Estimation d'erreur a posteriori : principe et applications

Martin Vohralík

Inria Paris & Ecole des Ponts ParisTech

CEA list, April 29, 2024

Outline

- 1
- Introduction: a posteriori error control and adaptivity
- Laplace equation: discretization error control and mesh adaptivity
 - A posteriori error control (discretization)
 - Potential reconstruction
 - Flux reconstruction
 - Balancing error components: mesh adaptivity
- 3 Nonlinear Laplace equation: overall error control and solver adaptivity
 - A posteriori error control (overall and components)
 - Balancing error components: solver adaptivity
- 4 Reaction–diffusion equation: robustness wrt parameters
- 5 Heat equation: robustness wrt final time and space-time localization
- Helmholtz equation: asymptotic robustness
 - Conclusions

Outline

Introduction: a posteriori error control and adaptivity

- Laplace equation: discretization error control and mesh adaptivity
 - A posteriori error control (discretization)
 - Potential reconstruction
 - Flux reconstruction
 - Balancing error components: mesh adaptivity
- 3 Nonlinear Laplace equation: overall error control and solver adaptivity
 - A posteriori error control (overall and components)
 - Balancing error components: solver adaptivity
- 4 Reaction–diffusion equation: robustness wrt parameters
- 6 Heat equation: robustness wrt final time and space-time localization
- 6 Helmholtz equation: asymptotic robustness
 - Conclusions

M. Vohralík

Control the error and act adaptively: real life

Ínaía -

M. Vohralík

Control the error and act adaptively: real life

wandering Paris–Santiago de Compostela

Control the error and act adaptively: real life

M. Vohralík

Control the error and act adaptively: real life

Control the error and act adaptively: real life

M. Vohralík

Control the error and act adaptively: numerical simulations

Ínnia

M. Vohralík

Control the error and act adaptively: numerical simulations

numerical simulation

Control the error and act adaptively: numerical simulations

numerical simulation

M. Vohralík

Control the error and act adaptively: numerical simulations

Control the error and act adaptively: numerical simulations

Numerical approximations of PDEs:

Setting

- *u*: unknown exact PDE solution
- u_h : known numerical approximation on mesh \mathcal{T}_h

Numerical approximations of PDEs:

Setting

- *u*: unknown exact PDE solution
- $u_h^{n,k,i}$: known numerical approximation on mesh \mathcal{T}_h , time step *n*, linearization step *k*, and linear solver step *i*

Numerical approximations of PDEs: 3 crucial questions

Setting

- *u*: unknown exact PDE solution
- $u_h^{n,k,i}$: known numerical approximation on mesh \mathcal{T}_h , time step *n*, linearization step *k*, and linear solver step *i*

Crucial questions

• How large is the overall error between u and $u_h^{n,k,i}$?

Numerical approximations of PDEs: 3 crucial questions

Setting

- *u*: unknown exact PDE solution
- $u_h^{n,k,i}$: known numerical approximation on mesh \mathcal{T}_h , time step *n*, linearization step *k*, and linear solver step *i*

Crucial questions

- How large is the overall error between u and $u_h^{n,k,i}$?
- Where (model/space/time/linearization/algebra) is it **localized**?

Numerical approximations of PDEs: 3 crucial questions

Setting

- *u*: unknown exact PDE solution
- $u_h^{n,k,i}$: known numerical approximation on mesh \mathcal{T}_h , time step *n*, linearization step *k*, and linear solver step *i*

Crucial questions

- How large is the overall error between u and $u_h^{n,k,i}$?
- Where (model/space/time/linearization/algebra) is it **localized**?
- On we decrease it efficiently?

Numerical approximations of PDEs: **3 crucial questions &** suggested answers

Setting

- *u*: unknown exact PDE solution
- $u_h^{n,k,i}$: known numerical approximation on mesh \mathcal{T}_h , time step *n*, linearization step *k*, and linear solver step *i*

Crucial questions

- How large is the overall error between u and $u_h^{n,k,i}$?
- Where (model/space/time/linearization/algebra) is it **localized**?
- 3 Can we decrease it efficiently?

Suggested answers

 Computable a posteriori error estimates.

Numerical approximations of PDEs: **3 crucial questions &** suggested answers

Setting

- *u*: unknown exact PDE solution
- $u_h^{n,k,i}$: known numerical approximation on mesh \mathcal{T}_h , time step *n*, linearization step *k*, and linear solver step *i*

Crucial questions

- How large is the overall error between u and $u_h^{n,k,i}$?
- Where (model/space/time/linearization/algebra) is it **localized**?
- On we decrease it efficiently?

Suggested answers

- Computable a posteriori error estimates.
- Identification of error components.

Numerical approximations of PDEs: **3 crucial questions &** suggested answers

Setting

- *u*: unknown exact PDE solution
- $u_h^{n,k,i}$: known numerical approximation on mesh \mathcal{T}_h , time step *n*, linearization step *k*, and linear solver step *i*

Crucial questions

- How large is the overall error between *u* and $u_h^{n,k,i}$?
- Where (model/space/time/linearization/algebra) is it **localized**?
- 3 Can we decrease it efficiently?

Suggested answers

- Computable a posteriori error estimates.
- Identification of error components.
- Balancing error components, adaptivity (working where needed).

Outline

1

ntroduction: a posteriori error control and adaptivity

- Laplace equation: discretization error control and mesh adaptivity
 - A posteriori error control (discretization)
 - Potential reconstruction
 - Flux reconstruction
 - Balancing error components: mesh adaptivity
- 3 Nonlinear Laplace equation: overall error control and solver adaptivity
 - A posteriori error control (overall and components)
 - Balancing error components: solver adaptivity
- 4 Reaction–diffusion equation: robustness wrt parameters
- 6 Heat equation: robustness wrt final time and space-time localization
- 6 Helmholtz equation: asymptotic robustness
 - Conclusions

Outline

1

Introduction: a posteriori error control and adaptivity

- Laplace equation: discretization error control and mesh adaptivity
 - A posteriori error control (discretization)
 - Potential reconstruction
 - Flux reconstruction
 - Balancing error components: mesh adaptivity
- 3 Nonlinear Laplace equation: overall error control and solver adaptivity
 - A posteriori error control (overall and components)
 - Balancing error components: solver adaptivity
- 4 Reaction–diffusion equation: robustness wrt parameters
- 5 Heat equation: robustness wrt final time and space-time localization
- 6 Helmholtz equation: asymptotic robustness
 - Conclusions

A posteriori error estimates: error control

Guaranteed error upper bound (reliability) $(u_h \in \mathcal{P}_p(\mathcal{T}_h) \cap H^1_0(\Omega), p \ge 1, FEs)$

error lower bound (efficiency, $f \in \mathcal{P}_{\rho-1}(\mathcal{T}_h)$)

 $\eta (u_h) \leq C_{\text{eff}} \| \nabla (u - u_h) \|$

 C_{eff} a generic constant only dependent on shape regularity of T_h and thus independent of Ω, u, u_h, h, p

Laplace Nonlinear Laplace Reaction-diffusion Heat Helmholtz C Error control Potential reconstruction Flux reconstruction Mesh adaptivity A posteriori error estimates: error control Laplace equation in $\Omega \subset \mathbb{R}^d$, $d = 2, 3, f \in L^2(\Omega)$ $-\Delta \mu = f$ in Ω . $\mu = 0$ on $\partial \Omega$ Guaranteed error upper bound (reliability) $(u_h \in \mathcal{P}_p(\mathcal{T}_h) \cap H^1_0(\Omega), p \ge 1, FEs)$ $\|\nabla(u-u_h)\| \leq \eta(u_h)$ unknown error computable estimator

C_{eff} a generic constant only dependent on shape regularity of *T_h* and thus independent of Ω, *u*, *u_h*, *h*, *p*

Laplace Nonlinear Laplace Reaction-diffusion Heat Helmholtz C Error control Potential reconstruction Flux reconstruction Mesh adaptivity A posteriori error estimates: error control Laplace equation in $\Omega \subset \mathbb{R}^d$, $d = 2, 3, f \in L^2(\Omega)$ $-\Delta \mu = f$ in Ω . $\mu = 0$ on $\partial \Omega$ **Guaranteed error upper bound** (reliability) $(u_h \in \mathcal{P}_p(\mathcal{T}_h) \cap H^1_0(\Omega), p \ge 1, FEs)$ $\|\nabla(u-u_h)\| \leq \eta(u_h)$ unknown error computable estimator

Laplace Nonlinear Laplace Reaction-diffusion Heat Helmholtz C Error control Potential reconstruction Flux reconstruction Mesh adaptivity A posteriori error estimates: error control Laplace equation in $\Omega \subset \mathbb{R}^d$, $d = 2, 3, f \in L^2(\Omega)$ $-\Delta \mu = f$ in Ω . $\mu = 0$ on $\partial \Omega$ **Guaranteed error upper bound** (reliability) $(u_h \in \mathcal{P}_p(\mathcal{T}_h) \cap H_0^1(\Omega), p \ge 1, \text{FEs})$ $||\nabla(u-u_h)|| \leq \eta(u_h)$ unknown error computable estimator error lower bound (efficiency, $f \in \mathcal{P}_{p-1}(\mathcal{T}_h)$) $\eta_{\mathcal{A}}(u_h) \leq C_{\text{eff}} \| \nabla (u - u_h) \|_{\mathcal{A}}$ $\forall K \in \mathcal{T}_h$ • $C_{\rm eff}$ a generic constant only dependent on shape regularity of \mathcal{T}_h and thus

Laplace Nonlinear Laplace Reaction-diffusion Heat Helmholtz C Error control Potential reconstruction Flux reconstruction Mesh adaptivity A posteriori error estimates: error control Laplace equation in $\Omega \subset \mathbb{R}^d$, $d = 2, 3, f \in L^2(\Omega)$ $-\Delta u = f$ in Ω . $\mu = 0$ on $\partial \Omega$ **Guaranteed error upper bound** (reliability) $(u_h \in \mathcal{P}_p(\mathcal{T}_h) \cap H_0^1(\Omega), p \ge 1, \text{FEs})$ $\underbrace{\|\nabla(u-u_h)\|}{\leq} \qquad \underbrace{\eta(u_h)}{}$ unknown error computable estimator Local error lower bound (efficiency, $f \in \mathcal{P}_{p-1}(\mathcal{T}_h)$) $\eta_{\mathsf{K}}(\boldsymbol{u}_{b}) < C_{\mathrm{eff}} \| \nabla (\boldsymbol{u} - \boldsymbol{u}_{b}) \|_{\mathrm{opt}} \qquad \forall \boldsymbol{K} \in \mathcal{T}_{b}$ • $C_{\rm eff}$ a generic constant only dependent on shape regularity of T_h and thus independent of Ω , u, u_h , h, p• computable bound on $C_{\rm eff}$ available. $C_{\rm eff} \approx 5$

Laplace Nonlinear Laplace Reaction-diffusion Heat Helmholtz C Error control Potential reconstruction Flux reconstruction Mesh adaptivity A posteriori error estimates: error control **Laplace equation** in $\Omega \subset \mathbb{R}^d$, $d = 2, 3, f \in L^2(\Omega)$ $-\Delta u = f$ in Ω . $\mu = 0$ on $\partial \Omega$ **Guaranteed error upper bound** (reliability) $(u_h \in \mathcal{P}_p(\mathcal{T}_h) \cap H_0^1(\Omega), p \ge 1, \text{FEs})$ $\underbrace{\|\nabla(u-u_h)\|}{\leq} \qquad \underbrace{\eta(u_h)}{}$ unknown error computable estimator Local error lower bound (efficiency, $f \in \mathcal{P}_{p-1}(\mathcal{T}_h)$) $\eta_{\mathsf{K}}(u_h) < C_{\mathrm{eff}} \| \nabla (u - u_h) \|_{\omega_{\mathsf{K}}} \quad \forall \mathsf{K} \in \mathcal{T}_h$ • $C_{\rm eff}$ a generic constant only dependent on shape regularity of T_h and thus independent of Ω , u, u_h , h, p• computable bound on $C_{\rm eff}$ available. $C_{\rm eff} \approx 5$

 Prager and Synge (1947), Ladevèze (1975), Babuška & Rheinboldt (1987), Verfürth (1989), Ainsworth & Oden (1993), Destuynder & Métivet (1999), Vejchodský (2006), Braess, Pillwein, & Schöberl (2009), Ern & Vohralík (2015)

Laplace Nonlinear Laplace Reaction-diffusion Heat Helmholtz C Potential reconstruction Flux reconstruction Mesh adaptivity Error control A posteriori error estimates: error control **Laplace equation** in $\Omega \subset \mathbb{R}^d$, $d = 2, 3, f \in L^2(\Omega)$ $-\Delta u = f$ in Ω . $\mu = 0$ on $\partial \Omega$ **Guaranteed error upper bound** (reliability) $(u_h \in \mathcal{P}_p(\mathcal{T}_h) \cap H_0^1(\Omega), p \ge 1, \text{FEs})$ $||\nabla(u-u_h)|| \leq \eta(u_h)$ unknown error computable estimator Local error lower bound (efficiency, $f \in \mathcal{P}_{p-1}(\mathcal{T}_h)$) $\eta_{\mathbf{K}}(\mathbf{u}_{b}) < \mathbf{C}_{\text{eff}} \| \nabla (\mathbf{u} - \mathbf{u}_{b}) \|_{u_{\mathbf{K}}} \qquad \forall \mathbf{K} \in \mathcal{T}_{b}$

- C_{eff} a generic constant only dependent on shape regularity of *T_h* and thus independent of Ω, *u*, *u_h*, *h*, *p*
- $\bullet\,$ computable bound on ${\it C}_{eff}$ available, ${\it C}_{eff}\approx 5$

 Prager and Synge (1947), Ladevèze (1975), Babuška & Rheinboldt (1987), Verfürth (1989), Ainsworth & Oden (1993), Destuynder & Métivet (1999), Vejchodský (2006), Braess, Pillwein, & Schöberl (2009), Ern & Vohralík (2015) **A posteriori error estimates:** error control Laplace equation in $\Omega \subset \mathbb{R}^d$, $d = 2, 3, f \in L^2(\Omega)$ $-\Delta u = f$ in Ω , u = 0 on $\partial \Omega$ **Guaranteed error upper bound** (reliability) $(u_h \in \mathcal{P}_p(\mathcal{T}_h) \cap H_0^1(\Omega), p \ge 1, FEs)$

$$\underbrace{\|\nabla(u - u_h)\|}_{\text{unknown error}} \leq \underbrace{\eta(u_h)}_{\text{computable estimato}}$$

Local error lower bound (efficiency, $f \in \mathcal{P}_{p-1}(\mathcal{T}_h)$)

 $\eta_{\mathbf{K}}(u_h) \leq C_{\text{eff}} \| \nabla (u - u_h) \|_{\omega_{\mathbf{K}}} \qquad \forall \mathbf{K} \in \mathcal{T}_h$

