
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2020, No. S1, pp. 160–207. DOI:10.13154/tosc.v2020.iS1.160-207

Saturnin: a suite of lightweight symmetric
algorithms for post-quantum security∗

Anne Canteaut1, Sébastien Duval2, Gaëtan Leurent1, María Naya-Plasencia1,
Léo Perrin1, Thomas Pornin3 and André Schrottenloher1

1 Inria, Paris, France, {anne.canteaut,gaetan.leurent,maria.naya_plasencia,leo.perrin,
andre.schrottenloher}@inria.fr

2 UCL Crypto Group, Louvain-la-Neuve, Belgium, sebastien.pf.duval@gmail.com
3 NCC Group, Quebec, Canada, Thomas.pornin@nccgroup.com

Abstract. The cryptographic algorithms needed to ensure the security of our com-
munications have a cost. For devices with little computing power, whose number is
expected to grow significantly with the spread of the Internet of Things (IoT), this
cost can be a problem. A simple answer to this problem is a compromise on the
security level: through a weaker round function or a smaller number of rounds, the
security level can be decreased in order to cheapen the implementation of the cipher.
At the same time, quantum computers are expected to disrupt the state of the art
in cryptography in the near future. For public-key cryptography, the NIST has
organized a dedicated process to standardize new algorithms. The impact of quantum
computing is harder to assess in the symmetric case but its study is an active research
area.
In this paper, we specify a new block cipher, Saturnin, and its usage in different
modes to provide hashing and authenticated encryption in such a way that we
can rigorously argue its security in the post-quantum setting. Its security analysis
follows naturally from that of the AES, while our use of components that are easily
implemented in a bitsliced fashion ensures a low cost for our primitives. Our aim is to
provide a new lightweight suite of algorithms that performs well on small devices, in
particular micro-controllers, while providing a high security level even in the presence
of quantum computers.
Saturnin is a 256-bit block cipher with a 256-bit key and an additional 9-bit
parameter for domain separation. Using it, we built two authenticated ciphers and a
hash function.

• Saturnin-CTR-Cascade is an authenticated cipher using the counter mode and
a separate MAC. It requires two passes over the data but its implementation
does not require the inverse block cipher.

• Saturnin-Short is an authenticated cipher intended for messages with a length
strictly smaller than 128 bits which uses only one call to Saturnin to provide
confidentiality and integrity.

• Saturnin-Hash is a 256-bit hash function.

In this paper, we specify this suite of algorithms and argue about their security in
both the classical and the post-quantum setting.

Keywords: lightweight cryptography · post-quantum security · block cipher ·
authenticated encryption · hash function · AES · duck

∗https://project.inria.fr/saturnin/

Licensed under Creative Commons License CC-BY 4.0.
Received: 2019-12-10, Accepted: 2020-02-15, Published: 2020-06-22

https://doi.org/10.13154/tosc.v2020.iS1.160-207
mailto:{anne.canteaut, gaetan.leurent,maria.naya_plasencia,leo.perrin,andre.schrottenloher}@inria.fr
mailto:{anne.canteaut, gaetan.leurent,maria.naya_plasencia,leo.perrin,andre.schrottenloher}@inria.fr
mailto:sebastien.pf.duval@gmail.com
mailto:Thomas.pornin@nccgroup.com
https://project.inria.fr/saturnin/
http://creativecommons.org/licenses/by/4.0/

A. Canteaut et al. 161

1 Introduction
The aim of Saturnin is to provide a lightweight suite of algorithms that performs well on
small devices and that provides a high security against quantum adversaries.

1.1 Post-quantum Symmetric Cryptography
Quantum computation was first introduced in the late 80s as a general framework and
potential tool for simulating quantum systems. Since then, it has been the subject of
much more attention in computer science since the introduction by Shor [Sho94] of a
quantum algorithm for solving factorization and discrete logarithms in polynomial time.
Since then, the cryptographic community has been concerned with the impact of large or
intermediate-scale quantum computers which, although they are yet to be built, would
have massive consequences on the currently deployed public-key cryptosystems, breaking
most of those that are in use today.

