u - u_{h au} \|^2_{X'_t}$$

Ínaía

Duality estimate

• definition of the residual:

I Grönwall Stefan Richards Two-phase flow C

$$\langle \mathcal{R}(u_{h\tau}), W \rangle_{X'_t, X_t} = \underbrace{\int_0^t \langle \partial_t(u - u_{h\tau}), W \rangle(s) \mathrm{d}s}_{\mathfrak{R}_1} + \underbrace{\int_0^t (\nabla \beta(u) - \nabla \beta(u_{h\tau}), \nabla W)(s) \mathrm{d}s}_{\mathfrak{R}_2}$$

• definition of W:

$$\mathfrak{R}_{1} = \int_{0}^{t} (\partial_{t} \nabla W, \nabla W)(s) \mathrm{d}s = \frac{1}{2} \left(\|\nabla W(t)\|_{L^{2}(\Omega)}^{2} - \|\nabla W(0)\|_{L^{2}(\Omega)}^{2} \right)$$
$$= \frac{1}{2} \left(\|(u - u_{h\tau})(t)\|_{H^{-1}(\Omega)}^{2} - \|u_{0} - u_{h\tau}(0)\|_{H^{-1}(\Omega)}^{2} \right)$$

• definition of *W* and Lipschitz continuity of β :

$$\mathfrak{R}_{2} = \int_{0}^{t} (u - u_{h\tau}, \beta(u) - \beta(u_{h\tau}))(s) \mathrm{d}s$$
$$\geq \frac{1}{L_{\beta}} \int_{0}^{t} (\beta(u) - \beta(u_{h\tau}), \beta(u) - \beta(u_{h\tau}))(s) \mathrm{d}s = \frac{1}{L_{\beta}} \|\beta(u) - \beta(u_{h\tau})\|_{\mathcal{Q}_{t}}^{2}$$

Relation error – residual featuring e^{T} , 1st component

Recall

$$egin{aligned} & rac{2}{L_eta} \|eta(u) - eta(u_{h au})\|^2_{Q_t} + \|(u-u_{h au})(t)\|^2_{H^{-1}(\Omega)} \ & \leq & \|(u-u_{h au})(0)\|^2_{H^{-1}(\Omega)} + \|\mathcal{R}(u_{h au})\|^2_{X'_t} + \int_0^t & \|u-u_{h au}\|^2_{X'_s} \mathrm{d}s \end{aligned}$$

Ínaía

Relation error – residual featuring e^{T} , 1st component

Recall

I Grönwall Stefan Richards Two-phase flow C

$$\frac{\frac{2}{L_{\beta}}\|\beta(u)-\beta(u_{h\tau})\|_{Q_{t}}^{2}}{\leq} \underbrace{\|(u-u_{h\tau})(t)\|_{H^{-1}(\Omega)}^{2}}_{\xi(t)} + \underbrace{\|(u-u_{h\tau})(t)\|_{H^{-1}(\Omega)}^{2}}_{\alpha(t)} + \frac{\|\mathcal{R}(u_{h\tau})\|_{X_{t}'}^{2}}{\leq} + \int_{0}^{t} \underbrace{\|u-u_{h\tau}\|_{X_{s}'}^{2}}_{\xi(s)} ds$$

A posteriori error estimates Numerical experiments Wrap up

Íngia

I Grönwall Stefan Richards Two-phase flow C A posteriori error estimates Numerical experiments Wrap up Relation error – residual featuring e^{T} , 1st component

Recall

$$\frac{\frac{2}{L_{\beta}}\|\beta(u)-\beta(u_{h\tau})\|_{Q_{t}}^{2}}{\leq} \underbrace{\|(u-u_{h\tau})(t)\|_{H^{-1}(\Omega)}^{2}}_{\alpha(t)} + \frac{\|(u-u_{h\tau})(t)\|_{H^{-1}(\Omega)}^{2}}{(u-u_{h\tau})\|_{X_{t}'}^{2}} + \int_{0}^{t} \underbrace{\|u-u_{h\tau}\|_{X_{s}'}^{2}}_{\xi(s)} ds$$

The Grönwall lemma (common form, $\alpha \ge 0$ nondecreasing)

$$\xi(t) \leq lpha(t) + \int_0^t \xi(s) \mathrm{d}s \Longrightarrow \xi(t) \leq e^t lpha(t)$$

Relation error – residual featuring e^{T} , 1st component

Recall

$$\frac{\frac{2}{L_{\beta}}\|\beta(u)-\beta(u_{h\tau})\|_{Q_{t}}^{2}}{\leq} \underbrace{\|(u-u_{h\tau})(t)\|_{H^{-1}(\Omega)}^{2}}_{\alpha(t)} + \frac{\|(u-u_{h\tau})(t)\|_{H^{-1}(\Omega)}^{2}}{(u-u_{h\tau})\|_{X_{t}'}^{2}} + \int_{0}^{t} \underbrace{\|u-u_{h\tau}\|_{X_{s}'}^{2}}_{\xi(s)} ds$$

The Grönwall lemma (common form, $\alpha \ge 0$ nondecreasing)

$$\xi(t) \leq \alpha(t) + \int_0^t \xi(s) \mathrm{d}s \Longrightarrow \xi(t) \leq e^t \alpha(t)$$

Thus

$$\|(u-u_{h\tau})(t)\|_{H^{-1}(\Omega)}^2 \leq e^t \big(\|(u-u_{h\tau})(0)\|_{H^{-1}(\Omega)}^2 + \|\mathcal{R}(u_{h\tau})\|_{X_s'}^2\big)$$

I Grönwall Stefan Richards Two-phase flow C A posteriori error estimates Numerical experiments Wrap up Relation error – residual featuring e^{T} , 1st component

Recall

$$\frac{\frac{2}{L_{\beta}}\|\beta(u)-\beta(u_{h\tau})\|_{Q_{t}}^{2}}{\leq} \underbrace{\|(u-u_{h\tau})(t)\|_{H^{-1}(\Omega)}^{2}}_{\alpha(t)} + \frac{\|(u-u_{h\tau})(t)\|_{H^{-1}(\Omega)}^{2}}{\xi(t)} + \int_{0}^{t} \underbrace{\|u-u_{h\tau}\|_{X_{s}'}^{2}}_{\xi(s)} ds$$

The Grönwall lemma (common form, $\alpha \ge 0$ nondecreasing)

$$\xi(t) \leq \alpha(t) + \int_0^t \xi(s) \mathrm{d}s \Longrightarrow \xi(t) \leq e^t \alpha(t)$$