- C_{eff} a generic constant only dependent on shape regularity of *T_h* and thus independent of Ω, *u*, *u_h*, *h*, *p*
- computable bound on $C_{\rm eff}$ available, $C_{\rm eff} \approx 5$
- Prager and Synge (1947), Ladevèze (1975), Babuška & Rheinboldt (1987), Verfürth (1989), Ainsworth & Oden (1993), Destuynder & Métivet (1999), Vejchodský (2006), Braess, Pillwein, & Schöberl (2009), Ern & Vohralík (2015)

How large is the overall error?

h	р	$\eta(u_h)$	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{ \nabla(v-v_h) }{ \nabla v_h }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$pprox h_0/2$	2	4.23×10^{-3}				
$\approx h_0/4$	3	2.62×10^{-1}				
$\approx h_0/8$	-4	2.60×10^{-1}				

A. Em, M. Vohralik, SIAM Journal on Numerical Analysis (2015) Dolejší, A. Em, M. Vohralik, SIAM Journal on Scientific Computing (2016)

Ínría_

How large is the overall error?

h	р	$\eta({m u_h})$	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$\approx h_0/2$	2	4.23×10^{-2}	9.8 × 10 ⁻¹ 96	4.07×10^{-2}		
$\approx h_0/8$	4	2.60×10^{-7}	5.9 × 10 ⁻¹ %	2.58×10^{-7}		

A. Em, M. Vohralik, SIAM Journal on Numerical Analysis (2015) Dolejší, A. Em, M. Vohralik, SIAM Journal on Scientific Computing (2016)

Error control Potential reconstruction Flux reconstruction Mesh adaptivity

How large is the overall error? (model pb, known smooth solution)

h	р	$\eta({m u_h})$	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$\approx h_0/8$		1.45×10^{-1}	3.3%	1.39×10^{-1}	3.1%	
$\approx h_0/2$	2	4.23×10^{-2}	9.5×10^{-1} %	4.07×10^{-2}	9.2×10^{-1} %	
$\approx h_0/8$	-4	2.60×10^{-7}	$5.9 imes 10^{-6}$ %	2.58×10^{-4}	5.8×10^{-9}	

A. Em, M. Vohralik, SIAM Journal on Numerical Analysis (2015) Dolejší, A. Em, M. Vohralik, SIAM Journal on Scientific Computing (2016)

Ínnía -

How large is the overall error? (model pb, known smooth solution)

h	р	$\eta({m u_h})$	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$\approx h_0/2$	2	4.23×10^{-2}	$9.5 imes 10^{-1}$ %	$4.07 imes 10^{-2}$	$9.2 \times 10^{-1}\%$	
$\approx h_0/4$	3	2.62×10^{-4}	5.9×10^{-3} %	2.60×10^{-4}	5.9 × 10 ⁻² %	
$pprox h_0/8$	4	2.60×10^{-7}	$5.9 imes 10^{-6}$ %	2.58×10^{-7}	5.8×10^{-9} %	

A. Em, M. Vohrelik, SIAM Journal on Numerical Analysis (2015) Dolejší, A. Em, M. Vohrelik, SIAM Journal on Scientific Computing (2016)

Ínaía

How large is the overall error? (model pb, known smooth solution)

h	р	$\eta({m u_h})$	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$\approx h_0/2$	2	4.23×10^{-2}	$9.5 imes 10^{-1}$ %	4.07×10^{-2}	$9.2 imes 10^{-1}$ %	1.04
$\approx h_0/4$	3	2.62×10^{-4}	5.9×10^{-3} %	2.60×10^{-4}	$5.9 imes 10^{-3}\%$	1.01
$\approx h_0/8$	4	2.60×10^{-7}	5.9×10^{-6} %	2.58×10^{-7}	$5.8 imes 10^{-6}$ %	1.01

A. Em, M. Vohrelik, SIAM Journel on Numerical Analysis (2015) Dolejší, A. Em, M. Vohrelik, SIAM Journel on Scientific Computing (2016).

Ínaía
h	р	$\eta({m u_h})$	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$pprox h_0/2$		$6.07 imes 10^{-1}$		$5.56 imes 10^{-1}$	13%	
$pprox h_0/2$	2	4.23×10^{-2}	$9.5 imes 10^{-1}$ %	$4.07 imes 10^{-2}$	$9.2 imes 10^{-1}$ %	1.04
$\approx h_0/4$	3	2.62×10^{-4}	$5.9 imes 10^{-3}$ %	2.60×10^{-4}	$5.9 imes 10^{-3}$ %	1.01
$pprox h_0/8$	4	2.60×10^{-7}	$5.9 imes 10^{-6}$ %	2.58×10^{-7}	$5.8 imes 10^{-6}$ %	1.01

A. Ern, M. Vohralik, SIAM Journal on Numerical Analysis (2015) Dolejší, A. Ern, M. Vohralik, SIAM Journal on Scientific Computing (2016)

Ínaía

h	p	$\eta(u_h)$	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ abla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$pprox h_0/2$		$6.07 imes 10^{-1}$	14%	$5.56 imes 10^{-1}$	13%	1.09
$pprox h_0/4$		3.10×10^{-1}		$2.92 imes 10^{-1}$	6.6%	1.06
$\approx h_0/2$	2	4.23×10^{-2}	$9.5 imes10^{-1}\%$	$4.07 imes 10^{-2}$	$9.2 imes 10^{-1}$ %	1.04
$\approx h_0/4$	3	2.62×10^{-4}	5.9×10^{-3} %	2.60×10^{-4}	$5.9 imes 10^{-3}\%$	1.01
$pprox h_0/8$	4	2.60×10^{-7}	$5.9 imes 10^{-6}$ %	2.58×10^{-7}	$5.8 imes 10^{-6}$ %	1.01

A. Em, M. Vohralik, SIAM Journal on Numerical Analysis (2015) Dolejší, A. Em, M. Vohralik, SIAM Journal on Scientific Computing (2016)

Ínaía

h	р	$\eta({m u_h})$	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$pprox h_0/2$		$6.07 imes 10^{-1}$	14%	$5.56 imes 10^{-1}$	13%	1.09
$\approx h_0/4$		$3.10 imes10^{-1}$	7.0%	$2.92 imes 10^{-1}$	6.6%	1.06
$\approx h_0/8$		$1.45 imes 10^{-1}$	3.3%	$1.39 imes 10^{-1}$	3.1%	1.04
$\approx h_0/2$	2	4.23×10^{-2}	$9.5 imes 10^{-1}$ %	$4.07 imes 10^{-2}$	$9.2 imes 10^{-1}\%$	1.04
$\approx h_0/4$	3	2.62×10^{-4}	$5.9 imes 10^{-3}$ %	2.60×10^{-4}	$5.9 imes 10^{-3}\%$	1.01
$pprox h_0/8$	4	2.60×10^{-7}	5.9×10^{-6} %	2.58×10^{-7}	$5.8 imes 10^{-6}$ %	1.01

A. Ern, M. Vohralik, SIAM Journal on Numerical Analysis (2015) Dolejší, A. Ern, M. Vohralik, SIAM Journal on Scientific Computing (2016)

Ínaía

h	р	$\eta({m u_h})$	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = rac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$pprox h_0/2$		$6.07 imes 10^{-1}$	14%	$5.56 imes 10^{-1}$	13%	1.09
$\approx h_0/4$		$3.10 imes 10^{-1}$	7.0%	$2.92 imes 10^{-1}$	6.6%	1.06
$\approx h_0/8$		$1.45 imes10^{-1}$	3.3%	$1.39 imes 10^{-1}$	3.1%	1.04
$\approx h_0/2$	2	4.23×10^{-2}	$9.5 imes 10^{-1}$ %	4.07×10^{-2}	$9.2 imes 10^{-1}\%$	1.04
$\approx h_0/4$	3	2.62×10^{-4}	$5.9 imes10^{-3}\%$	2.60×10^{-4}	$5.9 imes 10^{-3}$ %	1.01
$pprox h_0/8$	4	2.60×10^{-7}	$5.9 imes10^{-6}\%$	2.58×10^{-7}	$5.8 imes 10^{-6}\%$	1.01

A. Ern, M. Vohralik, SIAM Journal on Numerical Analysis (2015)

h	р	$\eta({m u_h})$	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$pprox h_0/2$		$6.07 imes 10^{-1}$	14%	$5.56 imes 10^{-1}$	13%	1.09
$\approx h_0/4$		$3.10 imes10^{-1}$	7.0%	$2.92 imes 10^{-1}$	6.6%	1.06
$\approx h_0/8$		$1.45 imes10^{-1}$	3.3%	$1.39 imes 10^{-1}$	3.1%	1.04
$\approx h_0/2$	2	$4.23 imes10^{-2}$	$9.5 imes 10^{-1}$ %	$4.07 imes 10^{-2}$	$9.2 imes10^{-1}\%$	1.04
$pprox h_0/4$	3	2.62×10^{-4}	$5.9 imes10^{-3}\%$	2.60×10^{-4}	$5.9 imes10^{-3}\%$	1.01
$pprox h_0/8$	4	2.60×10^{-7}	$5.9 imes 10^{-6} \%$	2.58×10^{-7}	$5.8 imes 10^{-6}\%$	1.01

A. Ern, M. Vohralik, SIAM Journal on Numerical Analysis (2015) Dolaičí A. Ern, M. Vohralik, SIAM Journal on Scientific Computing (2016)

h	р	$\eta({m u_h})$	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$pprox h_0/2$		$6.07 imes 10^{-1}$	14%	$5.56 imes 10^{-1}$	13%	1.09
$\approx h_0/4$		$3.10 imes10^{-1}$	7.0%	$2.92 imes 10^{-1}$	6.6%	1.06
$\approx h_0/8$		$1.45 imes10^{-1}$	3.3%	$1.39 imes 10^{-1}$	3.1%	1.04
$\approx h_0/2$	2	$4.23 imes10^{-2}$	$9.5 imes 10^{-1}$ %	$4.07 imes 10^{-2}$	$9.2 imes10^{-1}\%$	1.04
$\approx h_0/4$	3	$2.62 imes 10^{-4}$	$5.9 imes10^{-3}\%$	$2.60 imes 10^{-4}$	$5.9 imes10^{-3}\%$	1.01
$\approx h_0/8$	4	2.60×10^{-7}	$5.9 imes 10^{-6} \%$	2.58×10^{-7}	$5.8 imes 10^{-6}\%$	1.01

A. Ern, M. Vohralík, SIAM Journal on Numerical Analysis (2015) / Dolejší, A. Ern, M. Vohralík, SIAM Journal on Scientific Computing (2016)

h	<mark>ν</mark> η(υ _h)	rel. error estimate $\frac{\eta(u_h)}{\ \nabla u_h\ }$	$\ \nabla(u-u_h)\ $	rel. error $\frac{\ \nabla(u-u_h)\ }{\ \nabla u_h\ }$	$I^{\text{eff}} = \frac{\eta(u_h)}{\ \nabla(u-u_h)\ }$
h_0	1 1.25	28%	1.07	24%	1.17
$pprox h_0/2$	$6.07 imes 10^{-1}$	14%	5.56×10^{-1}	13%	1.09
$pprox h_0/4$	$3.10 imes 10^{-1}$	7.0%	2.92×10^{-1}	6.6%	1.06
$\approx h_0/8$	$1.45 imes 10^{-1}$	3.3%	1.39×10^{-1}	3.1%	1.04
$\approx h_0/2$	$2 4.23 \times 10^{-2}$	$9.5 imes 10^{-1}$ %	$4.07 imes 10^{-2}$	$9.2 imes10^{-1}\%$	1.04
$\approx h_0/4$	$3 2.62 \times 10^{-4}$	$5.9 imes10^{-3}\%$	$2.60 imes 10^{-4}$	$5.9 imes10^{-3}\%$	1.01
$\approx h_0/8$	4 2.60 $\times 10^{-7}$	$5.9 imes 10^{-6}$ %	2.58×10^{-7}	$5.8 imes 10^{-6}$ %	1.01

A. Ern, M. Vohralík, SIAM Journal on Numerical Analysis (2015) V. Dolejší, A. Ern, M. Vohralík, SIAM Journal on Scientific Computing (2016)

Ímaia

Estimated error distribution $\eta_{\mathcal{K}}(u_h)$

Exact error distribution $\|\nabla(u - u_h)\|_{\kappa}$

P. Daniel, A. Ern, I. Smears, M. Vohralík, Computers & Mathematics with Applications (2018)

M. Vohralík

Estimation d'erreur a posteriori : principe et applications 7 / 39

Theorem (Error characterization)

Let $u \in H_0^1(\Omega)$ be the weak solution and let $u_h \in H^1(\mathcal{T}_h)$ be arbitrary. Then

$$\|\nabla(u - u_h)\|^2 = \min_{\substack{\sigma \in \mathcal{H}(\operatorname{div},\Omega) \\ \nabla \cdot \sigma = f}} \|\nabla u_h + \sigma\|^2 + \min_{\substack{s \in \mathcal{H}_0^1(\Omega) \\ ||\nabla \varphi|| = 1 \\ dual norm of the residual}} + \min_{\substack{s \in \mathcal{H}_0^1(\Omega) \\ distance to \ \mathcal{H}_0^1(\Omega)}} \|\nabla(u_h - s)\|^2.$$

Comments

It is enough to choose suitable (discrete, piecewise polynomial)

 σ_h ∈ H(div, Ω) with ∇·σ_h = f and s_h ∈ H¹₀(Ω) to get a guaranteed upper bound.

Theorem (Error characterization)

Let $u \in H_0^1(\Omega)$ be the weak solution and let $u_h \in H^1(\mathcal{T}_h)$ be arbitrary. Then

$$\|\nabla(u - u_h)\|^2 = \min_{\substack{\sigma \in \mathcal{H}(\operatorname{div},\Omega) \\ \nabla \cdot \sigma = f}} \|\nabla u_h + \sigma\|^2 + \min_{\substack{s \in \mathcal{H}_0^1(\Omega) \\ ||\nabla \varphi|| = 1 \\ dual norm of the residual}} + \underbrace{\min_{\substack{s \in \mathcal{H}_0^1(\Omega) \\ distance to \ \mathcal{H}_0^1(\Omega)}} \|\nabla(u_h - s)\|^2.$$

Comments

It is enough to choose suitable (discrete, piecewise polynomial)

 σ_h ∈ H(div, Ω) with ∇·σ_h = f and s_h ∈ H¹₀(Ω) to get a guaranteed upper bound.