It is widely acknowledged that new cryptographic designs should take into account the
quantum threat. As examples of this new direction, one may cite the NIST post-quantum
standardization project [Nat16], which structures most of the efforts of the asymmetric
cryptographic community, or the report of the National Academies of Sciences [Nat18],
which gives a precise evaluation of the quantum threat, up to the uncertainties inherent to
the evolution of cutting-edge technologies.

Until recently, such concerns did not seem to apply to symmetric cryptography, which
does not rely on structured mathematical problems such as factorization. In contrast,
Grover’s algorithm [Gro96] provides a quadratic speedup for a wide range of exhaustive
search problems, which are relevant to symmetric cryptography. In particular, such a
speedup occurs when performing an exhaustive search for secret keys, which brings the
cost of this search from 2128 encryptions to its square root, 264 operations, in the case of a
128-bit keyed block cipher such as AES-128. This leads to the natural countermeasure of
increasing key sizes, as the report [Nat18] indicates:

“Even if a computer existed that could run Grover’s algorithm to
attack AES-GCM, the solution is quite simple: increase the key
size of AES-GCM from 128-bit to 256-bit keys. ”

This indeed brings the cost back to 2128.
Many works have dealt with the precise complexity of Grover’s search for practical

attacks, which may be more difficult to run in practice than the first estimate of 264 time.
For example, one needs to implement symmetric cryptographic operations on a quantum
computer, and this is not trivial (see for instance the careful evaluation of applying Grover
on AES from [GLRS16]). But, as the report [Nat18] also mentions, this exhaustive search
for the key is only an upper bound on the security, not a lower bound; more analysis is
needed to assess the security of AES (or other ciphers) against quantum computers.

“More precisely, it is possible that there is some currently unknown
clever quantum attack on AES-GCM that is far more efficient than
Grover’s algorithm.”

Recent works have shed a new light on the quantum security (or insecurity) of some
symmetric cryptographic constructions [KLLN16a, CNS17, BNPS19]. In general, it can
be studied in the following two models defined e.g. in [Gag17, GHS16, KLLN16b].

Q1 Model. A first natural question is the security with an offline quantum computer.
While the adversary can only recover classical data, for instance by making queries to
a secret-key oracle, she can run quantum computations. Secret-key exhaustive search

162 Saturnin: a suite of lightweight symmetric algorithms for post-quantum security

using Grover’s algorithm runs in this model, as the adversary only needs a few classical
plaintext-ciphertext queries to check her key guesses. Quantum collision search for hash
functions runs in this model, as the specification of a hash function is public, and so a
quantum adversary is perfectly capable of implementing this function as a quantum circuit.

Q2 Model. The Q2 model is a strictly more powerful setting for the adversary, since the
adversary is allowed to perform quantum superposition access to secret-key oracles. There
exist classical primitives enjoying a classical security proof, for example the Even-Mansour
cipher with a random permutation, which are broken in the Q2 model in polynomial
time [KM10, KM12]. In [KLLN16a], it was shown that such attacks could actually target
many modes of operation, and accelerate exponentially some classical slide attacks, which
concern ciphers with a repetitive structure.

This is a powerful model, but there are many good reasons to consider it, like for
instance that it is simple and easy to define; that it is non-trivial, as many primitives and
constructions remain resistant in this setting; and also the fact that it includes all possible
intermediate scenarios, like the ones were the primitives could be implemented in no-safe
manners as components of more complex protocols that might include obfuscation, or
implementations on hybrid systems. Countering these attacks using ad hoc methods, for
instance by enforcing an input measure that would make the superposition collide, does
not seem easy to guarantee nor simple to implement for now. Due to all these reasons,
Q2 is the most-widely used model in quantum security proofs, e.g., for quantum proofs
of MAC constructions [BZ13b, AMRS], and we have chosen to build primitives offering
security in this model.