Thus

$$\begin{aligned} \|(u-u_{h\tau})(t)\|_{H^{-1}(\Omega)}^{2} &\leq e^{t} \big(\|(u-u_{h\tau})(0)\|_{H^{-1}(\Omega)}^{2} + \|\mathcal{R}(u_{h\tau})\|_{X'_{s}}^{2} \big) \\ \implies \|u-u_{h\tau}\|_{X'}^{2} &\leq (e^{T}-1) \big(\|(u-u_{h\tau})(0)\|_{H^{-1}(\Omega)}^{2} + \|\mathcal{R}(u_{h\tau})\|_{X'}^{2} \big) \end{aligned}$$

Relation error – residual featuring e^{T} , 2nd component

Recall

$$\begin{split} & \frac{2}{L_{\beta}} \|\beta(u) - \beta(u_{h\tau})\|_{Q_{t}}^{2} + \|(u - u_{h\tau})(t)\|_{H^{-1}(\Omega)}^{2} \\ & \leq \|(u - u_{h\tau})(0)\|_{H^{-1}(\Omega)}^{2} + \|\mathcal{R}(u_{h\tau})\|_{X_{t}'}^{2} + \int_{0}^{t} \|u - u_{h\tau}\|_{X_{s}'}^{2} \mathsf{d}s \end{split}$$

Relation error – residual featuring e^{T} , 2nd component

Recall

I Grönwall Stefan Richards Two-phase flow C

$$\underbrace{\frac{2}{L_{\beta}}\|\beta(u) - \beta(u_{h\tau})\|_{Q_{t}}^{2} + \|(u - u_{h\tau})(t)\|_{H^{-1}(\Omega)}^{2}}_{\xi(t)}}_{\alpha(t)} \leq \underbrace{\frac{\|(u - u_{h\tau})(0)\|_{H^{-1}(\Omega)}^{2} + \|\mathcal{R}(u_{h\tau})\|_{X_{t}'}^{2}}_{\alpha(t)} + \int_{0}^{t} \underbrace{\left(\frac{2}{L_{\beta}}\|\beta(u) - \beta(u_{h\tau})\|_{Q_{s}}^{2} + \|u - u_{h\tau}\|_{X_{s}'}^{2}\right)}_{\xi(s)} ds}_{\xi(s)}$$

A posteriori error estimates Numerical experiments Wrap up

I Grönwall Stefan Richards Two-phase flow C A posteriori error estimates Numerical experiments Wrap up Relation error – residual featuring e^{T} , 2nd component

Recall

$$\underbrace{\frac{2}{L_{\beta}}\|\beta(u) - \beta(u_{h\tau})\|_{Q_{t}}^{2} + \|(u - u_{h\tau})(t)\|_{H^{-1}(\Omega)}^{2}}_{\xi(t)}}_{\alpha(t)} \leq \underbrace{\frac{\|(u - u_{h\tau})(0)\|_{H^{-1}(\Omega)}^{2} + \|\mathcal{R}(u_{h\tau})\|_{X_{t}'}^{2}}_{\alpha(t)} + \int_{0}^{t} \underbrace{\left(\frac{2}{L_{\beta}}\|\beta(u) - \beta(u_{h\tau})\|_{Q_{s}}^{2} + \|u - u_{h\tau}\|_{X_{s}'}^{2}\right)}_{\xi(s)} ds}_{\xi(s)}$$

The Grönwall lemma (common form, $\alpha \ge 0$ nondecreasing)

$$\xi(t) \leq lpha(t) + \int_0^t \xi(s) \mathrm{d}s \Longrightarrow \xi(t) \leq e^t lpha(t)$$

Relation error – residual featuring e^{T} , 2nd component

Recall

I Grönwall Stefan Richards Two-phase flow C

$$\underbrace{\frac{2}{L_{\beta}}\|\beta(u) - \beta(u_{h\tau})\|_{Q_{t}}^{2} + \|(u - u_{h\tau})(t)\|_{H^{-1}(\Omega)}^{2}}_{\xi(t)}}_{\alpha(t)} \leq \underbrace{\frac{\|(u - u_{h\tau})(0)\|_{H^{-1}(\Omega)}^{2} + \|\mathcal{R}(u_{h\tau})\|_{X_{t}'}^{2}}_{\alpha(t)} + \int_{0}^{t} \underbrace{\left(\frac{2}{L_{\beta}}\|\beta(u) - \beta(u_{h\tau})\|_{Q_{s}}^{2} + \|u - u_{h\tau}\|_{X_{s}'}^{2}\right)}_{\xi(s)} ds}_{\xi(s)}$$

A posteriori error estimates Numerical experiments Wrap up

The Grönwall lemma (common form, $\alpha \ge 0$ nondecreasing)

$$\xi(t) \leq lpha(t) + \int_0^t \xi(s) \mathrm{d}s \Longrightarrow \xi(t) \leq e^t lpha(t)$$

Thus $\frac{2}{L_{\beta}}\|\beta(u) - \beta(u_{h\tau})\|_{Q_{T}}^{2} + \|(u - u_{h\tau})(T)\|_{H^{-1}(\Omega)}^{2} \leq e^{T} (\|(u - u_{h\tau})(0)\|_{H^{-1}(\Omega)}^{2} + \|\mathcal{R}(u_{h\tau})\|_{X'}^{2})$

Relation error – residual featuring e^{T} , altogether

Lemma (Relation error – residual featuring e^{T})

Let $u_{h\tau} \in Z$ be such that $\beta(u_{h\tau}) \in X$. Then

$$\begin{split} & \frac{L_{\beta}}{2} \|u - u_{h\tau}\|_{X'}^{2} + \frac{L_{\beta}}{2} \|(u - u_{h\tau})(T)\|_{H^{-1}(\Omega)}^{2} + \|\beta(u) - \beta(u_{h\tau})\|_{Q_{T}}^{2} \\ & \leq \frac{L_{\beta}}{2} (2e^{T} - 1) \left(\|(u - u_{h\tau})(0)\|_{H^{-1}(\Omega)}^{2} + \|\mathcal{R}(u_{h\tau})\|_{X'}^{2} \right) \end{split}$$

Ímaía

Relation error – residual without e^{T} by the sharp Grönwall

Lemma (Relation error – residual without e^{T})