Theorem (Error characterization)

Let $u \in H_0^1(\Omega)$ be the weak solution and let $u_h \in H^1(\mathcal{T}_h)$ be arbitrary. Then

$$\|\nabla(u - u_h)\|^2 = \min_{\substack{\sigma \in \mathcal{H}(\operatorname{div},\Omega) \\ \nabla \cdot \sigma = f}} \|\nabla u_h + \sigma\|^2 + \min_{\substack{s \in \mathcal{H}_0^1(\Omega) \\ ||\nabla \varphi|| = 1 \\ dual norm of the residual}} + \min_{\substack{s \in \mathcal{H}_0^1(\Omega) \\ distance to \mathcal{H}_0^1(\Omega)}} \|\nabla(u_h - s)\|^2.$$

- It is enough to choose suitable (discrete, piecewise polynomial)

 σ_h ∈ *H*(div, Ω) with ∇·*σ_h* = *f* and *s_h* ∈ *H*¹₀(Ω) to get a guaranteed upper bound.
- Local construction of on and s_h?

Theorem (Error characterization)

Let $u \in H_0^1(\Omega)$ be the weak solution and let $u_h \in H^1(\mathcal{T}_h)$ be arbitrary. Then

$$\|\nabla(u - u_h)\|^2 = \min_{\substack{\sigma \in H(\operatorname{div},\Omega) \\ \nabla \cdot \sigma = f}} \|\nabla u_h + \sigma\|^2 + \min_{\substack{s \in H_0^1(\Omega) \\ \|\nabla \varphi\| = 1 \\ \operatorname{dual norm of the residual}}} + \underbrace{\min_{s \in H_0^1(\Omega)} \|\nabla(u_h - s)\|^2}_{\operatorname{distance to } H_0^1(\Omega)}.$$

- It is enough to choose suitable (discrete, piecewise polynomial)

 σ_h ∈ *H*(div, Ω) with ∇·σ_h = f and s_h ∈ H¹₀(Ω) to get a guaranteed upper bound.
- Local construction of σ_h and s_h?

Theorem (Error characterization)

Let $u \in H_0^1(\Omega)$ be the weak solution and let $u_h \in H^1(\mathcal{T}_h)$ be arbitrary. Then

$$\|\nabla(u - u_h)\|^2 = \min_{\substack{\sigma \in \mathcal{H}(\operatorname{div},\Omega) \\ \nabla \cdot \sigma = f}} \|\nabla u_h + \sigma\|^2 + \min_{\substack{s \in \mathcal{H}_0^1(\Omega) \\ |\nabla \varphi|| = 1 \\ \operatorname{dual norm of the residual}}} + \min_{\substack{s \in \mathcal{H}_0^1(\Omega) \\ \operatorname{distance to } \mathcal{H}_0^1(\Omega)} \|\nabla(u_h - s)\|^2.$$

- It is enough to choose suitable (discrete, piecewise polynomial)

 σ_h ∈ *H*(div, Ω) with ∇·σ_h = f and s_h ∈ H¹₀(Ω) to get a guaranteed upper bound.
- **Local** construction of σ_h and s_h ?

Theorem (Error characterization)

Let $u \in H_0^1(\Omega)$ be the weak solution and let $u_h \in H^1(\mathcal{T}_h)$ be arbitrary. Then

$$\|\nabla(u - u_h)\|^2 = \min_{\substack{\sigma \in \mathcal{H}(\operatorname{div},\Omega) \\ \nabla \cdot \sigma = f}} \|\nabla u_h + \sigma\|^2 + \min_{\substack{s \in \mathcal{H}_0^1(\Omega) \\ ||\nabla \varphi|| = 1 \\ dual norm of the residual}} + \min_{\substack{s \in \mathcal{H}_0^1(\Omega) \\ distance to \ \mathcal{H}_0^1(\Omega)}} \|\nabla(u_h - s)\|^2.$$

- It is enough to choose suitable (discrete, piecewise polynomial)

 σ_h ∈ *H*(div, Ω) with ∇·σ_h = f and s_h ∈ H¹₀(Ω) to get a guaranteed upper bound.
- Local construction of σ_h and s_h ?

Outline

- Introduction: a posteriori error control and adaptivity
- Laplace equation: discretization error control and mesh adaptivity
 - A posteriori error control (discretization)
 - Potential reconstruction
 - Flux reconstruction
 - Balancing error components: mesh adaptivity
- 3 Nonlinear Laplace equation: overall error control and solver adaptivity
 - A posteriori error control (overall and components)
 - Balancing error components: solver adaptivity
- 4 Reaction–diffusion equation: robustness wrt parameters
- 5 Heat equation: robustness wrt final time and space-time localization
- 6 Helmholtz equation: asymptotic robustness
 - Conclusions

Potential reconstruction

I Laplace Nonlinear Laplace Reaction-diffusion Heat Helmholtz C Error control Potential reconstruction Flux reconstruction Mesh adaptivity

I Laplace Nonlinear Laplace Reaction-diffusion Heat Helmholtz C Error control Potential reconstruction Flux reconstruction Mesh adaptivity

Laplace Nonlinear Laplace Beaction-diffusion Heat Helmholtz C Error control Potential reconstruction Flux reconstruction Mesh adaptivity Potential reconstruction: datum $u_h \in \mathcal{P}_p(\mathcal{T}_h), p \geq 1$ For each vertex $a \in \mathcal{V}_h$, solve the local minimization problem

- cut-off by hat basis functions ψ_a
- projection of the discontinuous $\psi_a u_h$ to a conforming space
- homogeneous Dirichlet BC on $\partial \omega_{a}$: $s_{h} \in \mathcal{P}_{p+1}(\mathcal{T}_{h}) \cap H_{0}^{1}(\Omega)$

Laplace Nonlinear Laplace Beaction-diffusion Heat Helmholtz C Error control Potential reconstruction Flux reconstruction Mesh adaptivity Potential reconstruction: datum $u_h \in \mathcal{P}_p(\mathcal{T}_h), p \geq 1$ Definition (Construction of S_h Ern & V. (2015), \approx Carstensen and Merdon (2013)) For each vertex $\boldsymbol{a} \in \mathcal{V}_h$, solve the local minimization problem $s_h^{\boldsymbol{a}} := \arg \min_{\boldsymbol{v}_h \in V_h^{\boldsymbol{a}} := \mathcal{P}_{o+1}(\mathcal{T}^{\boldsymbol{a}}) \cap H_0^{\uparrow}(\omega_{\boldsymbol{a}})} \| \nabla (\psi_{\boldsymbol{a}} u_h - v_h) \|_{\omega_{\boldsymbol{a}}}$

$$(\nabla s_h^a, \nabla v_h)_{\omega_a} = (\nabla (\psi_a u_h), \nabla v_h)_{\omega_a} \qquad \forall v_h \in V_h^a.$$

Key points

- localization to patches T^a
- cut-off by hat basis functions ψ_a
- projection of the discontinuous \u03c6_au_h to a conforming space
- homogeneous Dirichlet BC on $\partial \omega_{m{a}}$: $s_h \in \mathcal{P}_{
 ho+1}(\mathcal{T}_h) \cap H^1_0(\Omega)$

M. Vohralík

Estimation d'erreur a posteriori : principe et applications 12 / 39

• homogeneous Dirichlet BC on $\partial \omega_{\pmb{a}}$: $\pmb{s}_h \in \mathcal{P}_{p+1}(\mathcal{T}_h) \cap H^1_0(\Omega)$

M. Vohralík

Estimation d'erreur a posteriori : principe et applications 12 / 39

- projection of the discontinuous \u03c6_au_h to a conforming space
- homogeneous Dirichlet BC on $\partial \omega_{a}$: $s_{h} \in \mathcal{P}_{p+1}(\mathcal{T}_{h}) \cap H^{1}_{0}(\Omega)$

M. Vohralík

- cut-off by hat basis functions ψ_a
- projection of the discontinuous $\psi_a u_h$ to a conforming space
- homogeneous Dirichlet BC on $\partial \omega_a$: $s_h \in \mathcal{P}_{p+1}(\mathcal{T}_h) \cap H_0^1(\Omega)$

- cut-off by hat basis functions ψ_a
- projection of the discontinuous $\psi_a u_h$ to a conforming space
- homogeneous Dirichlet BC on $\partial \omega_a$: $s_h \in \mathcal{P}_{p+1}(\mathcal{T}_h) \cap H_0^1(\Omega)$

M. Vohralík

Potential reconstruction

Outline

- Introduction: a posteriori error control and adaptivity
- Laplace equation: discretization error control and mesh adaptivity
 - A posteriori error control (discretization)
 - Potential reconstruction
 - Flux reconstruction
 - Balancing error components: mesh adaptivity
- 3 Nonlinear Laplace equation: overall error control and solver adaptivity
 - A posteriori error control (overall and components)
 - Balancing error components: solver adaptivity
- 4 Reaction–diffusion equation: robustness wrt parameters
- 6 Heat equation: robustness wrt final time and space-time localization
- 6 Helmholtz equation: asymptotic robustness
 - Conclusions

Equilibrated flux reconstruction

Equilibrated flux reconstruction

Laplace Nonlinear Laplace Reaction-diffusion Heat Helmholtz C Error control Potential reconstruction Flux reconstruction Mesh adaptivity Equilibrated flux reconstruction: $-\nabla u_h \in \mathcal{RT}_{p-1}(\mathcal{T}_h), p \ge 1, f \in L^2(\Omega)$ $\forall \boldsymbol{a} \in \mathcal{V}_{\boldsymbol{b}}^{\text{int}}.$

Laplace Nonlinear Laplace Beaction-diffusion Heat Helmholtz C Error control Potential reconstruction Flux reconstruction Mesh adaptivity Equilibrated flux reconstruction: $-\nabla u_h \in \mathcal{RT}_{p-1}(\mathcal{T}_h), p \ge 1, f \in L^2(\Omega)$ Assumption (Orthogonality wrt hat functions) There holds $(f, \psi_{\boldsymbol{a}})_{\omega_{\boldsymbol{a}}} - (\nabla u_{\boldsymbol{h}}, \nabla \psi_{\boldsymbol{a}})_{\omega_{\boldsymbol{a}}} = 0$ $\forall \boldsymbol{a} \in \mathcal{V}_{\boldsymbol{b}}^{\text{int}}.$ For each $a \in \mathcal{V}_h$, solve the local constrained minimization pb $\sigma_h^{\boldsymbol{a}} := \arg \min_{\boldsymbol{v}_h \in \boldsymbol{V}_h^{\boldsymbol{a}} = \mathcal{RT}_b(\mathcal{T}^{\boldsymbol{a}}) \cap \mathcal{H}_h(\mathrm{div},\omega_{\boldsymbol{a}})} \| \psi_{\boldsymbol{a}} \nabla u_h + \boldsymbol{v}_h \|_{\omega_{\boldsymbol{a}}}$

Error control Potential reconstruction Flux reconstruction Mesh adaptivity

Equilibrated flux reconstruction:

 $-\nabla u_h \in \mathcal{RT}_{p-1}(\mathcal{T}_h), p \geq 1, f \in L^2(\Omega)$

Error control Potential reconstruction Flux reconstruction Mesh adaptivity

Equilibrated flux reconstruction: -

 $abla u_h \in \mathcal{RT}_{p-1}(\mathcal{T}_h), \, p \geq 1, \, f \in L^2(\Omega)$

M. Vohralík

M. Vohralík

M. Vohralík

Outline

- Introduction: a posteriori error control and adaptivity
- Laplace equation: discretization error control and mesh adaptivity
 - A posteriori error control (discretization)
 - Potential reconstruction
 - Flux reconstruction
 - Balancing error components: mesh adaptivity
- 3 Nonlinear Laplace equation: overall error control and solver adaptivity
 - A posteriori error control (overall and components)
 - Balancing error components: solver adaptivity
- 4 Reaction–diffusion equation: robustness wrt parameters
- 6 Heat equation: robustness wrt final time and space-time localization
- 6 Helmholtz equation: asymptotic robustness
 - Conclusions

I Laplace Nonlinear Laplace Reaction-diffusion Heat Helmholtz C Error control Potential reconstruction Flux reconstruction Mesh adaptivity

Can we decrease the error efficiently? (adaptive mesh refinement)

M. Vohralík, SIAM Journal on Numerical Analysis (2007

Singular solutions

Ínría Listes

I Laplace Nonlinear Laplace Reaction-diffusion Heat Helmholtz C Error control Potential reconstruction Flux reconstruction Mesh adaptivity

Estimated and actual error against the number of elements in uniformly/adaptively refined meshes (singular solutions)

Adaptive mesh refinement

Adaptive mesh refinement

$$\sum_{K\in\mathcal{T}_\ell}\eta_K(u_\ell)^2=-\eta(u_\ell)^2$$

Adaptive mesh refinement

• Dörfler marking: subset \mathcal{M}_{ℓ} containing θ -fraction of the estimates

$$\sum_{K\in \mathcal{M}_{\ell}}\eta_{K}(u_{\ell})^{2}\geq \theta^{2}\sum_{K\in \mathcal{T}_{\ell}}\eta_{K}(u_{\ell})^{2}=\theta^{2}\eta(u_{\ell})^{2}$$

lingto

Adaptive mesh refinement

• Dörfler marking: subset \mathcal{M}_{ℓ} containing θ -fraction of the estimates

$$\sum_{K\in \mathcal{M}_{\ell}}\eta_{K}(u_{\ell})^{2}\geq \theta^{2}\sum_{K\in \mathcal{T}_{\ell}}\eta_{K}(u_{\ell})^{2}=\theta^{2}\eta(u_{\ell})^{2}$$

Convergence on a sequence of adaptively refined meshes

•
$$\|
abla(u-u_\ell)\| o 0$$

- some mesh elements may not be refined at all: $h \searrow 0$
- Babuška & Miller (1987), Dörfler (1996)

Adaptive mesh refinement

• Dörfler marking: subset \mathcal{M}_{ℓ} containing θ -fraction of the estimates

$$\sum_{K\in \mathcal{M}_{\ell}}\eta_K(u_{\ell})^2\geq \theta^2\sum_{K\in \mathcal{T}_{\ell}}\eta_K(u_{\ell})^2=\theta^2\eta(u_{\ell})^2$$

Optimal error decay rate wrt degrees of freedom

- $\|\nabla(u u_{\ell})\| \lesssim |\mathsf{DoF}_{\ell}|^{-p/d}$ (replaces h^p)
- same for smooth & singular solutions: higher-order only pay-off for sm. sol.
- decays to zero as fast as on a best-possible sequence of meshes
- Morin, Nochetto, Siebert (2000), Stevenson (2005, 2007), Cascón, Kreuzer, Nochetto, Siebert (2008), Canuto, Nochetto, Stevenson, Verani (2017)

Outline

- Introduction: a posteriori error control and adaptivity
- 2 Laplace equation: discretization error control and mesh adaptivity
 - A posteriori error control (discretization)
 - Potential reconstruction
 - Flux reconstruction
 - Balancing error components: mesh adaptivity

3 Nonlinear Laplace equation: overall error control and solver adaptivity

- A posteriori error control (overall and components)
- Balancing error components: solver adaptivity
- 4 Reaction–diffusion equation: robustness wrt parameters
- 6 Heat equation: robustness wrt final time and space-time localization
- 6 Helmholtz equation: asymptotic robustness
 - Conclusions