Let us point out that, though the direct applicability of attacks in this model might be
controversial, a substantial part of the community agrees that considering it for defining
the security of a system is interesting as it covers security in all the possible intermediate
scenarios.

Throughout this paper, whenever we consider an oracle such as a secret-key encryption
or decryption oracle, or a tag verification oracle, we consider a quantum adversary to have
access to the corresponding Q2 oracle, and our quantum security claims are all in this
model.

Other Limitations. Some classically efficient algorithms do not enjoy a clear quantum
speedup and, in particular, their quantum versions may encounter new hardware limitations.
Such an example is quantum collision search. For an 𝑛-bit random function, classical
collision search runs in time 𝑂(2𝑛/2), corresponding to the birthday bound, and in 𝑂(𝑛)
memory thanks to Pollard’s rho method. A quantum collision search algorithm found in
1998 [BHT98] reached a complexity of 𝑂(2𝑛/3) time and queries for the same problem,
later proven to be optimal. However, it requires 2𝑛/3 quantum memory, so a more than
significant amount of hardware. To date, no quantum algorithm optimal in time and
as efficient in hardware as Pollard’s rho exists for this problem. A tradeoff was given
in [CNS17] with a suboptimal time complexity of 22𝑛/5, but only 𝑂(𝑛) quantum memory,
showing that quantum collision search should not be immediately ruled out because of its
apparent impracticality. The most conservative approach should take 2𝑛/3 as a quantum
security level, but we choose later to give a bound depending on the amount of quantum
memory available to our offline adversary. Additionally, some quantum algorithms such as
Grover’s encounter inherent difficulties at parallelization. We choose to remain conservative
in this setting and consider only a quantum time complexity for a single processor. We
aim at a resistance against quantum adversaries even allowing them to use big quantities
of quantum memory.

A. Canteaut et al. 163

1.2 Lightweight and Post-quantum: towards Saturnin
In the report on lightweight cryptography NISTIR81141, it was explicitly asked that the
algorithms submitted to the project should be quantum-safe when long-term security is
needed:

“When long-term security is needed, these algorithms should either
aim for post-quantum security, or the application should allow them
to be easily replaceable by algorithms with post-quantum security.”

This completely makes sense, as the effort for recommendations for post-quantum asymmet-
ric cryptography is being made, and this will only be effective if the symmetric cryptography
used with it is also quantum-resistant.

However, to achieve an effective quantum security of 128 bits with a block cipher,
it does not seem enough to use a 256-bit key-size. Indeed, the security of most modes
of operation is limited by the complexity of finding collisions, which may benefit from
quantum acceleration, depending only on the block size. This yields a first challenge: the
design of a block cipher with a bigger block size (we will take 256 bits).

A second challenge is motivated by the results from [KLLN16a] which show that most
authentication modes suffer from polynomial-time attacks in the Q2 model. Whether these
attacks could be avoided was an open question related to the influence of the nonce on the
different calls to the block cipher.

A third challenge is that of lightness: it is not sufficient that our algorithm be post-
quantum secure, it should also be suitable for efficient implementation on devices with
little computing power.

In this proposal we overcome all those issues first by designing a block cipher with a 256-
bit block size and 256-bit key that inherits the AES security properties while allowing an
efficient bitsliced implementation, and secondly by proposing modes of operation resisting
the aforementioned attacks.

How to efficiently build an AES with a 256-bit state? Our proposal, Saturnin is
a suite of lightweight symmetric algorithms for post-quantum security. As previously
explained, our first aim was to design a block cipher, not only with a key-size equal to twice
the desired security level, but also a double state-size. Saturnin therefore works on blocks
of 256 bits, yet also aims at being particularly suitable for high-security microcontroller
applications, thanks to an efficient bitslice implementation. Any circuit can be implemented
in the bitslice format, as shown by Biham in the case of DES[Bih97], and (much later
on) by Matsui and Nakajima for AES[MN07]. Some cryptographic algorithms have been
specially designed to better fit such implementation strategies, notably in an internal
way in which parallelism within a single instance is exploited; some examples of such
algorithms are 3-Way[DGV94] and Serpent[BAK98]. Intuitively, algorithms amenable to
efficient bitslice implementations will be adequate for optimized hardware (ASIC, FPGA).
We therefore wanted to design Saturnin along similar lines.