Let $u_{h\tau} \in Z$ be such that $\beta(u_{h\tau}) \in X$. Then

$$\begin{split} & \frac{L_{\beta}}{2} \| u - u_{h\tau} \|_{X'}^{2} + \frac{L_{\beta}}{2} \| (u - u_{h\tau})(\cdot, T) \|_{H^{-1}(\Omega)}^{2} + \| \beta(u) - \beta(u_{h\tau}) \|_{Q_{T}}^{2} \\ & + 2 \int_{0}^{T} \left(\| \beta(u) - \beta(u_{h\tau}) \|_{Q_{t}}^{2} + \int_{0}^{t} \| \beta(u) - \beta(u_{h\tau}) \|_{Q_{s}}^{2} e^{t-s} \, \mathrm{d}s \right) \, \mathrm{d}t \\ & \leq \frac{L_{\beta}}{2} \bigg\{ (2e^{T} - 1) \| (u - u_{h\tau})(\cdot, 0) \|_{H^{-1}(\Omega)}^{2} + \| \mathcal{R}(u_{h\tau}) \|_{X'}^{2} \\ & + 2 \int_{0}^{T} \left(\| \mathcal{R}(u_{h\tau}) \|_{X'_{t}}^{2} + \int_{0}^{t} \| \mathcal{R}(u_{h\tau}) \|_{X'_{s}}^{2} e^{t-s} \, \mathrm{d}s \right) \, \mathrm{d}t \bigg\}. \end{split}$$

Outline

- The heat equation
- 2 The Grönwall lemma

3 The Stefan equation

• A posteriori error estimates

Numerical experiments

Wrap up

4 The Richards equation

- A posteriori error estimates
- Numerical experiments
- Wrap up
- 5 Two-phase porous media flows
- 6 Conclusions

How large is the error? (Effectivity indices)

Ínaí

Where (in space and time) is the error localized?

How large are the error components? (Linearization)

Linearization stopping criterion

M. Vohralík

How large are the error components? (Regularization)

Regularization stopping criterion

How large are the error components? (Time and space)

Equilibrating time and space errors

Outline

- The heat equation
- 2 The Grönwall lemma

3 The Stefan equation

- A posteriori error estimates
- Numerical experiments
- Wrap up
- The Richards equation
 - A posteriori error estimates
 - Numerical experiments
 - Wrap up
- 5 Two-phase porous media flows
- 6 Conclusions

- treatment of time-dependent nonlinearity: sharp Grönwall lemma not neglecting the integral terms
- avoids the appearance of e^T but gives rise to time-integrated and exponentially-weighted norms

- treatment of time-dependent nonlinearity: sharp Grönwall lemma not neglecting the integral terms
- avoids the appearance of e^T but gives rise to time-integrated and exponentially-weighted norms
- guaranteed error upper bound (reliability)

- treatment of time-dependent nonlinearity: sharp Grönwall lemma not neglecting the integral terms
- avoids the appearance of e^T but gives rise to time-integrated and exponentially-weighted norms
- guaranteed error upper bound (reliability)
- ✓ robustness w.r.t. the final time T

- treatment of time-dependent nonlinearity: sharp Grönwall lemma not neglecting the integral terms
- avoids the appearance of e^T but gives rise to time-integrated and exponentially-weighted norms
- guaranteed error upper bound (reliability)
- ✓ robustness w.r.t. the final time T
- X not a generalization of the heat extension

- treatment of time-dependent nonlinearity: sharp Grönwall lemma not neglecting the integral terms
- avoids the appearance of e^T but gives rise to time-integrated and exponentially-weighted norms
- guaranteed error upper bound (reliability)
- ✓ robustness w.r.t. the final time T
- X not a generalization of the heat extension
- X norm change between efficiency and reliability

- treatment of time-dependent nonlinearity: sharp Grönwall lemma not neglecting the integral terms
- avoids the appearance of e^T but gives rise to time-integrated and exponentially-weighted norms
- guaranteed error upper bound (reliability)
- ✓ robustness w.r.t. the final time T
- X not a generalization of the heat extension
- X norm change between efficiency and reliability
- X no robustness wrt the strength of nonlinearities

- treatment of time-dependent nonlinearity: sharp Grönwall lemma not neglecting the integral terms
- avoids the appearance of e^T but gives rise to time-integrated and exponentially-weighted norms
- guaranteed error upper bound (reliability)
- ✓ robustness w.r.t. the final time T
- X not a generalization of the heat extension
- X norm change between efficiency and reliability
- X no robustness wrt the strength of nonlinearities
- Details in D. Pietro, M. Vohralík, and S. Yousef, Math. Comp. (2015)

Outline

- The heat equation
- 2 The Grönwall lemma
- 3 The Stefan equation
 - A posteriori error estimates
 - Numerical experiments
 - Wrap up
- The Richards equation
 - A posteriori error estimates
 - Numerical experiments
 - Wrap up
- 5 Two-phase porous media flows
- 6 Conclusions

Modelling flow of water and air through soil

The Richards equation

Find $u : \Omega \times (0, T) \to \mathbb{R}$ such that $\partial_t S(u) - \nabla \cdot [\mathbf{K} \kappa(S(u))(\nabla u + \mathbf{g})] = f(S(u)) \quad \text{in } \Omega \times (0, T),$ $u = 0 \quad \text{on } \partial\Omega \times (0, T),$ $(S(u))(0) = s_0 \quad \text{in } \Omega.$

Modelling flow of water and air through soil

The Richards equation

Find $u : \Omega \times (0, T) \rightarrow \mathbb{R}$ such that $\partial_t S(u) - \nabla \cdot [\mathbf{K} \kappa(S(u))(\nabla u + \mathbf{g})] = f(S(u)) \quad \text{in } \Omega \times (0, T),$ $u = 0 \quad \text{on } \partial\Omega \times (0, T),$ $(S(u))(0) = s_0 \quad \text{in } \Omega.$

Setting

- U: pressure
- S(u): saturation
- $\Omega \subset \mathbb{R}^d$, $1 \le d \le 3$, open polytope with Lipschitz boundary $\partial \Omega$
- T: final time
- diffusion tensor *K*, source term *f* ∈ *C*¹([0, 1] × Ω × ℝ), gravity *g*, initial saturation *s*₀ ∈ *L*[∞](Ω), 0 ≤ *s*₀ ≤ 1
- nonlinear (degenerate) functions S and κ