I Laplace Nonlinear Laplace Reaction-diffusion Heat Helmholtz C

Error control Solver adaptivity

Outline

- Introduction: a posteriori error control and adaptivity
- 2 Laplace equation: discretization error control and mesh adaptivity
 - A posteriori error control (discretization)
 - Potential reconstruction
 - Flux reconstruction
 - Balancing error components: mesh adaptivity

3 Nonlinear Laplace equation: overall error control and solver adaptivity

- A posteriori error control (overall and components)
- Balancing error components: solver adaptivity
- 4 Reaction–diffusion equation: robustness wrt parameters
- 6 Heat equation: robustness wrt final time and space-time localization
- 6 Helmholtz equation: asymptotic robustness
 - Conclusions

I Laplace Nonlinear Laplace Reaction-diffusion Heat Helmholtz C Error control Solver adaptivity

Including algebraic error: $\mathbb{A}_{\ell} \mathbf{U}_{\ell}^{i} \neq \mathbf{F}_{\ell}$

Laplace Nonlinear Laplace Reaction-diffusion Heat Helmholtz C Error control Solver adaptivity

Including algebraic error: $\mathbb{A}_{\ell} \mathbf{U}_{\ell}^{\ell} \neq \mathbf{F}_{\ell}$

I Laplace Nonlinear Laplace Reaction-diffusion Heat Helmholtz C Error control Solver adaptivity

Including algebraic error: $\mathbb{A}_{\ell} U_{\ell}^{\dagger} \neq F_{\ell}$

J. Papež, U. Rüde, M. Vohralík, B. Wohlmuth, Computer Methods in Applied Mechanics and Engineering (2020)

Nonlinear pb $-\nabla \cdot \sigma(\nabla u) = f$: including linearization and algebraic error: $\mathcal{A}_{\ell}(\mathbf{U}_{\ell}^{K,i}) \neq \mathbf{F}_{\ell}, \mathbf{A}_{\ell}^{K-1}\mathbf{U}_{\ell}^{K,i} \neq \mathbf{I}_{\ell}^{K,i}$

Nonlinear pb $-\nabla \cdot \boldsymbol{\sigma}(\nabla u) = f$: including **linearization** and **algebraic** error: $\mathcal{A}_{\ell}(\mathbf{U}_{\ell}^{k,i}) \neq \mathbf{F}_{\ell}, \mathbb{A}_{\ell}^{k-1}\mathbf{U}_{\ell}^{k,i} \neq \mathbf{F}_{\ell}^{k-1}$ Nonlinear pb $-\nabla \cdot \boldsymbol{\sigma}(\nabla u) = f$: including **linearization** and **algebraic** error: $\mathcal{A}_{\ell}(\mathbf{U}_{\ell}^{k,i}) \neq \mathbf{F}_{\ell}, \mathbb{A}_{\ell}^{k-1}\mathbf{U}_{\ell}^{k,i} \neq \mathbf{F}_{\ell}^{k-1}$ I Laplace Nonlinear Laplace Reaction-diffusion Heat Helmholtz C Error control Solver adaptivity

Nonlinear pb $-\nabla \cdot \boldsymbol{\sigma}(\nabla u) = f$: including **linearization** and **algebraic** error: $\mathcal{A}_{\ell}(\mathbf{U}_{\ell}^{k,i}) \neq \mathbf{F}_{\ell}, \mathbb{A}_{\ell}^{k-1}\mathbf{U}_{\ell}^{k,i} \neq \mathbf{F}_{\ell}^{k-1}$

A. Ern, M. Vohralík, SIAM Journal on Scientific Computing (2013) Estimation d'erreur a posteriori : principe et applications 22 / 39

M. Vohralík

Nonlinear Laplace **Beaction-diffusion Heat Helmholtz** Error control Solver adaptivity Laplace

Nonlinear pb $-\nabla \cdot \sigma(\nabla u) = f$: including **linearization** and **algebraic** error: $\mathcal{A}_{\ell}(\mathbf{U}_{\ell}^{k,i}) \neq \mathbf{F}_{\ell}, \, \mathbb{A}_{\ell}^{k-1}\mathbf{U}_{\ell}^{k,i} \neq \mathbf{F}_{\ell}^{k-1}$

Estimation d'erreur a posteriori : principe et applications

22/39

I Laplace Nonlinear Laplace Reaction-diffusion Heat Helmholtz C Error control Solver adaptivity

Nonlinear pb $-\nabla \cdot \boldsymbol{\sigma}(\nabla u) = f$: including **linearization** and **algebraic** error: $\mathcal{A}_{\ell}(\mathbf{U}_{\ell}^{k,i}) \neq \mathbf{F}_{\ell}, \mathbb{A}_{\ell}^{k-1}\mathbf{U}_{\ell}^{k,i} \neq \mathbf{F}_{\ell}^{k-1}$

M. Vohralík

Outline

- Introduction: a posteriori error control and adaptivity
- 2 Laplace equation: discretization error control and mesh adaptivity
 - A posteriori error control (discretization)
 - Potential reconstruction
 - Flux reconstruction
 - Balancing error components: mesh adaptivity
- 3 Nonlinear Laplace equation: overall error control and solver adaptivity
 - A posteriori error control (overall and components)
 - Balancing error components: solver adaptivity
- 4 Reaction–diffusion equation: robustness wrt parameters
- 5 Heat equation: robustness wrt final time and space-time localization
- 6 Helmholtz equation: asymptotic robustness
 - Conclusions

I Laplace Nonlinear Laplace Reaction-diffusion Heat Helmholtz C Error control Solver adaptivity

Solver adaptivity (nonlinear problem, inexact solvers)

Fully adaptive algorithm

• total error estimate on mesh T_{ℓ} , linearization step k, algebraic solver step i

total error discretization estimate linearization estimate

link – inexact Newton method: Bank & Rose (1982), Hackbusch & Reusken (1989), Deuflhard (1991), Eisenstat & Walker (1994)
 Convergence, optimal error decay rate wrt DoFs
 Gantner, Haberl, Praetorius, & Stiftner (2018), Heid & Wihler (2019)
 Optimal error decay rate wrt overall computational cost
 Haberl, Praetorius, Schimanko, & Vohralik (2021)

I Laplace Nonlinear Laplace Reaction-diffusion Heat Helmholtz C Error control Solver adaptivity

Solver adaptivity (nonlinear problem, inexact solvers)

Haberl, Praetorius, Schimanko, & Vohralík (2021)

• Gantner, Haberl, Praetorius, & Stiftner (2018), Heid & Winier (2 Optimal error decay rate wrt overall computational cost

Haberl, Praetorius, Schimanko, & Vohralík (2021)

(1989), Deuflhard (1991), Eisenstat & Walker (1994)

Convergence, optimal error decay rate wrt DoFs

• Gantner, Haberl, Praetorius, & Stiftner (2018), Heid & Wihler (2019) Optimal error decay rate wrt overall computational cost

Haberl, Praetorius, Schimanko, & Vohralík (2021)

Outline

- Introduction: a posteriori error control and adaptivity
- 2 Laplace equation: discretization error control and mesh adaptivity
 - A posteriori error control (discretization)
 - Potential reconstruction
 - Flux reconstruction
 - Balancing error components: mesh adaptivity
- 3 Nonlinear Laplace equation: overall error control and solver adaptivity
 - A posteriori error control (overall and components)
 - Balancing error components: solver adaptivity
- Reaction–diffusion equation: robustness wrt parameters
- 5 Heat equation: robustness wrt final time and space-time localization
- 6 Helmholtz equation: asymptotic robustness
- Conclusions

The reaction–diffusion equation: $f \in L^2(\Omega)$, $\varepsilon > 0$, $\kappa \ge 0$ parameters

Find $u : \Omega \to \mathbb{R}$ such that ($\varepsilon \ll \kappa$ singular perturbation)

$$-\varepsilon^2 \Delta u + \kappa^2 u = f \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \partial \Omega$$

Guaranteed error upper bound (reliability) ($u_h \in \mathcal{P}_p(\mathcal{T}_h) \cap H_0^1(\Omega), p \ge 1$, FEs)

• $C_{\rm eff}$ a generic constant independent of Ω , u, u_h , h,

The reaction–diffusion equation: $f \in L^2(\Omega)$, $\varepsilon > 0$, $\kappa \ge 0$ parameters

Find $u : \Omega \to \mathbb{R}$ such that ($\varepsilon \ll \kappa$ singular perturbation)

$$-\varepsilon^2 \Delta u + \kappa^2 u = f \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \partial \Omega$$

Guaranteed error upper bound (reliability) ($u_h \in \mathcal{P}_p(\mathcal{T}_h) \cap H_0^1(\Omega), p \ge 1$, FEs)

error lower bound (efficiency, $f \in \mathcal{P}_{p-1}(\mathcal{T}_h)$)

 $\eta (u_h) \leq C_{\text{eff}} |||u - u_h||| \qquad \forall M \in \mathbb{T}$

• C_{eff} a generic constant independent of Ω , u, u_h , h,

The reaction–diffusion equation: $f \in L^2(\Omega)$, $\varepsilon > 0$, $\kappa \ge 0$ parameters

Find $u : \Omega \to \mathbb{R}$ such that ($\varepsilon \ll \kappa$ singular perturbation)

$$-\varepsilon^2 \Delta u + \kappa^2 u = f \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \partial \Omega$$

Guaranteed error upper bound (reliability) $(u_h \in \mathcal{P}_p(\mathcal{T}_h) \cap H_0^1(\Omega), p \ge 1, FEs)$

line line of the fourth of the fourth of the formula of the transformation of the formula of th

 $\eta_{\mathcal{A}}(u_h) \leq C_{\text{eff}} |||u - u_h||_{\text{opt}} \qquad \forall K \in \mathcal{T}_h$

• C_{eff} a generic constant independent of Ω , u, u_h , h,

The reaction–diffusion equation: $f \in L^2(\Omega)$, $\varepsilon > 0$, $\kappa \ge 0$ parameters

Find $u : \Omega \to \mathbb{R}$ such that ($\varepsilon \ll \kappa$ singular perturbation)

$$-\varepsilon^2 \Delta u + \kappa^2 u = f \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \partial \Omega$$

Guaranteed error upper bound (reliability) $(u_h \in \mathcal{P}_p(\mathcal{T}_h) \cap H_0^1(\Omega), p \ge 1, \text{FEs})$

Robust local error lower bound (efficiency, $f \in \mathcal{P}_{p-1}(\mathcal{T}_h)$)

 $\eta_{K}(\boldsymbol{u}_{h}) \leq \boldsymbol{C}_{\text{eff}} \| \|\boldsymbol{u} - \boldsymbol{u}_{h} \| \|_{\omega_{K}} \qquad \forall K \in \mathcal{T}_{h}$

- C_{eff} a generic constant independent of Ω , u, u_h , h,

The reaction–diffusion equation: $f \in L^2(\Omega)$, $\varepsilon > 0$, $\kappa \ge 0$ parameters

Find $u : \Omega \to \mathbb{R}$ such that ($\varepsilon \ll \kappa$ singular perturbation)

$$-\varepsilon^2 \Delta u + \kappa^2 u = f \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \partial \Omega$$

Guaranteed error upper bound (reliability) $(u_h \in \mathcal{P}_p(\mathcal{T}_h) \cap H_0^1(\Omega), p \ge 1, \text{FEs})$

 $|||u-u_h||| \leq \eta(u_h)$

Robust local error lower bound (efficiency, $f \in \mathcal{P}_{p-1}(\mathcal{T}_h)$)

 $\eta_{\mathsf{K}}(\boldsymbol{u}_h) \leq \boldsymbol{C}_{\mathsf{eff}} \| \|\boldsymbol{u} - \boldsymbol{u}_h \| \|_{\omega_{\mathsf{K}}} \qquad \forall \mathsf{K} \in \mathcal{T}_h$

• $C_{\rm eff}$ a generic constant independent of Ω , u, u_h , h, κ , ε

 Verfürth (1998), Ainsworth & Babuška (1999), Grosman (2006), Cheddadi, Fučík, Prieto, & Vohralík (2009), Ainsworth & Vejchodský (2011, 2014, 2019), Kopteva (2017), Smears & Vohralík (2020)

The reaction–diffusion equation: $f \in L^2(\Omega)$, $\varepsilon > 0$, $\kappa \ge 0$ parameters

Find $u : \Omega \to \mathbb{R}$ such that ($\varepsilon \ll \kappa$ singular perturbation)

$$-\varepsilon^2 \Delta u + \kappa^2 u = f \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \partial \Omega$$

Guaranteed error upper bound (reliability) $(u_h \in \mathcal{P}_p(\mathcal{T}_h) \cap H_0^1(\Omega), p \ge 1, \text{FEs})$

 $|||u-u_h||| \leq \eta(u_h)$

Robust local error lower bound (efficiency, $f \in \mathcal{P}_{p-1}(\mathcal{T}_h)$)

 $\eta_{\mathsf{K}}(u_h) \leq \frac{\mathcal{O}_{\text{eff}}}{\|u - u_h\|_{\omega_{\mathsf{K}}}} \qquad \forall \mathsf{K} \in \mathcal{T}_h$

• C_{eff} a generic constant independent of Ω , u, u_h , h, κ , ε

 Verfürth (1998), Ainsworth & Babuška (1999), Grosman (2006), Cheddadi, Fučík, Prieto, & Vohralík (2009), Ainsworth & Vejchodský (2011, 2014, 2019), Kopteva (2017), Smears & Vohralík (2020)

The reaction–diffusion equation: $f \in L^2(\Omega)$, $\varepsilon > 0$, $\kappa \ge 0$ parameters

Find $u : \Omega \to \mathbb{R}$ such that ($\varepsilon \ll \kappa$ singular perturbation)

$$-\varepsilon^2 \Delta u + \kappa^2 u = f \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \partial \Omega$$

Guaranteed error upper bound (reliability) $(u_h \in \mathcal{P}_p(\mathcal{T}_h) \cap H_0^1(\Omega), p \ge 1, \text{FEs})$

Robust local error lower bound (efficiency, $f \in \mathcal{P}_{p-1}(\mathcal{T}_h)$)

 $\eta_{\mathsf{K}}(u_h) \leq \frac{\mathcal{C}_{\text{eff}}}{\|u - u_h\|}_{\omega_{\mathsf{K}}} \qquad \forall \mathsf{K} \in \mathcal{T}_h$

• C_{eff} a generic constant independent of Ω , u, u_h , h, κ , ε

 Verfürth (1998), Ainsworth & Babuška (1999), Grosman (2006), Cheddadi, Fučík, Prieto, & Vohralík (2009), Ainsworth & Vejchodský (2011, 2014, 2019), Kopteva (2017), Smears & Vohralík (2020)