We also wanted to take advantage of the knowledge obtained from the AES analysis
and the wide-trail strategy [Dae95], since the AES can be safely considered as the most
analyzed block cipher. Indeed, in order to benefit from this 20 year-long cryptanalysis
effort, we have built a 3-dimensional AES, on which the strongly-aligned version of the
wide-trail strategy [DR02a] can still be applied.

On larger versions of Rijndael. The Rijndael family of block ciphers [DR99] includes
larger-state versions, that were not kept in the AES standard. But for larger block-sizes,
reaching full diffusion within the internal state is slower since the state is represented, in
almost all versions, by a rectangle and not a square. This slower diffusion was exploited

1https://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8114.pdf

https://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8114.pdf

164 Saturnin: a suite of lightweight symmetric algorithms for post-quantum security

in several attacks, taking advantage of the larger internal state [GM08, MPP09, NP07,
ZWP+08, WGR+13, Sas10]. The long-key versions also seem relatively less secure than
the versions using shorter keys, especially regarding related-key attacks [BKN09, BK09].
Moreover, from an implementation point of view, their performances make them less
competitive than the version with a 128-bit block size defined in the AES standard.

Previous attempts. The idea of an AES version with three dimensions was mentioned
in [DR02b], without further development. In 2008 the block cipher 3D was proposed by
Nakahara Jr. in [Nak08]. Saturnin follows an overall approach reminiscent of 3D in that
it defines a 3D AES-like block cipher which uses similar subroutines. However, Saturnin
differs from 3D in at least two key ways. First, the order in which we apply these operations
differs. This allows us to claim 125 active S-boxes for 8 rounds, unlike in 3D. Furthermore,
all of our operations are intended for an efficient bitsliced implementation, meaning that
our cipher is much more suited for the lightweight context.

Some hash function proposals based on the AES transformations with a large internal
state were also submitted to the SHA-3 competition, like Lane [IAC+08], Grøstl [GKM+08],
and ECHO [GBB+08]. However, in each case, the approach used to handle a larger state is
different: Lane uses several independent AES states, Grøstl uses a large MDS matrix, and
ECHO resembles a four-dimensional AES, but the wide-trail arguments only go through
three dimensions.2

1.3 Security claims
We claim that, for each element in the Saturnin suite, there is no attack significantly
better than the generic attacks against the corresponding construction. In Section 3
we formulate specific security claims taking into account the requirements mentioned in
the NIST call for submissions, and we also formulate security claims regarding quantum
adversaries in the different models we just introduced.

2 Specification
2.1 The Block Cipher Saturnin
Saturnin operates on 256-bit blocks, using a 256-bit key. It uses a 256-bit internal state.
Blocks, keys and state values can be viewed as several equivalent representations:

• as a 4× 4× 4 cube of 4-bit nibbles (Figure 1a);

• as sixteen 16-bit registers, indexed from 0 to 15, known as the “bitsliced representation”
(Figure 1b);

• as 256 bits.

In this section, we use the first (i.e. 3-dimensional) representation as a cube of nibbles.
Section 4 will describe the (2-dimensional) bitsliced representation, and how conversions
are performed between all three representations. Practical implementations are expected
to use the bitsliced representation; hence, the description in this section is only for formal
presentation.

The nibbles in the cube are numbered from 0 to 63, as on Figure 1a. Each nibble can
also be defined via coordinates (𝑥, 𝑦, 𝑧) such that the coordinates (𝑥, 𝑦, 𝑧) correspond to
the nibble with index (𝑦 + 4𝑥 + 16𝑧). We number the bits within each nibble from 0 to 3,
where 0 is the least significant bit.