Modelling flow of water and air through soil

The Richards equation

Find $u : \Omega \times (0, T) \rightarrow \mathbb{R}$ such that $\partial_t S(u) - \nabla \cdot [\mathbf{K} \kappa(S(u))(\nabla u + \mathbf{g})] = f(S(u)) \quad \text{in } \Omega \times (0, T),$ $u = 0 \quad \text{on } \partial\Omega \times (0, T),$ $(S(u))(0) = s_0 \quad \text{in } \Omega.$

Setting

- U: pressure
- S(u): saturation
- $\Omega \subset \mathbb{R}^d$, $1 \le d \le 3$, open polytope with Lipschitz boundary $\partial \Omega$
- T: final time
- diffusion tensor *K*, source term *f* ∈ *C*¹([0, 1] × Ω × ℝ), gravity *g*, initial saturation *s*₀ ∈ *L*[∞](Ω), 0 ≤ *s*₀ ≤ 1
- nonlinear (degenerate) functions S and κ

Modelling flow of water and air through soil

The Richards equation

Find $u : \Omega \times (0, T) \rightarrow \mathbb{R}$ such that $\partial_t S(u) - \nabla \cdot [\mathbf{K} \kappa(S(u))(\nabla u + \mathbf{g})] = f(S(u)) \quad \text{in } \Omega \times (0, T),$ $u = 0 \quad \text{on } \partial\Omega \times (0, T),$ $(S(u))(0) = s_0 \quad \text{in } \Omega.$

Setting

- U: pressure
- S(u): saturation
- $\Omega \subset \mathbb{R}^d$, $1 \le d \le 3$, open polytope with Lipschitz boundary $\partial \Omega$
- T: final time
- diffusion tensor *K*, source term *f* ∈ *C*¹([0, 1] × Ω × ℝ), gravity *g*, initial saturation *s*₀ ∈ *L*[∞](Ω), 0 ≤ *s*₀ ≤ 1
- nonlinear (degenerate) functions S and κ

Modelling flow of water and air through soil

The Richards equation

Find $u : \Omega \times (0, T) \to \mathbb{R}$ such that $\partial_t S(u) - \nabla \cdot [\mathbf{K} \kappa(S(u))(\nabla u + \mathbf{g})] = f(S(u)) \quad \text{in } \Omega \times (0, T),$ $u = 0 \quad \text{on } \partial\Omega \times (0, T),$ $(S(u))(0) = s_0 \quad \text{in } \Omega.$

Nonlinear (degenerate) functions S and κ

19/32
I Grönwall Stefan Richards Two-phase flow C

Weak formulation

Spaces

 $\boldsymbol{X} := L^2(0, T; H^1_0(\Omega)),$

$$\boldsymbol{Z} := \boldsymbol{H}^{1}(\boldsymbol{0}, \boldsymbol{T}; \boldsymbol{H}^{-1}(\Omega))$$

Total pressure (Kirchhoff transform)

$$\mathcal{K}(p) := egin{cases} \int_0^p \kappa(S(arrho)) \, \mathrm{d}arrho & ext{for } p \leq p_{\mathsf{M}}, \ P_{\mathsf{M}} + \kappa(1)(p - p_{\mathsf{M}}) & ext{for } p > p_{\mathsf{M}}, \end{cases}, \qquad heta \, \circ \, \mathcal{K} = S$$

Weak formulation

$$\Psi \in X \quad \text{with } s := \theta(\Psi) \in Z, \quad s(0) = s_0 \quad \text{in } \Omega,$$

$$\int_0^T \langle \partial_t \theta(\Psi), v \rangle + \int_0^T (\mathcal{K}(\nabla \Psi + \mathcal{g}\kappa(\theta(\Psi))), \nabla v) = \int_0^T (f(\theta(\Psi)), v) \quad \forall v \in X$$

Residual $\mathcal{R}(\Psi_{h\tau}) \in X'$, for $\Psi_{h\tau} \in X$ such that $s_{h\tau} := \theta(\Psi_{h\tau}) \in Z$
$$\langle \mathcal{R}(\Psi_{h\tau}), v \rangle_{X',X} := \int_0^T \{(f(\theta(\Psi_{h\tau})), v) - \langle \partial_t \theta(\Psi_{h\tau}), v \rangle - (\mathcal{K}(\nabla \Psi_{h\tau} + \mathcal{g}\kappa(\theta(\Psi_{h\tau}))), \nabla v)\}(s) ds$$

Dual norm of the residual

 $\|\mathcal{R}(u_{h\tau})\|_{X'} := \sup_{v \in X, v \in V} \langle \mathcal{R}(u_{h\tau}), v \rangle_{X', X'}$

I Grönwall Stefan Richards Two-phase flow C

 $Z := H^1(0, T; H^{-1}(\Omega))$

Weak formulation

Spaces

 $X := L^2(0, T; H_0^1(\Omega)),$ Total pressure (Kirchhoff transform)

$$\mathcal{K}(\boldsymbol{\rho}) := egin{cases} \int_0^{\boldsymbol{\rho}} \kappa(\boldsymbol{S}(\varrho)) \, \mathrm{d} \varrho & ext{for } \boldsymbol{\rho} \leq \boldsymbol{p}_{\mathsf{M}}, \ \boldsymbol{P}_{\mathsf{M}} + \kappa(1)(\boldsymbol{\rho} - \boldsymbol{p}_{\mathsf{M}}) & ext{for } \boldsymbol{\rho} > \boldsymbol{p}_{\mathsf{M}}, \end{cases}, \qquad heta \, \circ \, \mathcal{K} = \boldsymbol{S}$$

Weak formulation

$$\begin{split} \Psi \in X & \text{with } s := \theta(\Psi) \in Z, \qquad s(0) = s_0 \quad \text{in } \Omega, \\ \int_0^T \langle \partial_t \theta(\Psi), v \rangle + \int_0^T (\boldsymbol{K}(\nabla \Psi + \boldsymbol{g}\kappa(\theta(\Psi))), \nabla v) = \int_0^T (f(\theta(\Psi)), v) & \forall v \in X \\ \text{Residual } \mathcal{R}(\Psi_{h\tau}) \in X', \text{ for } \Psi_{h\tau} \in X \text{ such that } s_{h\tau} := \theta(\Psi_{h\tau}) \in Z \\ \langle \mathcal{R}(\Psi_{h\tau}), v \rangle_{X',X} := \int_0^T \{ (f(\theta(\Psi_{h\tau})), v) - \langle \partial_t \theta(\Psi_{h\tau}), v \rangle - (\boldsymbol{K}(\nabla \Psi_{h\tau} + \boldsymbol{g}\kappa(\theta(\Psi_{h\tau}))), \nabla v) \} (s) ds \\ \text{Dual norm of the residual} \\ & \| \mathcal{R}(u_{h\tau}) \|_{X'} := \quad \sup \quad \langle \mathcal{R}(u_{h\tau}), v \rangle_{X',X} \end{split}$$