The reaction–diffusion equation: $f \in L^2(\Omega)$, $\varepsilon > 0$, $\kappa \ge 0$ parameters

Find $u : \Omega \to \mathbb{R}$ such that ($\varepsilon \ll \kappa$ singular perturbation)

$$-\varepsilon^2 \Delta u + \kappa^2 u = f \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \partial \Omega$$

Guaranteed error upper bound (reliability) $(u_h \in \mathcal{P}_p(\mathcal{T}_h) \cap H_0^1(\Omega), p \ge 1, \text{FEs})$

Robust local error lower bound (efficiency, $f \in \mathcal{P}_{p-1}(\mathcal{T}_h)$)

 $\eta_{\mathsf{K}}(u_h) \leq \frac{\mathcal{O}_{\text{eff}}}{\|u - u_h\|}_{\omega_{\mathsf{K}}} \qquad \forall \mathsf{K} \in \mathcal{T}_h$

- C_{eff} a generic constant independent of Ω , u, u_h , h, κ , ε
- Verfürth (1998), Ainsworth & Babuška (1999), Grosman (2006), Cheddadi, Fučík, Prieto, & Vohralík (2009), Ainsworth & Vejchodský (2011, 2014, 2019), Kopteva (2017), Smears & Vohralík (2020)

Equilibrated flux and potential reconstructions

Definition (Flux σ_h and potential ϕ_h)

For each vertex $\boldsymbol{a} \in \mathcal{V}$, let

- $(\boldsymbol{\sigma}_{h}^{\boldsymbol{a}}, \phi_{h}^{\boldsymbol{a}}) := \arg \qquad (\boldsymbol{v}_{h}, q_{h}) \in \mathcal{RT}_{p}(\mathcal{T}^{\boldsymbol{a}}) \times \mathcal{P}_{p}(\mathcal{T}^{\boldsymbol{a}}) \subset \mathcal{H}_{0}(\operatorname{div}, \omega_{\boldsymbol{a}}) \times L^{2}(\omega_{\boldsymbol{a}})$
- $J^{\boldsymbol{a}}_{\boldsymbol{u}_h}(\boldsymbol{v}_h, q_h) := \boldsymbol{w}^2_{\boldsymbol{a}} \| \varepsilon \psi_{\boldsymbol{a}} \nabla u_h + \varepsilon^{-1} \boldsymbol{v}_h \|^2_{\boldsymbol{\omega}_{\boldsymbol{a}}} + \| \kappa \left[\Pi_h(\psi_{\boldsymbol{a}} u_h) q_h \right] \|^2_{\boldsymbol{\omega}_{\boldsymbol{a}}}$

Comments

- local discrete constrained minimization problems
- choose the locally best-possible estimators
- yields $\nabla \cdot \sigma_h + \kappa^2 \phi_h = \Pi_h h$

M. Vohralík

Equilibrated flux and potential reconstructions

Definition (Flux σ_h and potential ϕ_h)

For each vertex $\boldsymbol{a} \in \mathcal{V}$, let

 $\left(\boldsymbol{\sigma}_{h}^{a}, \phi_{h}^{a} \right) := \arg \left(\left(\boldsymbol{v}_{h}, q_{h} \right) \in \mathcal{RT}_{p}(\mathcal{T}^{a}) \times \mathcal{P}_{p}(\mathcal{T}^{a}) \subset \mathcal{H}_{0}(\operatorname{div}, \omega_{a}) \times L^{2}(\omega_{a}) \right)$ $\left| \mathcal{J}_{u_{h}}^{a}(\boldsymbol{v}_{h}, q_{h}) := \left| \boldsymbol{v}_{a}^{a} \right| = \psi_{a} \nabla u_{h} + \varepsilon^{-1} \left| \boldsymbol{v}_{h} \right| \right|_{\omega_{a}}^{2} + \left| \left| \kappa \left[\Pi_{h}(\psi_{a}u_{h}) - q_{h} \right] \right| \right|_{\omega_{a}}^{2} \right)$ $\text{ith the weight } \boldsymbol{w}_{a} := \min \left\{ 1, C_{u} \sqrt{\frac{1}{1 + 1 - \omega_{a}}} \right\}. \text{ Combine}$ $\sigma_{h} := \sum_{a \in V} \sigma_{h}^{a} \in \mathcal{RT}_{p} \cap \mathcal{H}(\operatorname{div}, \Omega), \quad \phi_{h} := \sum_{a \in V} \phi_{h}^{a} \in \mathcal{P}_{p}(\mathcal{T}_{h}).$

Comments

- local discrete constrained minimization problems
- choose the locally best-possible estimators.
- yields $\nabla \cdot \sigma_h + \kappa^2 \phi_h = \Pi_h f$

Ínría Este de Prets

M. Vohralík

Equilibrated flux and potential reconstructions

Definition (Flux σ_h and potential ϕ_h)

For each vertex $\boldsymbol{a} \in \mathcal{V}$, let

 $(\boldsymbol{\sigma}_{h}^{a}, \boldsymbol{\phi}_{h}^{a}) := \arg\min_{(\boldsymbol{v}_{h}, q_{h}) \in \mathcal{RT}_{p}(\mathcal{T}^{a}) \times \mathcal{P}_{p}(\mathcal{T}^{a}) \subset \mathcal{H}_{0}(\operatorname{div}, \omega_{a}) \times L^{2}(\omega_{a}) \int_{U_{h}}^{u} (\boldsymbol{v}_{h}, q_{h}) \\ \nabla \cdot \boldsymbol{v}_{h} + \kappa^{2} q_{h} = \Pi_{h}(t\psi_{a}) - \epsilon^{2} \nabla u_{h} \cdot \nabla \psi_{a}$ $J_{U_{h}}^{a}(\boldsymbol{v}_{h}, q_{h}) := \boldsymbol{w}_{a}^{2} \| \varepsilon \psi_{a} \nabla u_{h} + \varepsilon^{-1} \boldsymbol{v}_{h} \|_{\omega_{a}}^{2} + \| \kappa [\Pi_{h}(\psi_{a} u_{h}) - q_{h}] \|_{\omega_{a}}^{2}$ In the weight $\boldsymbol{w}_{a} := \min\left\{1, C_{a} \sqrt{-\kappa}\right\}$. Combine $\boldsymbol{\sigma}_{h} := \sum_{a \in \mathcal{V}} \sigma_{h}^{a} \in \mathcal{RT}_{p} \cap \mathcal{H}(\operatorname{div}, \Omega), \quad \phi_{h} := \sum_{a \in \mathcal{V}} \phi_{h}^{a} \in \mathcal{P}_{p}(\mathcal{T}_{h}).$

Comments

- local discrete constrained minimization problems
- choose the locally best-possible estimators.
- yields $\nabla \cdot \sigma_h + \kappa^2 \phi_h = \Pi_h f$

M. Vohralík

Equilibrated flux and potential reconstructions

Definition (Flux σ_h and potential ϕ_h)

For each vertex $\boldsymbol{a} \in \mathcal{V}$, let

 $\begin{aligned} (\boldsymbol{\sigma}_{h}^{\boldsymbol{a}}, \boldsymbol{\phi}_{h}^{\boldsymbol{a}}) &:= \arg\min_{\substack{(\boldsymbol{v}_{h}, q_{h}) \in \mathcal{RT}_{p}(\mathcal{T}^{\boldsymbol{a}}) \times \mathcal{P}_{p}(\mathcal{T}^{\boldsymbol{a}}) \subset \boldsymbol{H}_{0}(\operatorname{div}, \omega_{\boldsymbol{a}}) \times L^{2}(\omega_{\boldsymbol{a}})}{\nabla \cdot \boldsymbol{v}_{h} + \kappa^{2} q_{h} = \Pi_{h}(f \psi_{\boldsymbol{a}}) - \varepsilon^{2} \nabla u_{h} \cdot \nabla \psi_{\boldsymbol{a}}} \\ \mathcal{J}_{u_{h}}^{\boldsymbol{a}}(\boldsymbol{v}_{h}, q_{h}) &:= W_{\boldsymbol{a}}^{2} \| \varepsilon \psi_{\boldsymbol{a}} \nabla u_{h} + \varepsilon^{-1} \boldsymbol{v}_{h} \|_{\omega_{\boldsymbol{a}}}^{2} + \| \kappa \left[\Pi_{h}(\psi_{\boldsymbol{a}} u_{h}) - q_{h} \right] \|_{\omega_{\boldsymbol{a}}}^{2} \end{aligned}$ $\text{the weight } w_{\boldsymbol{a}} &:= \min\left\{ 1, C_{\boldsymbol{s}} \sqrt{\frac{\varepsilon}{\kappa h_{\omega_{\boldsymbol{a}}}}} \right\}. \text{ Combine} \end{aligned}$

Comments

- local discrete constrained minimization problems
- choose the locally best-possible estimators.
- yields $\nabla \cdot \sigma_h + \kappa^2 \phi_h = \Pi_h f$

M. Vohralík

Equilibrated flux and potential reconstructions

Definition (Flux σ_h and potential ϕ_h)

For each vertex $\boldsymbol{a} \in \mathcal{V}$, let

 $\begin{aligned} (\boldsymbol{\sigma}_{h}^{\boldsymbol{a}}, \boldsymbol{\phi}_{h}^{\boldsymbol{a}}) &:= \arg \min_{(\boldsymbol{v}_{h}, q_{h}) \in \mathcal{RT}_{p}(\mathcal{T}^{\boldsymbol{a}}) \times \mathcal{P}_{p}(\mathcal{T}^{\boldsymbol{a}}) \subset \mathcal{H}_{0}(\operatorname{div}, \omega_{\boldsymbol{a}}) \times L^{2}(\omega_{\boldsymbol{a}})} J_{u_{h}}^{\boldsymbol{a}}(\boldsymbol{v}_{h}, q_{h}) \\ \nabla \cdot \boldsymbol{v}_{h} + \kappa^{2} q_{h} = \Pi_{h}(f\psi_{\boldsymbol{a}}) - \varepsilon^{2} \nabla u_{h} \cdot \nabla \psi_{\boldsymbol{a}} \\ J_{u_{h}}^{\boldsymbol{a}}(\boldsymbol{v}_{h}, q_{h}) &:= W_{\boldsymbol{a}}^{2} \| \varepsilon \psi_{\boldsymbol{a}} \nabla u_{h} + \varepsilon^{-1} \boldsymbol{v}_{h} \|_{\omega_{\boldsymbol{a}}}^{2} + \| \kappa \left[\Pi_{h}(\psi_{\boldsymbol{a}} u_{h}) - q_{h} \right] \|_{\omega_{\boldsymbol{a}}}^{2} \end{aligned}$ the weight $w_{\boldsymbol{a}} := \min \left\{ 1, C_{*} \sqrt{\frac{\varepsilon}{\kappa h_{\omega_{\boldsymbol{a}}}}} \right\}$. Combine $\sigma_{h} := \sum \sigma_{h}^{\boldsymbol{a}} \in \mathcal{RT}_{p} \cap \mathcal{H}(\operatorname{div}, \Omega), \quad \phi_{h} := \sum \phi_{h}^{\boldsymbol{a}} \in \mathcal{P}_{p}(\mathcal{T}_{h}). \end{aligned}$

Comments

- local discrete constrained minimization problems
- choose the locally best-possible estimators
- yields $\nabla \cdot \sigma_h + \kappa^2 \phi_h = \Pi_h f$

M. Vohralík

Equilibrated flux and potential reconstructions

Definition (Flux σ_h and potential ϕ_h)

For each vertex $\boldsymbol{a} \in \mathcal{V}$, let

$$\begin{aligned} (\boldsymbol{\sigma}_{h}^{\boldsymbol{a}}, \boldsymbol{\phi}_{h}^{\boldsymbol{a}}) &:= \arg\min_{(\boldsymbol{v}_{h}, q_{h}) \in \mathcal{RT}_{p}(\mathcal{T}^{\boldsymbol{a}}) \times \mathcal{P}_{p}(\mathcal{T}^{\boldsymbol{a}}) \subset \mathcal{H}_{0}(\operatorname{div}, \omega_{\boldsymbol{a}}) \times L^{2}(\omega_{\boldsymbol{a}})}{\nabla \cdot \boldsymbol{v}_{h} + \kappa^{2} q_{h} = \Pi_{h}(f\psi_{\boldsymbol{a}}) - \varepsilon^{2} \nabla u_{h} \cdot \nabla \psi_{\boldsymbol{a}}} \\ J_{u_{h}}^{\boldsymbol{a}}(\boldsymbol{v}_{h}, q_{h}) &:= \boldsymbol{w}_{\boldsymbol{a}}^{2} \| \varepsilon \psi_{\boldsymbol{a}} \nabla u_{h} + \varepsilon^{-1} \boldsymbol{v}_{h} \|_{\omega_{\boldsymbol{a}}}^{2} + \| \kappa \left[\Pi_{h}(\psi_{\boldsymbol{a}} u_{h}) - q_{h} \right] \|_{\omega_{\boldsymbol{a}}}^{2} \end{aligned}$$

$$\text{the weight } w_{\boldsymbol{a}} &:= \min\left\{ 1, C_{*} \sqrt{\frac{\varepsilon}{\kappa h_{\omega_{\boldsymbol{a}}}}} \right\}. \text{ Combine}$$

 $\boldsymbol{\sigma}_h := \sum_{\boldsymbol{a} \in \mathcal{V}} \boldsymbol{\sigma}_h^{\boldsymbol{a}} \in \boldsymbol{\mathcal{RT}_p} \cap \boldsymbol{\textit{H}}(\operatorname{div}, \Omega), \quad \phi_h := \sum_{\boldsymbol{a} \in \mathcal{V}} \phi_h^{\boldsymbol{a}} \in \mathcal{P}_{\boldsymbol{p}}(\mathcal{T}_h)$

Comments

- local discrete constrained minimization problems
- choose the locally best-possible estimators
- yields $\nabla \cdot \sigma_h + \kappa^2 \phi_h = \Pi_h f$

M. Vohralík

Equilibrated flux and potential reconstructions

Definition (Flux σ_h and potential ϕ_h)