Grönwall Stefan Richards Two-phase flow C

 $Z := H^1(0, T; H^{-1}(\Omega))$

Weak formulation

Spaces

 $X := L^{2}(0, T; H_{0}^{1}(\Omega)),$ Total pressure (Kirchhoff transform)

$$\mathcal{K}(\boldsymbol{p}) := egin{cases} \int_0^{\boldsymbol{p}} \kappa(\mathcal{S}(\varrho)) \, \mathrm{d}\varrho & ext{for } \boldsymbol{p} \leq \boldsymbol{p}_\mathsf{M}, \ \mathcal{P}_\mathsf{M} + \kappa(1)(\boldsymbol{p} - \boldsymbol{p}_\mathsf{M}) & ext{for } \boldsymbol{p} > \boldsymbol{p}_\mathsf{M}, \end{cases}, \qquad heta \, \circ \, \mathcal{K} = \mathcal{S}$$

Weak formulation

$$\begin{split} \Psi \in X & \text{with } \boldsymbol{s} := \theta(\Psi) \in Z, \quad \boldsymbol{s}(0) = \boldsymbol{s}_0 \quad \text{in } \Omega, \\ \int_0^T \langle \partial_t \theta(\Psi), \boldsymbol{v} \rangle + \int_0^T (\boldsymbol{K}(\nabla \Psi + \boldsymbol{g}\kappa(\theta(\Psi))), \nabla \boldsymbol{v}) = \int_0^T (f(\theta(\Psi)), \boldsymbol{v}) & \forall \boldsymbol{v} \in X \\ \text{Residual } \mathcal{R}(\Psi_{h\tau}) \in X', \text{ for } \Psi_{h\tau} \in X \text{ such that } \boldsymbol{s}_{h\tau} := \theta(\Psi_{h\tau}) \in Z \end{split}$$

 $\langle \mathcal{R}(\Psi_{h\tau}), v \rangle_{X',X} := \int_0 \{ (f(\theta(\Psi_{h\tau})), v) - \langle \partial_t \theta(\Psi_{h\tau}), v \rangle - (\mathbf{K}(\nabla \Psi_{h\tau} + \mathbf{g}\kappa(\theta(\Psi_{h\tau}))), \nabla v) \} (s) ds$ Dual norm of the residual

$$\|\mathcal{R}(u_{h\tau})\|_{X'} := \sup_{v \in X, \, \|v\|_X = 1} \langle \mathcal{R}(u_{h\tau}), v \rangle_{X', X}$$

Weak formulation

Spaces

 $X := L^2(0, T; H_0^1(\Omega)), \qquad Z := H^1(0, T; H^{-1}(\Omega))$ Total pressure (Kirchhoff transform)

$$\mathcal{K}(oldsymbol{p}) := egin{cases} \int_0^oldsymbol{p} \kappa(oldsymbol{S}(arrho)) \, \mathrm{d}arrho & ext{for } oldsymbol{p} \leq oldsymbol{p}_\mathsf{M}, \ oldsymbol{P}_\mathsf{M} + \kappa(1)(oldsymbol{p} - oldsymbol{p}_\mathsf{M}) & ext{for } oldsymbol{p} > oldsymbol{p}_\mathsf{M}, \ oldsymbol{ heta} \, \circ \, \mathcal{K} = oldsymbol{S}$$

Weak formulation

$$\Psi \in X \quad \text{with } s := \theta(\Psi) \in Z, \qquad s(0) = s_0 \quad \text{in } \Omega,$$

$$\int_0^T \langle \partial_t \theta(\Psi), v \rangle + \int_0^T (\boldsymbol{K}(\nabla \Psi + \boldsymbol{g}\kappa(\theta(\Psi))), \nabla v) = \int_0^T (f(\theta(\Psi)), v) \quad \forall v \in X$$

Residual $\mathcal{R}(\Psi_{h\tau}) \in X'$, for $\Psi_{h\tau} \in X$ such that $s_{h\tau} := \theta(\Psi_{h\tau}) \in Z$
$$\langle \mathcal{R}(\Psi_{h\tau}), v \rangle_{X',X} := \int_0^T \{ (f(\theta(\Psi_{h\tau})), v) - \langle \partial_t \theta(\Psi_{h\tau}), v \rangle - (\boldsymbol{K}(\nabla \Psi_{h\tau} + \boldsymbol{g}\kappa(\theta(\Psi_{h\tau}))), \nabla v) \} (s) ds$$

Dual norm of the residual

$$\|\mathcal{R}(u_{h au})\|_{X'} := \sup_{v\in X, \|v\|_X=1} \langle \mathcal{R}(u_{h au}), v
angle_{X', X}$$

Weak formulation

Spaces

 $X := L^2(0, T; H^1_0(\Omega)), \qquad Z := H^1(0, T; H^{-1}(\Omega))$ Total pressure (Kirchhoff transform)

$$\mathcal{K}(\boldsymbol{p}) := egin{cases} \int_0^{\boldsymbol{p}} \kappa(\mathcal{S}(\varrho)) \, \mathrm{d} \varrho & ext{for } \boldsymbol{p} \leq \boldsymbol{p}_\mathsf{M}, \ \mathcal{P}_\mathsf{M} + \kappa(1)(\boldsymbol{p} - \boldsymbol{p}_\mathsf{M}) & ext{for } \boldsymbol{p} > \boldsymbol{p}_\mathsf{M}, \end{cases}, \qquad heta \, \circ \, \mathcal{K} = \mathsf{S}$$

Weak formulation

$$\begin{split} \Psi \in X & \text{with } \boldsymbol{s} := \theta(\Psi) \in Z, \qquad \boldsymbol{s}(0) = \boldsymbol{s}_0 \quad \text{in } \Omega, \\ \int_0^T \langle \partial_t \theta(\Psi), \boldsymbol{v} \rangle + \int_0^T (\boldsymbol{K}(\nabla \Psi + \boldsymbol{g}\kappa(\theta(\Psi))), \nabla \boldsymbol{v}) = \int_0^T (f(\theta(\Psi)), \boldsymbol{v}) & \forall \boldsymbol{v} \in X \\ \text{Residual } \mathcal{R}(\Psi_{h\tau}) \in X', \text{ for } \Psi_{h\tau} \in X \text{ such that } \boldsymbol{s}_{h\tau} := \theta(\Psi_{h\tau}) \in Z \\ \langle \mathcal{R}(\Psi_{h\tau}), \boldsymbol{v} \rangle_{X',X} := \int_0^T \{(f(\theta(\Psi_{h\tau})), \boldsymbol{v}) - \langle \partial_t \theta(\Psi_{h\tau}), \boldsymbol{v} \rangle - (\boldsymbol{K}(\nabla \Psi_{h\tau} + \boldsymbol{g}\kappa(\theta(\Psi_{h\tau}))), \nabla \boldsymbol{v})\}(\boldsymbol{s}) d\boldsymbol{s} \\ \text{Dual norm of the residual} \end{split}$$

$$\|\mathcal{R}(u_{h\tau})\|_{X'} := \sup_{v \in \mathcal{X}, \, \|v\|_X = 1} \langle \mathcal{R}(u_{h\tau}), v \rangle_{X', X}$$

Outline

- The heat equation
- 2 The Grönwall lemma
- 3 The Stefan equation
 - A posteriori error estimates
 - Numerical experiments
 - Wrap up
 - The Richards equation
 - A posteriori error estimates
 - Numerical experiments
 - Wrap up
- 5 Two-phase porous media flows
- 6 Conclusions

Time-integration functionals based on the sharp Grönwall lemma

Time-integration functionals, $\alpha : [0, T] \rightarrow [0, \infty)$

$$\mathcal{J}_{\alpha}: L^{2}([0, T]) \to [0, \infty),$$
$$\mathcal{J}_{\alpha}(\varrho) := \left[\exp\left(-\int_{0}^{T} \alpha\right) \int_{0}^{T} \left(\varrho^{2}(t) + \alpha(t) \exp\left(\int_{t}^{T} \alpha\right) \int_{0}^{t} \varrho^{2} \right) \mathrm{d}t \right]^{\frac{1}{2}}$$

• define norm on $L^2([0, T])$

• actually equivalent to the L²([0, T]) norm

$$\exp\left(-\frac{1}{2}\int_{0}^{T}\alpha\right)\|\varrho\|_{L^{2}([0,T])} \leq \mathcal{J}_{\alpha}(\varrho) \leq \|\varrho\|_{L^{2}([0,T])}$$

Time-integration functionals based on the sharp Grönwall lemma

Time-integration functionals, $\alpha : [0, T] \rightarrow [0, \infty)$

$$\mathcal{J}_{\alpha}: \mathcal{L}^{2}([0, T]) \to [0, \infty),$$
$$\mathcal{J}_{\alpha}(\varrho) := \left[\exp\left(-\frac{\tau}{5}\alpha\right) \int_{0}^{\tau} \left(\varrho^{2}(t) + \alpha(t) \exp\left(\frac{\tau}{5}\alpha\right) \int_{0}^{t} \varrho^{2} \right) dt \right]^{\frac{1}{2}}$$

• define norm on $L^2([0, T])$

• actually equivalent to the $L^2([0, T])$ norm

$$\exp\left(-\frac{1}{2}\int\limits_{0}^{T}\alpha\right)\|\varrho\|_{L^{2}([0,T])} \leq \mathcal{J}_{\alpha}(\varrho) \leq \|\varrho\|_{L^{2}([0,T])}$$

Time-integration functionals based on the sharp Grönwall lemma

Time-integration functionals, $\alpha : [0, T] \rightarrow [0, \infty)$

$$\mathcal{J}_{\alpha}: \mathcal{L}^{2}([0, T]) \to [0, \infty),$$
$$\mathcal{J}_{\alpha}(\varrho) := \left[\exp\left(-\int_{0}^{T} \alpha\right) \int_{0}^{T} \left(\varrho^{2}(t) + \alpha(t) \exp\left(\int_{t}^{T} \alpha\right) \int_{0}^{t} \varrho^{2} \right) \mathrm{d}t \right]^{\frac{1}{2}}$$

- define norm on $L^2([0, T])$
- actually equivalent to the $L^2([0, T])$ norm

$$\exp\left(-\frac{1}{2}\int\limits_{0}^{T}\alpha\right)\|\varrho\|_{L^{2}([0,T])} \leq \mathcal{J}_{\alpha}(\varrho) \leq \|\varrho\|_{L^{2}([0,T])}$$

Time-integration functionals based on the sharp Grönwall lemma

Time-integration functionals, $\alpha : [0, T] \rightarrow [0, \infty)$

$$\mathcal{J}_{\alpha}: \mathcal{L}^{2}([0, T]) \to [0, \infty),$$
$$\mathcal{J}_{\alpha}(\varrho) := \left[\exp\left(-\int_{0}^{T} \alpha\right) \int_{0}^{T} \left(\varrho^{2}(t) + \alpha(t) \exp\left(\int_{t}^{T} \alpha\right) \int_{0}^{t} \varrho^{2} \right) \mathrm{d}t \right]^{\frac{1}{2}}$$

- define norm on $L^2([0, T])$
- actually equivalent to the $L^2([0, T])$ norm

$$\exp\left(-\frac{1}{2}\int\limits_{0}^{T}\alpha\right)\|\varrho\|_{L^{2}([0,T])} \leq \mathcal{J}_{\alpha}(\varrho) \leq \|\varrho\|_{L^{2}([0,T])}$$

Relation error – residual without e^{T} by the sharp Grönwall lemma

Lemma (Relation error – residual without e^{T})