For each vertex $\boldsymbol{a} \in \mathcal{V}$, let

$$\begin{aligned} (\boldsymbol{\sigma}_{h}^{\boldsymbol{a}}, \phi_{h}^{\boldsymbol{a}}) &:= \arg \min_{(\boldsymbol{v}_{h}, q_{h}) \in \mathcal{RT}_{p}(\mathcal{T}^{\boldsymbol{a}}) \times \mathcal{P}_{p}(\mathcal{T}^{\boldsymbol{a}}) \subset \mathcal{H}_{0}(\operatorname{div}, \omega_{\boldsymbol{a}}) \times L^{2}(\omega_{\boldsymbol{a}})} J_{u_{h}}^{\boldsymbol{a}}(\boldsymbol{v}_{h}, q_{h}) \\ & \nabla \cdot \boldsymbol{v}_{h} + \kappa^{2} q_{h} = \Pi_{h}(f\psi_{\boldsymbol{a}}) - \varepsilon^{2} \nabla u_{h} \cdot \nabla \psi_{\boldsymbol{a}} \\ J_{u_{h}}^{\boldsymbol{a}}(\boldsymbol{v}_{h}, q_{h}) &:= \boldsymbol{w}_{\boldsymbol{a}}^{2} \| \varepsilon \psi_{\boldsymbol{a}} \nabla u_{h} + \varepsilon^{-1} \boldsymbol{v}_{h} \|_{\omega_{\boldsymbol{a}}}^{2} + \| \kappa \left[\Pi_{h}(\psi_{\boldsymbol{a}} u_{h}) - q_{h} \right] \|_{\omega_{\boldsymbol{a}}}^{2} \end{aligned}$$
the weight $\boldsymbol{w}_{\boldsymbol{a}} := \min \left\{ 1, C_{*} \sqrt{\frac{\varepsilon}{\kappa h_{\omega_{\boldsymbol{a}}}}} \right\}$. Combine
$$\sigma_{h} := \sum_{\boldsymbol{a} \in \mathcal{V}} \sigma_{h}^{\boldsymbol{a}} \in \mathcal{RT}_{p} \cap \mathcal{H}(\operatorname{div}, \Omega), \quad \phi_{h} := \sum_{\boldsymbol{a} \in \mathcal{V}} \phi_{h}^{\boldsymbol{a}} \in \mathcal{P}_{p}(\mathcal{T}_{h}). \end{aligned}$$

Comments

with

- local discrete constrained minimization problems
- choose the locally **best-possible** estimators
- yields $\nabla \cdot \boldsymbol{\sigma}_h + \kappa^2 \phi_h = \Pi_h f$

M. Vohralík

Equilibrated flux and potential reconstructions

Definition (Flux σ_h and potential ϕ_h)

For each vertex $\boldsymbol{a} \in \mathcal{V}$, let

$$\begin{aligned} (\boldsymbol{\sigma}_{h}^{\boldsymbol{a}}, \boldsymbol{\phi}_{h}^{\boldsymbol{a}}) &:= \arg\min_{(\boldsymbol{v}_{h}, q_{h}) \in \mathcal{RT}_{p}(\mathcal{T}^{\boldsymbol{a}}) \times \mathcal{P}_{p}(\mathcal{T}^{\boldsymbol{a}}) \subset \boldsymbol{H}_{0}(\operatorname{div}, \omega_{\boldsymbol{a}}) \times L^{2}(\omega_{\boldsymbol{a}})} J_{u_{h}}^{\boldsymbol{a}}(\boldsymbol{v}_{h}, q_{h})} \\ & \nabla \cdot \boldsymbol{v}_{h} + \kappa^{2} q_{h} = \Pi_{h}(f\psi_{\boldsymbol{a}}) - \varepsilon^{2} \nabla u_{h} \cdot \nabla \psi_{\boldsymbol{a}}} \\ J_{u_{h}}^{\boldsymbol{a}}(\boldsymbol{v}_{h}, q_{h}) &:= \boldsymbol{w}_{\boldsymbol{a}}^{2} \| \varepsilon \psi_{\boldsymbol{a}} \nabla u_{h} + \varepsilon^{-1} \boldsymbol{v}_{h} \|_{\omega_{\boldsymbol{a}}}^{2} + \| \kappa [\Pi_{h}(\psi_{\boldsymbol{a}} u_{h}) - q_{h}] \|_{\omega_{\boldsymbol{a}}}^{2} \end{aligned}$$

with the weight
$$w_{a} := \min \left\{ 1, C_{*} \sqrt{\frac{\varepsilon}{\kappa h_{\omega_{a}}}} \right\}$$
. Combine
 $\sigma_{h} := \sum_{a \in \mathcal{V}} \sigma_{h}^{a} \in \mathcal{RT}_{p} \cap \mathcal{H}(\operatorname{div}, \Omega), \quad \phi_{h} := \sum_{a \in \mathcal{V}} \phi_{h}^{a} \in \mathcal{P}_{p}(\mathcal{T}_{h}).$

Comments

- local discrete constrained minimization problems
- choose the locally **best-possible** estimators

• yields
$$\nabla \cdot \boldsymbol{\sigma}_h + \kappa^2 \phi_h = \Pi_h f$$

M. Vohralík

Equilibrated flux and potential reconstructions

Definition (Flux σ_h and potential ϕ_h)

For each vertex $\boldsymbol{a} \in \mathcal{V}$, let

$$\begin{aligned} (\boldsymbol{\sigma}_{h}^{\boldsymbol{a}}, \phi_{h}^{\boldsymbol{a}}) &:= \arg\min_{(\boldsymbol{v}_{h}, q_{h}) \in \mathcal{RT}_{p}(\mathcal{T}^{\boldsymbol{a}}) \times \mathcal{P}_{p}(\mathcal{T}^{\boldsymbol{a}}) \subset \boldsymbol{H}_{0}(\operatorname{div}, \omega_{\boldsymbol{a}}) \times L^{2}(\omega_{\boldsymbol{a}})}{\nabla \cdot \boldsymbol{v}_{h} + \kappa^{2} q_{h} = \Pi_{h}(f\psi_{\boldsymbol{a}}) - \varepsilon^{2} \nabla u_{h} \cdot \nabla \psi_{\boldsymbol{a}}} \\ \mathcal{J}_{u_{h}}^{\boldsymbol{a}}(\boldsymbol{v}_{h}, q_{h}) &:= \boldsymbol{w}_{\boldsymbol{a}}^{2} \| \varepsilon \psi_{\boldsymbol{a}} \nabla u_{h} + \varepsilon^{-1} \boldsymbol{v}_{h} \|_{\omega_{\boldsymbol{a}}}^{2} + \| \kappa [\Pi_{h}(\psi_{\boldsymbol{a}} u_{h}) - q_{h}] \|_{\omega_{\boldsymbol{a}}}^{2} \end{aligned}$$

with the weight
$$w_{a} := \min \left\{ 1, C_{*} \sqrt{\frac{\varepsilon}{\kappa h_{\omega a}}} \right\}$$
. Combine
 $\sigma_{h} := \sum_{a \in \mathcal{V}} \sigma_{h}^{a} \in \mathcal{RT}_{p} \cap \mathcal{H}(\operatorname{div}, \Omega), \quad \phi_{h} := \sum_{a \in \mathcal{V}} \phi_{h}^{a} \in \mathcal{P}_{p}(\mathcal{T}_{h}).$

Comments

- local discrete constrained minimization problems
- choose the locally **best-possible** estimators
- yields $\nabla \cdot \boldsymbol{\sigma}_h + \kappa^2 \phi_h = \Pi_h f$

M. Vohralík

Equilibrated flux and potential reconstructions

Definition (Flux σ_h and potential ϕ_h)

For each vertex $\boldsymbol{a} \in \mathcal{V}$, let

$$\begin{aligned} (\boldsymbol{\sigma}_{h}^{\boldsymbol{a}}, \boldsymbol{\phi}_{h}^{\boldsymbol{a}}) &:= \arg\min_{(\boldsymbol{v}_{h}, q_{h}) \in \mathcal{RT}_{p}(\mathcal{T}^{\boldsymbol{a}}) \times \mathcal{P}_{p}(\mathcal{T}^{\boldsymbol{a}}) \subset \boldsymbol{H}_{0}(\operatorname{div}, \omega_{\boldsymbol{a}}) \times L^{2}(\omega_{\boldsymbol{a}})}{\nabla \cdot \boldsymbol{v}_{h} + \kappa^{2} q_{h} = \Pi_{h}(f\psi_{\boldsymbol{a}}) - \varepsilon^{2} \nabla u_{h} \cdot \nabla \psi_{\boldsymbol{a}}} \\ J_{u_{h}}^{\boldsymbol{a}}(\boldsymbol{v}_{h}, q_{h}) &:= \boldsymbol{w}_{\boldsymbol{a}}^{2} \| \varepsilon \psi_{\boldsymbol{a}} \nabla u_{h} + \varepsilon^{-1} \boldsymbol{v}_{h} \|_{\omega_{\boldsymbol{a}}}^{2} + \| \kappa [\Pi_{h}(\psi_{\boldsymbol{a}} u_{h}) - q_{h}] \|_{\omega_{\boldsymbol{a}}}^{2} \end{aligned}$$

with the weight
$$w_{a} := \min \left\{ 1, C_{*} \sqrt{\frac{\varepsilon}{\kappa h_{\omega a}}} \right\}$$
. Combine
 $\sigma_{h} := \sum_{a \in \mathcal{V}} \sigma_{h}^{a} \in \mathcal{RT}_{p} \cap \mathcal{H}(\operatorname{div}, \Omega), \quad \phi_{h} := \sum_{a \in \mathcal{V}} \phi_{h}^{a} \in \mathcal{P}_{p}(\mathcal{T}_{h}).$

Comments

- local discrete constrained minimization problems
- choose the locally **best-possible** estimators

• yields
$$\nabla \cdot \boldsymbol{\sigma}_h + \kappa^2 \phi_h = \Pi_h f$$

M. Vohralík

Boundary layer, solution $u(x, y) = e^{-\frac{\kappa}{\varepsilon}x} + e^{-\frac{\kappa}{\varepsilon}y}$, p = 2

Boundary layer, solution $u(x, y) = e^{-\frac{\kappa}{\varepsilon}x} + e^{-\frac{\kappa}{\varepsilon}y}$, p = 2

Outline

- Introduction: a posteriori error control and adaptivity
- 2 Laplace equation: discretization error control and mesh adaptivity
 - A posteriori error control (discretization)
 - Potential reconstruction
 - Flux reconstruction
 - Balancing error components: mesh adaptivity
- 3 Nonlinear Laplace equation: overall error control and solver adaptivity
 - A posteriori error control (overall and components)
 - Balancing error components: solver adaptivity
- 4 Reaction–diffusion equation: robustness wrt parameters
- 5 Heat equation: robustness wrt final time and space-time localization
- 6 Helmholtz equation: asymptotic robustness
 - Conclusions

The heat equation $(f \in L^2(0, T; L^2(\Omega)), u_0 \in L^2(\Omega))$

The heat equation

$$\partial_t u - \Delta u = f$$
 in $\Omega \times (0, T)$,
 $u = 0$ on $\partial \Omega \times (0, T)$,
 $u(0) = u_0$ in Ω

The heat equation $(f \in L^2(0, T; L^2(\Omega)), u_0 \in L^2(\Omega))$

The heat equation

$$\partial_t u - \Delta u = f$$
 in $\Omega \times (0, T)$,
 $u = 0$ on $\partial \Omega \times (0, T)$,
 $u(0) = u_0$ in Ω

Spaces

$$\begin{split} & \mathcal{X} \coloneqq L^2(0, T; H^1_0(\Omega)), \|v\|_X^2 \coloneqq \int_0^T \|\nabla v\|^2 \, \mathrm{d}t, \\ & \mathcal{Y} \coloneqq L^2(0, T; H^1_0(\Omega)) \cap H^1(0, T; H^{-1}(\Omega)), \|v\|_Y^2 \coloneqq \int_0^T \|\partial_t v\|_{H^{-1}(\Omega)}^2 + \|\nabla v\|^2 \, \mathrm{d}t + \|v(T)\|^2 \, \mathrm{d}t \end{split}$$

Y norm error is the dual X norm of the residual + initial condition error

$$\|u - u_{h\tau}\|_{Y}^{2} = \sup_{v \in X, \, \|v\|_{X} = 1} \left[\int_{0}^{T} (f, v) - \langle \partial_{t} u_{h\tau}, v \rangle - (\nabla u_{h\tau}, \nabla v) \, \mathrm{d}t \right]^{2} + \|u_{0} - u_{h\tau}(0)\|^{2}$$

The heat equation $(f \in L^2(0, T; L^2(\Omega)), u_0 \in L^2(\Omega))$

The heat equation

$$\partial_t u - \Delta u = f$$
 in $\Omega \times (0, T)$,
 $u = 0$ on $\partial \Omega \times (0, T)$,
 $u(0) = u_0$ in Ω

Spaces

$$\begin{split} & \mathcal{X} \coloneqq L^2(0, T; H^1_0(\Omega)), \|v\|_X^2 \coloneqq \int_0^T \|\nabla v\|^2 \, \mathrm{d}t, \\ & \mathcal{Y} \coloneqq L^2(0, T; H^1_0(\Omega)) \cap H^1(0, T; H^{-1}(\Omega)), \|v\|_Y^2 \coloneqq \int_0^T \|\partial_t v\|_{H^{-1}(\Omega)}^2 + \|\nabla v\|^2 \, \mathrm{d}t + \|v(T)\|^2 \, \mathrm{d}t \end{split}$$

Y norm error is the dual X norm of the residual + initial condition error

$$\|u-u_{h\tau}\|_{\boldsymbol{Y}}^{2} = \sup_{\boldsymbol{v}\in\boldsymbol{X}, \, \|\boldsymbol{v}\|_{\boldsymbol{X}}=1} \left[\int_{0}^{T} (f,\boldsymbol{v}) - \langle \partial_{t}u_{h\tau},\boldsymbol{v}\rangle - (\nabla u_{h\tau},\nabla \boldsymbol{v}) \,\mathrm{d}t\right]^{2} + \|u_{0}-u_{h\tau}(0)\|^{2}$$

The heat equation $(f \in L^2(0, T; L^2(\Omega)), u_0 \in L^2(\Omega))$

The heat equation

 $\partial_t u - \Delta u = f$ in $\Omega \times (0, T)$, u = 0 on $\partial \Omega \times (0, T)$, $u(0) = u_0$ in Ω

Guaranteed error upper bound (reliability) ($u_{h\tau}$ FE in space, DG in time approx.)

 $\underbrace{\||\boldsymbol{u} - \boldsymbol{u}_{h\tau}||}_{\text{unknown error}} \leq \underbrace{\eta(\boldsymbol{u}_{h\tau})}_{\text{computable estimator}}$

• C_{eff} a generic constant independent of Ω , u, $u_{h\tau}$, h, p, τ , q,

The heat equation $(f \in L^2(0, T; L^2(\Omega)), u_0 \in L^2(\Omega))$

The heat equation

 $\partial_t u - \Delta u = f$ in $\Omega \times (0, T)$, u = 0 on $\partial \Omega \times (0, T)$, $u(0) = u_0$ in Ω

Guaranteed error upper bound (reliability) ($u_{h\tau}$ FE in space, DG in time approx.)

 $\underbrace{\||\boldsymbol{u} - \boldsymbol{u}_{h\tau}||}_{\text{unknown error}} \leq \underbrace{\eta(\boldsymbol{u}_{h\tau})}_{\text{computable estimator}}$

• $C_{\rm eff}$ a generic constant independent of Ω , u, $u_{h\tau}$, h, p, τ , q,

The heat equation $(f \in L^2(0, T; L^2(\Omega)), u_0 \in L^2(\Omega))$

The heat equation

 $\partial_t u - \Delta u = f$ in $\Omega \times (0, T)$, u = 0 on $\partial \Omega \times (0, T)$, $u(0) = u_0$ in Ω

Guaranteed error upper bound (reliability) ($u_{h\tau}$ FE in space, DG in time approx.)