Let $\Psi_{h\tau} \in X$ such that $s_{h\tau} := \theta(\Psi_{h\tau}) \in Z$. Then

$$\begin{split} & e^{-\int_0^T (\lambda+\mathfrak{C}_1)} \|(s-s_{h\tau})(T)\|_{H^{-1}(\Omega)}^2 + \mathcal{J}_{\lambda+\mathfrak{C}_1} \left(\theta_{\partial,\mathsf{M}}^{-\frac{1}{2}} \|s-s_{h\tau}\|\right)^2 \\ &\leq \|s_0-s_{h\tau}(0)\|_{H^{-1}(\Omega)}^2 + \mathcal{J}_{\lambda+\mathfrak{C}_1} (\lambda^{-\frac{1}{2}} \|\mathcal{R}(\Psi_{h\tau})\|_{H^{-1}(\Omega)})^2, \end{split}$$

$$\begin{split} & e^{-\int_0^T \mathfrak{C}_2} \| (s-s_{h\tau})(T) \|^2 + \frac{1}{2} \mathcal{J}_{\mathfrak{C}_2} \left(\left\| D(s)^{-\frac{1}{2}} \mathcal{K}^{\frac{1}{2}} \nabla (\Psi - \Psi_{h\tau}) \right\| \right)^2 \\ & \leq \| s_0 - s_{h\tau}(0) \|^2 + \mathcal{J}_{\mathfrak{C}_2} \left(\eta^{\mathsf{deg}} \right)^2 + 4 \, \mathcal{J}_{\mathfrak{C}_2} \left(D_{\mathsf{m}}^{-\frac{1}{2}} \| \mathcal{R}(\Psi_{h\tau}) \|_{H^{-1}(\Omega)} \right)^2, \end{split}$$

$$\begin{aligned} & \mathcal{J}_{\lambda}(\|\partial_{t}(s-s_{h\tau})\|_{H^{-1}(\Omega)})^{2} \\ & \leq 3\left[\mathcal{J}_{\lambda}(\|\Psi-\Psi_{h\tau}\|_{H^{-1}(\Omega)})^{2} + \mathfrak{C}_{3}(\mathcal{T})\mathcal{J}_{\lambda}\left(\|s-s_{h\tau}\|\right)^{2} + \mathcal{J}_{\lambda}(\|\mathcal{R}(\Psi_{h\tau})\|_{H^{-1}(\Omega)})^{2}\right] \end{aligned}$$

Outline

- The heat equation
- 2 The Grönwall lemma
- 3 The Stefan equation
 - A posteriori error estimates
 - Numerical experiments
 - Wrap up
- The Richards equation
 - A posteriori error estimates
 - Numerical experiments
 - Wrap up
- 5 Two-phase porous media flows
- 6 Conclusions

How large is the error? Robustness wrt the final time (known sol.)

K. Mitra, M. Vohralík, preprint (2022)

Where (in space and time) is the error **localized**? (benchmark case)

Exact local error

K. Mitra, M. Vohralík, preprint (2022)

Estimated local error

Grönwall lemma avoiding e^{T} : a posteriori error estimates for the Stefan & Richards problems 24 / 32

Realistic case

Setting

- unit square $\Omega = (0, 1)^2$
- *T* = 1
- $f(\mathbf{x}, u) = 0$, heterogeneous and anisotropic \mathbf{K} , $\mathbf{g} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$
- Brooks-Corey-type saturation and permeability laws

$$S(u) := egin{cases} rac{1}{(2-u)^{rac{1}{3}}} & ext{if } u < 1, \ 1 & ext{if } u \geq 1 \end{cases}, \quad \kappa(s) := s^3$$

• $(h, \tau) = (h_0, \tau_0)/\ell$ with $\ell \in \{1, 2, 4\}$, $h_0 = 0.2$, and $\tau_0 = 0.04$

Realistic case

Numerical saturation for $\ell = 2$ at t = 1

Where (in space and time) is the error **localized**? (realistic test case)

Estimated local error

Exact local error

K. Mitra, M. Vohralík, preprint (2022)

Grönwall lemma avoiding e^T: a posteriori error estimates for the Stefan & Richards problems 27 / 32

Outline

- The heat equation
- 2 The Grönwall lemma
- 3 The Stefan equation
 - A posteriori error estimates
 - Numerical experiments
 - Wrap up
- The Richards equation
 - A posteriori error estimates
 - Numerical experiments
 - Wrap up
- 5) Two-phase porous media flows
- 6 Conclusions

A posteriori error estimates for the Richards equation

Time dependency, nonsymmetry, nonlinearity, double degeneracy

treatment of time-dependent nonlinearity: combined energy & negative norms together with weighted time-integration functionals (~ sharp Grönwall lemma)

A posteriori error estimates for the Richards equation

- treatment of time-dependent nonlinearity: combined energy & negative norms together with weighted time-integration functionals (~ sharp Grönwall lemma)
- guaranteed error upper bound (reliability)
- Iocal in space and in time efficiency

A posteriori error estimates for the Richards equation

- treatment of time-dependent nonlinearity: combined energy & negative norms together with weighted time-integration functionals (~ sharp Grönwall lemma)
- guaranteed error upper bound (reliability)
- Iocal in space and in time efficiency
- ✓ robustness w.r.t. the final time T
- generalization of the heat extension

A posteriori error estimates for the Richards equation

- treatment of time-dependent nonlinearity: combined energy & negative norms together with weighted time-integration functionals (~ sharp Grönwall lemma)
- guaranteed error upper bound (reliability)
- Iocal in space and in time efficiency
- ✓ robustness w.r.t. the final time T
- generalization of the heat extension
- X heuristic estimators for the treatment of degeneracy

A posteriori error estimates for the Richards equation

- treatment of time-dependent nonlinearity: combined energy & negative norms together with weighted time-integration functionals (~ sharp Grönwall lemma)
- guaranteed error upper bound (reliability)
- Iocal in space and in time efficiency
- ✓ robustness w.r.t. the final time T
- generalization of the heat extension
- X heuristic estimators for the treatment of degeneracy
- X norm change between efficiency and reliability

A posteriori error estimates for the Richards equation

- treatment of time-dependent nonlinearity: combined energy & negative norms together with weighted time-integration functionals (~ sharp Grönwall lemma)
- guaranteed error upper bound (reliability)
- Iocal in space and in time efficiency
- ✓ robustness w.r.t. the final time T
- generalization of the heat extension
- X heuristic estimators for the treatment of degeneracy
- X norm change between efficiency and reliability
- X no robustness wrt the strength of nonlinearities

A posteriori error estimates for the Richards equation

- treatment of time-dependent nonlinearity: combined energy & negative norms together with weighted time-integration functionals (~ sharp Grönwall lemma)
- guaranteed error upper bound (reliability)
- Iocal in space and in time efficiency
- ✓ robustness w.r.t. the final time T
- ✓ generalization of the heat extension
- X heuristic estimators for the treatment of degeneracy
- X norm change between efficiency and reliability
- X no robustness wrt the strength of nonlinearities
- Details in K. Mitra, M. Vohralík, Math. Comp. (2024)