 $\underbrace{\||u - u_{h\tau}||}_{\text{unknown error}} \leq \underbrace{\eta(u_{h\tau})}_{\text{computable estimator}}$

Robust local in space and in time error lower bound (efficiency)

 $\eta_{\mathcal{K}, l_n}(u_{h\tau}) \leq \frac{C_{\text{eff}}}{\|u - u_{h\tau}\|}_{\omega_{\mathcal{K}} \times l_n}$

• C_{eff} a generic constant independent of Ω , u, $u_{h\tau}$, h, p, τ , q,

 Verfürth (2003), Bergam, Bernardi, and Mghazli (2005), Makridakis and Nochetto (2005), Em and Vohralik (2010), Em, Smears, and Vohralik (2017)

The heat equation $(f \in L^2(0, T; L^2(\Omega)), u_0 \in L^2(\Omega))$

The heat equation

 $\partial_t u - \Delta u = f$ in $\Omega \times (0, T)$, u = 0 on $\partial \Omega \times (0, T)$, $u(0) = u_0$ in Ω

Guaranteed error upper bound (reliability) ($u_{h\tau}$ FE in space, DG in time approx.)

 $\underbrace{\||u - u_{h\tau}||}_{\text{unknown error}} \leq \underbrace{\eta(u_{h\tau})}_{\text{computable estimator}}$

Robust local in space and in time error lower bound (efficiency)

 $\eta_{\mathcal{K},l_n}(\boldsymbol{u}_{\boldsymbol{h}\tau}) \leq \boldsymbol{C}_{\text{eff}} \| \boldsymbol{u} - \boldsymbol{u}_{\boldsymbol{h}\tau} \|_{\omega_{\mathcal{K}} \times l_n}$

• C_{eff} a generic constant independent of Ω , u, $u_{h\tau}$, h, p, τ , q, T

 Verfürth (2003), Bergam, Bernardi, and Mghazli (2005), Makridakis and Nochetto (2006), Ern and Vohralík (2010), Ern, Smears, and Vohralík (2017)

The heat equation $(f \in L^2(0, T; L^2(\Omega)), u_0 \in L^2(\Omega))$

The heat equation

 $\partial_t u - \Delta u = f$ in $\Omega \times (0, T)$, u = 0 on $\partial \Omega \times (0, T)$, $u(0) = u_0$ in Ω

Guaranteed error upper bound (reliability) ($u_{h\tau}$ FE in space, DG in time approx.)

 $\underbrace{\||\boldsymbol{u} - \boldsymbol{u}_{h\tau}||}_{\text{unknown error}} \leq \underbrace{\eta(\boldsymbol{u}_{h\tau})}_{\text{computable estimator}}$

Robust local in space and in time error lower bound (efficiency)

 $\eta_{\mathbf{K},\mathbf{I}_n}(u_{h\tau}) \leq \mathbf{C}_{\text{eff}} \| \| u - u_{h\tau} \| \|_{\omega_{\mathbf{K}} \times \mathbf{I}_n}$

• C_{eff} a generic constant independent of Ω , u, $u_{h\tau}$, h, p, τ , q, T

 Verfürth (2003), Bergam, Bernardi, and Mghazli (2005), Makridakis and Nochetto (2006), Ern and Vohralík (2010), Ern, Smears, and Vohralík (2017)

The heat equation $(f \in L^2(0, T; L^2(\Omega)), u_0 \in L^2(\Omega))$

The heat equation

 $\partial_t u - \Delta u = f$ in $\Omega \times (0, T)$, u = 0 on $\partial \Omega \times (0, T)$, $u(0) = u_0$ in Ω

Guaranteed error upper bound (reliability) ($u_{h\tau}$ FE in space, DG in time approx.)

 $\underbrace{\||u - u_{h\tau}||}_{\text{unknown error}} \leq \underbrace{\eta(u_{h\tau})}_{\text{computable estimator}}$

Robust local in space and in time error lower bound (efficiency)

 $\eta_{\mathbf{K},\mathbf{I}_n}(u_{h\tau}) \leq \mathbf{C}_{\text{eff}} \| \| u - u_{h\tau} \| \|_{\omega_{\mathbf{K}} \times \mathbf{I}_n}$

• C_{eff} a generic constant independent of Ω , u, $u_{h\tau}$, h, p, τ , q, T

 Verfürth (2003), Bergam, Bernardi, and Mghazli (2005), Makridakis and Nochetto (2006), Ern and Vohralík (2010), Ern, Smears, and Vohralík (2017)

The heat equation $(f \in L^2(0, T; L^2(\Omega)), u_0 \in L^2(\Omega))$

The heat equation

 $\begin{aligned} \partial_t u - \Delta u &= f \quad \text{in } \Omega \times (0, T), \\ u &= 0 \quad \text{on } \partial \Omega \times (0, T), \\ u(0) &= u_0 \quad \text{in } \Omega \end{aligned}$

Guaranteed error upper bound (reliability) ($u_{h\tau}$ FE in space, DG in time approx.)

 $\underbrace{\||u - u_{h\tau}||}_{\text{unknown error}} \leq \underbrace{\eta(u_{h\tau})}_{\text{computable estimator}}$

Robust local in space and in time error lower bound (efficiency)

 $\eta_{\mathbf{K},\mathbf{I}_{n}}(u_{h\tau}) \leq \mathbf{C}_{\text{eff}} \| || u - u_{h\tau} |||_{\omega_{\mathbf{K}} \times \mathbf{I}_{n}}$

- C_{eff} a generic constant independent of Ω , u, $u_{h\tau}$, h, p, τ , q, T
- Verfürth (2003), Bergam, Bernardi, and Mghazli (2005), Makridakis and Nochetto (2006), Ern and Vohralík (2010), Ern, Smears, and Vohralík (2017)

Equilibrated flux reconstruction

Definition (Equilibrated flux reconstruction)

For each time-step interval I_n and for each vertex $\mathbf{a} \in \mathcal{V}^n$, let

$$\sigma_{h_{\mathcal{T}}}^{\boldsymbol{a},n} \coloneqq \arg \min_{\substack{\boldsymbol{v}_h \in \boldsymbol{V}_{h_{\mathcal{T}}}^{\boldsymbol{a},n} \\ \nabla \cdot \boldsymbol{v}_h = \psi_{\boldsymbol{a}}(f - \partial_t \mathcal{I} \boldsymbol{u}_{h_{\mathcal{T}}}) - \nabla \psi_{\boldsymbol{a}} \cdot \nabla u_{h_{\mathcal{T}}}} \int_{I_n} \|\boldsymbol{v}_h + \psi_{\boldsymbol{a}} \nabla u_{h_{\mathcal{T}}}\|_{\omega_{\boldsymbol{a}}}^2 \, \mathrm{d}t.$$

Then set

$${\pmb\sigma}_{h au}\coloneqq \sum_{n=1}^N\sum_{{\pmb a}\in {\mathcal V}^n}{\pmb\sigma}_{h au}^{{\pmb a},n}.$$

Comments

- satisfies $\sigma_{h au} \in L^2(0, T; H(\operatorname{div}, \Omega))$ with $abla \cdot \sigma_{h au} = f \partial_t \mathcal{I} u_{h au}$
- a priori a local space-time problem, $V_{h\tau}^{a,n} \coloneqq Q_q(I_n; V_h^{a,n})$
- uncouples to q elliptic problems posed in V^a_b

M. Vohralík

Equilibrated flux reconstruction

Definition (Equilibrated flux reconstruction)

For each time-step interval I_n and for each vertex $\mathbf{a} \in \mathcal{V}^n$, let

$$\boldsymbol{\tau}_{h\tau}^{\boldsymbol{a},n} \coloneqq \arg \min_{\substack{\boldsymbol{v}_h \in \boldsymbol{V}_{h\tau}^{\boldsymbol{a},n} \\ \nabla \cdot \boldsymbol{v}_h = \psi_{\boldsymbol{a}}(f - \partial_t \mathcal{I} \boldsymbol{u}_{h\tau}) - \nabla \psi_{\boldsymbol{a}} \cdot \nabla \boldsymbol{u}_{h\tau}} \int_{I_n} \|\boldsymbol{v}_h + \psi_{\boldsymbol{a}} \nabla \boldsymbol{u}_{h\tau}\|_{\omega_{\boldsymbol{a}}}^2 \, \mathrm{d}t.$$

$$\boldsymbol{\sigma}_{h\tau} \coloneqq \sum_{n=1}^{N} \sum_{\boldsymbol{a} \in \mathcal{V}^n} \boldsymbol{\sigma}_{h\tau}^{\boldsymbol{a},n}.$$

Comments

- satisfies $\sigma_{h\tau} \in L^2(0, T; H(\operatorname{div}, \Omega))$ with $\nabla \cdot \sigma_{h\tau} = f \partial_t \mathcal{I} u_{h\tau}$
- a priori a local space-time problem, $V_{h\tau}^{a,n} \coloneqq Q_q(I_n; V_h^{a,n})$
- uncouples to q elliptic problems posed in $V_h^{a,n}$

M. Vohralík

Equilibrated flux reconstruction

Definition (Equilibrated flux reconstruction)

For each time-step interval I_n and for each vertex $\mathbf{a} \in \mathcal{V}^n$, let

$$\boldsymbol{\tau}_{h\tau}^{\boldsymbol{a},n} \coloneqq \arg \min_{\substack{\boldsymbol{v}_h \in \boldsymbol{V}_{h\tau}^{\boldsymbol{a},n} \\ \nabla \cdot \boldsymbol{v}_h = \psi_{\boldsymbol{a}}(f - \partial_t \mathcal{I} \boldsymbol{u}_{h\tau}) - \nabla \psi_{\boldsymbol{a}} \cdot \nabla \boldsymbol{u}_{h\tau}} \int_{I_n} \|\boldsymbol{v}_h + \psi_{\boldsymbol{a}} \nabla \boldsymbol{u}_{h\tau}\|_{\omega_{\boldsymbol{a}}}^2 \, \mathrm{d}t.$$

$$\boldsymbol{\sigma}_{h\tau} := \sum_{n=1}^{N} \sum_{\boldsymbol{a} \in \mathcal{V}^n} \boldsymbol{\sigma}_{h\tau}^{\boldsymbol{a},n}.$$

Comments

- satisfies $\sigma_{h\tau} \in L^2(0, T; H(\operatorname{div}, \Omega))$ with $\nabla \cdot \sigma_{h\tau} = f \partial_t \mathcal{I} u_{h\tau}$
- a priori a local space-time problem, $V_{h\tau}^{a,n} := Q_q(I_n; V_h^{a,n})$
- uncouples to q elliptic problems posed in $V_h^{a,n}$
Geological sequestration of CO₂, CO₂ saturation

M. Vohralík, M. Wheeler, Computational Geosciences (2013)

Estimation d'erreur a posteriori : principe et applications 30 / 39

Geological sequestration of CO₂, overall a posteriori estimate

M. Vohralík, M. Wheeler, Computational Geosciences (2013)

Estimation d'erreur a posteriori : principe et applications 31 / 39

Geological sequestration of CO₂, full adaptivity

M. Vohralík, M. Wheeler, Computational Geosciences (2013)

Estimation d'erreur a posteriori : principe et applications 32 / 39

Outline

- Introduction: a posteriori error control and adaptivity
- 2 Laplace equation: discretization error control and mesh adaptivity
 - A posteriori error control (discretization)
 - Potential reconstruction
 - Flux reconstruction
 - Balancing error components: mesh adaptivity
- 3 Nonlinear Laplace equation: overall error control and solver adaptivity
 - A posteriori error control (overall and components)
 - Balancing error components: solver adaptivity
- 4 Reaction–diffusion equation: robustness wrt parameters
- 6 Heat equation: robustness wrt final time and space-time localization
- 6 Helmholtz equation: asymptotic robustness

The Helmholtz equation: $f \in L^2(\Omega)$, $\varepsilon > 0$, $\kappa \ge 0$ parameters

Find $u: \Omega \to \mathbb{C}$ such that $(\varepsilon \leq \kappa)$

$$-\varepsilon^2 \Delta u - \kappa^2 u = f \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \partial \Omega$$

Guaranteed error upper bound (reliability) ($u_h \in \mathcal{P}_p(\mathcal{T}_h) \cap H^1_0(\Omega), p \ge 1$, FEs)

error lower bound (efficiency, $f \in \mathcal{P}_{p-1}(\mathcal{T}_h))$

 $\eta (U_h) \leq C_{\text{eff}} ||| U - U_h |||$

• C_{eff} a generic constant independent of Ω , u, u_h , h,

Estimation d'erreur a posteriori : principe et applications 33 / 39

The Helmholtz equation: $f \in L^2(\Omega)$, $\varepsilon > 0$, $\kappa \ge 0$ parameters

Find $u : \Omega \to \mathbb{C}$ such that $(\varepsilon \leq \kappa)$

$$-\varepsilon^2 \Delta u - \kappa^2 u = f \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \partial \Omega$$

Guaranteed error upper bound (reliability) ($u_h \in \mathcal{P}_p(\mathcal{T}_h) \cap H_0^1(\Omega), p \ge 1$, FEs)

 $\underbrace{\||\boldsymbol{u} - \boldsymbol{u}_h||}_{\text{unknown error}} \leq \underbrace{\eta(\boldsymbol{u}_h)}_{\text{computable estimator}}$

error lower bound (efficiency, $f \in \mathcal{P}_{p-1}(\mathcal{T}_h)$)

 $\eta (u_h) \leq C_{\text{eff}} ||| u - u_h ||| \qquad \forall M \in \mathbb{T}_h$

• C_{eff} a generic constant independent of Ω , u, u_h , h,

The Helmholtz equation: $f \in L^2(\Omega)$, $\varepsilon > 0$, $\kappa \ge 0$ parameters

Find $u: \Omega \to \mathbb{C}$ such that $(\varepsilon \leq \kappa)$

$$-\varepsilon^2 \Delta u - \kappa^2 u = f \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \partial \Omega$$

Guaranteed error upper bound (reliability) $(u_h \in \mathcal{P}_p(\mathcal{T}_h) \cap H_0^1(\Omega), p \ge 1, \text{FEs})$

 $\underbrace{\||u - u_h||}_{\text{unknown error}} \leq \underbrace{\eta(u_h)}_{\text{computable estimator}}$

local error lower bound (efficiency, $f\in\mathcal{P}_{p-1}(\mathcal{T}_h)$)

 $\eta_{\mathbb{K}}(u_h) \leq C_{ ext{eff}} \| u - u_h \|_{ ext{order}} \quad orall K \in \mathcal{T}_h$