Outline

- The heat equation
- 2 The Grönwall lemma
- 3 The Stefan equation
 - A posteriori error estimates
 - Numerical experiments
 - Wrap up
- 4 The Richards equation
 - A posteriori error estimates
 - Numerical experiments
 - Wrap up
- 5 Two-phase porous media flows
 - Conclusions

I Grönwall Stefan Richards Two-phase flow C

Two-phase flow, water saturation

M. Vohralík, M. Wheeler, Computational Geosciences (2013)

I Grönwall Stefan Richards Two-phase flow C

Where (in space and time) is the error **localized**? (two-phase flow)

M. Vohralík, M. Wheeler, Computational Geosciences (2013)

All error components (two-phase flow)

M. Vohralík, M. Wheeler, Computational Geosciences (2013)

Outline

- The heat equation
- 2 The Grönwall lemma
- 3 The Stefan equation
 - A posteriori error estimates
 - Numerical experiments
 - Wrap up
- 4 The Richards equation
 - A posteriori error estimates
 - Numerical experiments
 - Wrap up
- 5) Two-phase porous media flows
- Conclusions

• a posteriori error certification for unsteady, nonlinear, & degenerate pbs

Ínaía

- a posteriori error certification for unsteady, nonlinear, & degenerate pbs
- robustness with respect to the final time

Ínnío

- a posteriori error certification for unsteady, nonlinear, & degenerate pbs
- robustness with respect to the final time
- localization of the error in space and in time

Ínni

- a posteriori error certification for unsteady, nonlinear, & degenerate pbs
- robustness with respect to the final time
- localization of the error in space and in time
- rigorous framework for the heat equation

- a posteriori error certification for unsteady, nonlinear, & degenerate pbs
- robustness with respect to the final time
- localization of the error in space and in time
- rigorous framework for the heat equation
- theory & sound numerical performance for the Stefan & Richards equations

- a posteriori error certification for unsteady, nonlinear, & degenerate pbs
- robustness with respect to the final time
- localization of the error in space and in time
- rigorous framework for the heat equation
- theory & sound numerical performance for the Stefan & Richards equations
- key tool: sharp Grönwall lemma; avoids the appearance of e^T but gives rise to time-integrated and exponentially-weighted norms
Conclusions

- a posteriori error certification for unsteady, nonlinear, & degenerate pbs
- robustness with respect to the final time
- localization of the error in space and in time
- rigorous framework for the heat equation
- theory & sound numerical performance for the Stefan & Richards equations
- key tool: sharp Grönwall lemma; avoids the appearance of e^T but gives rise to time-integrated and exponentially-weighted norms
- - DI PIETRO D., VOHRALÍK M., YOUSEF S. Adaptive regularization, linearization, and discretization and a posteriori error control for the two-phase Stefan problem, *Math. Comp.* **84** (2015), 153–186.
 - ERN A., SMEARS, I., VOHRALIK M. Guaranteed, locally space-time efficient, and polynomial-degree robust a posteriori error estimates for high-order discretizations of parabolic problems, *SIAM J. Numer. Anal.* **55** (2017), 2811–2834.
 - MITRA K., VOHRALÍK M. A posteriori error estimates for the Richards equation, *Math. Comp.* **93** (2024), 1053–1096.

Conclusions

- a posteriori error certification for unsteady, nonlinear, & degenerate pbs
- robustness with respect to the final time
- localization of the error in space and in time
- rigorous framework for the heat equation
- theory & sound numerical performance for the Stefan & Richards equations
- key tool: sharp Grönwall lemma; avoids the appearance of e^T but gives rise to time-integrated and exponentially-weighted norms
- - DI PIETRO D., VOHRALÍK M., YOUSEF S. Adaptive regularization, linearization, and discretization and a posteriori error control for the two-phase Stefan problem, *Math. Comp.* **84** (2015), 153–186.
 - ERN A., SMEARS, I., VOHRALÍK M. Guaranteed, locally space-time efficient, and polynomial-degree robust a posteriori error estimates for high-order discretizations of parabolic problems, *SIAM J. Numer. Anal.* 55 (2017), 2811–2834.

MITRA K., VOHRALÍK M. A posteriori error estimates for the Richards equation, *Math. Comp.* **93** (2024), 1053–1096.

Thank you for your attention!

Grönwall lemma avoiding e^T: a posteriori error estimates for the Stefan & Richards problems 32 / 3

Partition of unity

Grönwall lemma avoiding e^{T} : a posteriori error estimates for the Stefan & Richards problems 33 / 32

Ínnío

Inni

Ímaía

Equilibrated flux reconstruction Destuynder and Métivet (1998), Braess & Schöberl (2008), Ern & Vohralik (2013)

1mg

Equilibrated flux reconstruction Destuynder and Métivet (1998), Braess & Schöberl (2008), Ern & Vohralik (2013)

34/32

Equilibrated flux reconstruction Destuynder and Métivet (1998), Braess & Schöberl (2008), Ern & Vohralik (2013)

Grönwall lemma avoiding e^{T} : a posteriori error estimates for the Stefan & Richards problems 34 / 32

Innía

Outline

Two-phase flow, water saturation

M. Vohralík, M. Wheeler, Computational Geosciences (2013)

Recovering mass balance: two-phase flow (inexact solver, water)

original mass balance misfit (m²s⁻¹)

Setting

- fully implicit discretization of a two-phase oil-water flow
- cell-centered finite volumes on a square mesh
- time step 260, 1st Newton linearization, GMRes iteration 195

J. Papež, U. Rüde, M. Vohralík, B. Wohlmuth, Computer Methods in Applied Mechanics and Engineering (2020)

Grönwall lemma avoiding e^T: a posteriori error estimates for the Stefan & Richards problems 36 / 32

corrected mass balance misfit $(m^2 s^{-1})$

Recovering mass balance: two-phase flow (inexact solver, oil)

original mass balance misfit (m^2s^{-1})

Setting

- fully implicit discretization of a two-phase oil-water flow
- cell-centered finite volumes on a square mesh
- time step 260, 1st Newton linearization, GMRes iteration 195

J. Papež, U. Rüde, M. Vohralík, B. Wohlmuth, Computer Methods in Applied Mechanics and Engineering (2020)

Grönwall lemma avoiding e^T: a posteriori error estimates for the Stefan & Richards problems 36 / 32

corrected mass balance misfit (m^2s^{-1})