• C_{eff} a generic constant independent of Ω , u, u_h , h,

Babulka, Manburg, & Strouboulla (1997), Dörlar & Sautar (2013), Sautar & Zach (2015), Chaumont-Freiat, Ern, & Vohralik (2021)

The Helmholtz equation: $f \in L^2(\Omega)$, $\varepsilon > 0$, $\kappa \ge 0$ parameters

Find $u: \Omega \to \mathbb{C}$ such that $(\varepsilon \leq \kappa)$

$$-\varepsilon^2 \Delta u - \kappa^2 u = f \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \partial \Omega$$

Guaranteed error upper bound (reliability) $(u_h \in \mathcal{P}_p(\mathcal{T}_h) \cap H_0^1(\Omega), p \ge 1, \text{FEs})$

 $\underbrace{\||u - u_h||}_{\text{unknown error}} \leq \underbrace{\eta(u_h)}_{\text{computable estimator}}$

Asymptotically robust local error lower bound (efficiency, $f \in \mathcal{P}_{p-1}(\mathcal{T}_h)$)

 $\eta_{\mathsf{K}}(u_h) \leq \frac{\mathcal{O}_{\mathrm{eff}}}{\|u - u_h\|}_{\omega_{\mathsf{K}}} \qquad \forall \mathsf{K} \in \mathcal{T}_h$

• $C_{\rm eff}$ a generic constant independent of Ω , u, u_h , h, m

The Helmholtz equation: $f \in L^2(\Omega)$, $\varepsilon > 0$, $\kappa \ge 0$ parameters

Find $u: \Omega \to \mathbb{C}$ such that $(\varepsilon \leq \kappa)$

$$-\varepsilon^2 \Delta u - \kappa^2 u = f \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \partial \Omega$$

Guaranteed error upper bound (reliability) $(u_h \in \mathcal{P}_p(\mathcal{T}_h) \cap H_0^1(\Omega), p \ge 1, \text{FEs})$

 $\underbrace{\||\boldsymbol{u} - \boldsymbol{u}_h||}_{\text{unknown error}} \leq \underbrace{\eta(\boldsymbol{u}_h)}_{\text{computable estimator}}$

Asymptotically robust local error lower bound (efficiency, $f \in \mathcal{P}_{p-1}(\mathcal{T}_h)$)

 $\eta_{\mathsf{K}}(u_h) \leq C_{\mathrm{eff}} ||| u - u_h |||_{\omega_{\mathsf{K}}} \qquad \forall \mathsf{K} \in \mathcal{T}_h$

• C_{eff} a generic constant independent of Ω , u, u_h , h, κ , ε if $\frac{\kappa h}{\epsilon_0} \leq 1$

 Babuška, Ihlenburg, & Strouboulis (1997), Dörfler & Sauter (2013), Sauter & Zech (2015), Chaumont-Frelet, Ern, & Vohralik (2021)

The Helmholtz equation: $f \in L^2(\Omega)$, $\varepsilon > 0$, $\kappa \ge 0$ parameters

Find $u: \Omega \to \mathbb{C}$ such that $(\varepsilon \leq \kappa)$

$$-\varepsilon^2 \Delta u - \kappa^2 u = f \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \partial \Omega$$

Guaranteed error upper bound (reliability) $(u_h \in \mathcal{P}_p(\mathcal{T}_h) \cap H_0^1(\Omega), p \ge 1, \text{FEs})$

 $\underbrace{\||\boldsymbol{u} - \boldsymbol{u}_h||}_{\text{unknown error}} \leq \underbrace{\eta(\boldsymbol{u}_h)}_{\text{computable estimator}}$

Asymptotically robust local error lower bound (efficiency, $f \in \mathcal{P}_{p-1}(\mathcal{T}_h)$)

 $\eta_{\mathsf{K}}(u_h) \leq \frac{\mathcal{C}_{\text{eff}}}{\|u - u_h\|}_{\omega_{\mathsf{K}}} \qquad \forall \mathsf{K} \in \mathcal{T}_h$

• C_{eff} a generic constant independent of Ω , u, u_h , h, κ , ε if $\frac{\kappa h}{\epsilon_0} \leq 1$

 Babuška, Ihlenburg, & Strouboulis (1997), Dörfler & Sauter (2013), Sauter & Zech (2015), Chaumont-Frelet, Ern, & Vohralík (2021)

The Helmholtz equation: $f \in L^2(\Omega)$, $\varepsilon > 0$, $\kappa \ge 0$ parameters

Find $u: \Omega \to \mathbb{C}$ such that $(\varepsilon \leq \kappa)$

$$-\varepsilon^2 \Delta u - \kappa^2 u = f \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \partial \Omega$$

Guaranteed error upper bound (reliability) $(u_h \in \mathcal{P}_p(\mathcal{T}_h) \cap H_0^1(\Omega), p \ge 1, \text{FEs})$

 $\underbrace{\||\boldsymbol{u} - \boldsymbol{u}_h||}_{\text{unknown error}} \leq \underbrace{\eta(\boldsymbol{u}_h)}_{\text{computable estimator}}$

Asymptotically robust local error lower bound (efficiency, $f \in \mathcal{P}_{p-1}(\mathcal{T}_h)$)

 $\eta_{\mathbf{K}}(u_h) \leq C_{\text{eff}} |||u - u_h|||_{\omega_{\mathbf{K}}} \qquad \forall \mathbf{K} \in \mathcal{T}_h$

• C_{eff} a generic constant independent of Ω , u, u_h , h, κ , ε if $\frac{\kappa h}{\epsilon \rho} \leq 1$

 Babuška, Ihlenburg, & Strouboulis (1997), Dörfler & Sauter (2013), Sauter & Zech (2015), Chaumont-Frelet, Ern, & Vohralík (2021)

The Helmholtz equation: $f \in L^2(\Omega)$, $\varepsilon > 0$, $\kappa \ge 0$ parameters

Find $u: \Omega \to \mathbb{C}$ such that $(\varepsilon \leq \kappa)$

$$-\varepsilon^2 \Delta u - \kappa^2 u = f \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \partial \Omega$$

Guaranteed error upper bound (reliability) $(u_h \in \mathcal{P}_p(\mathcal{T}_h) \cap H_0^1(\Omega), p \ge 1, \text{FEs})$

 $\underbrace{\||\boldsymbol{u} - \boldsymbol{u}_h||}_{\text{unknown error}} \leq \underbrace{\eta(\boldsymbol{u}_h)}_{\text{computable estimator}}$

Asymptotically robust local error lower bound (efficiency, $f \in \mathcal{P}_{p-1}(\mathcal{T}_h)$)

 $\eta_{\mathsf{K}}(u_h) \leq \frac{\mathcal{C}_{\text{eff}}}{\|u - u_h\|}_{\omega_{\mathsf{K}}} \qquad \forall \mathsf{K} \in \mathcal{T}_h$

- C_{eff} a generic constant independent of Ω , u, u_h , h, κ , ε if $\frac{\kappa h}{\epsilon \rho} \leq 1$
- Babuška, Ihlenburg, & Strouboulis (1997), Dörfler & Sauter (2013), Sauter & Zech (2015), Chaumont-Frelet, Ern, & Vohralík (2021)

Plane wave, p = 1 and $\kappa = \pi$

$$\begin{split} \boldsymbol{\mathcal{E}}_{\text{fem}} &:= \| \| \boldsymbol{e}_h \| \|_{\kappa,\Omega} \\ \boldsymbol{\mathcal{E}}_{\text{est}} &:= \eta \\ \widetilde{\boldsymbol{\mathcal{E}}}_{\text{est}} &:= (1 + C_{\text{ap}})\eta \end{split}$$

Plane wave, p = 1 and $\kappa = 10\pi$

$$egin{aligned} & \mathcal{E}_{ ext{fem}} := \|\|oldsymbol{ heta}_{\hbar}\|\|_{\kappa,\Omega} \ & \mathcal{E}_{ ext{est}} := \eta \ & \widetilde{\mathcal{E}}_{ ext{est}} := (1+C_{ ext{ap}})\eta \end{aligned}$$

Plane wave, p = 4 and $\kappa = 10\pi$

$$egin{aligned} & \mathcal{E}_{ ext{fem}} := \| |oldsymbol{e}_{\hbar} \| |_{\kappa,\Omega} \ & \mathcal{E}_{ ext{est}} := \eta \ & \widetilde{\mathcal{E}}_{ ext{est}} := (1+C_{ ext{ap}})\eta \end{aligned}$$

Estimation d'erreur a posteriori : principe et applications 36 / 39

Plane wave, p = 4 and $\kappa = 60\pi$

 $egin{aligned} & m{E}_{ ext{fem}} := \|\|m{e}_{\hbar}\|\|_{\kappa,\Omega} \ & m{E}_{ ext{est}} := \eta \ & \widetilde{E}_{ ext{est}} := (1+C_{ ext{ap}})\eta \end{aligned}$

Ínaía

Estimation d'erreur a posteriori : principe et applications 37 / 39

Scattering by an non-trapping obstacle

Estimator $\eta_{\mathcal{K}}$ (left) and elementwise error $\||\boldsymbol{e}_h||_{\kappa,\mathcal{K}}$ (right)

Outline

- Introduction: a posteriori error control and adaptivity
- 2 Laplace equation: discretization error control and mesh adaptivity
 - A posteriori error control (discretization)
 - Potential reconstruction
 - Flux reconstruction
 - Balancing error components: mesh adaptivity
- 3 Nonlinear Laplace equation: overall error control and solver adaptivity
 - A posteriori error control (overall and components)
 - Balancing error components: solver adaptivity
- 4 Reaction–diffusion equation: robustness wrt parameters
- 6 Heat equation: robustness wrt final time and space-time localization
- 6 Helmholtz equation: asymptotic robustness

• a posteriori error control

M. Vohralík

Estimation d'erreur a posteriori : principe et applications 39 / 39

 a posteriori error control adaptivity: space mesh, time step,

 a posteriori overall error control adaptivity: space mesh, time step,

- a posteriori overall error control
- full adaptivity: space mesh, time step, linear solver, nonlinear solver, regularization, model,

- a posteriori overall error control
- full adaptivity: space mesh, time step, linear solver, nonlinear solver, regularization, model, polynomial degree

- a posteriori overall error control
- full adaptivity: space mesh, time step, linear solver, nonlinear solver, regularization, model, polynomial degree
- recovering mass balance in any situation

- a posteriori overall error control
- full adaptivity: space mesh, time step, linear solver, nonlinear solver, regularization, model, polynomial degree
- recovering mass balance in any situation
- ERN A., VOHRALIK M., Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations, *SIAM J. Numer. Anal.* 53 (2015), 1058–1081.
- ERN A., VOHRALIK M., Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs, *SIAM J. Sci. Comput.* **35** (2013), A1761–A1791.

SMEARS I., VOHRALÍK M., Simple and robust equilibrated flux a posteriori estimates for singularly perturbed reaction–diffusion problems, *ESAIM Math. Model. Numer. Anal.* **54** (2020), 1951–1973.

- ERN A., SMEARS I., VOHRALÍK M., Guaranteed, locally space-time efficient, and polynomial-degree robust a posteriori error estimates for high-order discretizations of parabolic problems, *SIAM J. Numer. Anal.* **55** (2017), 2811–2834.

CHAUMONT-FRELET T., ERN A., VOHRALÍK M., On the derivation of guaranteed and *p*-robust a posteriori error estimates for the Helmholtz equation, *Numer. Math.* **148** (2021), 525–573.

Thank you for your attention!

Estimation d'erreur a posteriori : principe et applications 39 / 39

Outline

Motivation

• Polynomial-degree (p) adaptivity

CDG Terminal 2E collapse in 2004 (opened in 2003)

no earthquake, flooding, tsunami, heavy rain, extreme temperature
deterministic, steady problem, PDE known, data known, implementation OK

CDG Terminal 2E collapse in 2004 (opened in 2003)

- no earthquake, flooding, tsunami, heavy rain, extreme temperature
- deterministic, steady problem, PDE known, data known, implementation OK

CDG Terminal 2E collapse in 2004 (opened in 2003)

- no earthquake, flooding, tsunami, heavy rain, extreme temperature
- deterministic, steady problem, PDE known, data known, implementation OK

CDG Terminal 2E collapse in 2004 (opened in 2003)

no earthquake, flooding, tsunami, heavy rain, extreme temperature

• deterministic, steady problem, PDE known, data known, implementation OK

probably numerical simulations done with insufficient precision,

Case Studies in Engineering Failure Analysis 3 (2015) 88-92

Reliability study and simulation of the progressive collapse of Doublet Roissy Charles de Gaulle Airport

Y. El Kamari^a, W. Raphael^{a,*}, A. Chateauneur^{El,c} *Coli Softward Righters de Reynouth (CER), Université Sater Joseph, CET Mar Rooker, PO Roc 11-514, Rood II Sath Beine 11672820, Johann Ínría Lestos Preta

M. Vohralík

Estimation d'erreur a posteriori : principe et applications 40 / 39

CDG Terminal 2E collapse in 2004 (opened in 2003)

no earthquake, flooding, tsunami, heavy rain, extreme temperature

• deterministic, steady problem, PDE known, data known, implementation OK

probably numerical simulations done with insufficient precision, I believe without error control

Case Studies in Engineering Failure Analysis 3 (2015) 88-

Reliability study and simulation of the progressive collapse of Doublet Roissy Charles de Gaulle Airport

Y. El Kamari^a, W. Raphael^{a,*}, A. Chateauneur^{El,c} *Coli Softward Righters de Reynouth (CER), Université Sater Joseph, CET Mar Rooker, PO Roc 11-514, Rood II Sath Beine 11672820, Johann Inría

M. Vohralík

Estimation d'erreur a posteriori : principe et applications 40 / 39

Outline

Motivation

• Polynomial-degree (p) adaptivity

Best-possible error decrease: hp adaptivity, (smooth solution)

Mesh \mathcal{T}_{ℓ} and pol. degrees p_{K}

P. Daniel, A. Ern, I. Smears, M. Vohralík, Computers & Mathematics with Ap

Best-possible error decrease: *hp* adaptivity, (smooth solution)

Exact solution

P. Daniel, A. Ern, I. Smears, M. Vohralík, Computers & Mathematics with Application

Mesh \mathcal{T}_{ℓ} and pol. degrees $p_{\mathcal{K}}$

Estimation d'erreur a posteriori : principe et applications 41 / 39

Best-possible error decrease: *hp* adaptivity, (singular solution)

Mesh \mathcal{T}_{ℓ} and polynomial degrees p_K

P. Daniel, A. Ern, I. Smears, M. Vohralík, Computers & Mathematics with Appl

M. Vohralík

Best-possible error decrease: hp adaptivity, (singular solution)

M. Vohralík

Estimation d'erreur a posteriori : principe et applications 41 / 39

Parti Pe