2The bounds given in [GBB+08] show at least 200 active S-Boxes for 8 S-box layers, but a 4D AES
would have 625 active S-Boxes for 16 S-box layers.

A. Canteaut et al. 165

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

3

19

35

51

7

23

39

55

11

27

43

59

15

31

47

63

12

13

14

15

28

29

30

31

44

45

46

47

60

61

62

63

𝑥

𝑧𝑦

(a) As a 4 × 4 × 4 cube of 4-bit nibbles. The
boundaries between the nibbles are in gray.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

𝑏

𝑖

(b) As sixteen 16-bit registers. The indices
and boundaries of the registers are in black,
those of the bits are in gray.

Figure 1: The 3-dimensional and 2-dimensional representations of the 256-bit state of
Saturnin. Nibbles and their corresponding bits are represented with the same color in
each representation.

2.1.1 Internal State

The various transformations in Saturnin are defined over different subsets of its state.
Below, we define three such subsets of the cube, based on the same terminology as for
parts of the Keccak-f state in SHA-3 (see Figure 1.1 in [BDPA11]).

Slice. In the cube, a slice is a subset of the nibbles such that 𝑧 is constant.

Sheet. In the cube, a sheet is a subset of the nibbles such that 𝑥 is constant.

Columns. Columns are the intersection of a sheet and a slice. They correspond to the sets
of nibbles with 𝑥 and 𝑧 constant.

2.1.2 The Specification of the Block Cipher

The Saturnin block cipher is an SPN (in the broadest sense) with an even number of
rounds, numbered from 0. In the following, we call a super-round the composition of two
consecutive rounds with indices 2𝑟 and (2𝑟 + 1).

The Saturnin block cipher uses a 256-bit internal state X and a 256-bit key state K,
both represented as a (4× 4× 4)-cube of nibbles. Two additional 16-bit words RC0 and
RC1 are used for generating the successive round constants. Pseudo-code describing a full
block encryption is given in Algorithm 1.

Parameters. The block cipher has two input parameters:

• 𝑅: the number of super-rounds, i.e. the total number of rounds divided by 2. 𝑅
belongs to {10, . . . , 31} and is equal to 10 by default.

• 𝐷: a 4-bit value, named the domain separator, depending on the operating mode as
specified in Section 2.5. The block cipher with domain separator 𝐷 will be denoted
by Saturnin𝐷.

The block cipher with 𝑅 super-rounds and Domain separator 𝐷 is denoted by Saturnin𝐷
𝑅 .

166 Saturnin: a suite of lightweight symmetric algorithms for post-quantum security

Initialization. X and K are respectively initialized with the input and with the master
key. Both 16-bit registers RC0 and RC1 are initialized as the bit-string

1 . . . 1⏟ ⏞
7 ones

𝑅4 . . . 𝑅0⏟ ⏞
𝑅

𝐷3 . . . 𝐷0⏟ ⏞
𝐷

where the rightmost bit of the register is the least significant bit. The first four bits are
given by the domain separator

∑︀3
𝑖=0 𝐷𝑖2𝑖 = 𝐷, while the 5-bit integer

∑︀4
𝑖=0 𝑅𝑖2𝑖 is equal

to 𝑅, i.e. to the number of super-rounds.
Round 0 starts by xoring K to the internal state.

Round function. Each round, starting from Round 0, then successively applies the
following transformations to the internal state:

• An S-box layer S, which applies the same 4-bit S-box 𝜎0 to all nibbles with an even
index, and the same 4-bit S-box 𝜎1 to all nibbles with an odd index. These two
S-boxes are defined by their lookup tables which are given in Table 1, where 𝑥 such
that

∑︀3
𝑖=0 𝑥𝑖2𝑖 = 𝑥 corresponds to a nibble containing (𝑥3, 𝑥2, 𝑥1, 𝑥0). An efficient

implementation of the S-boxes is shown in Figure 2.

• A nibble permutation SR𝑟 which depends on the round number 𝑟. For all even
rounds, SR𝑟 is the identity function. For odd rounds of index 𝑟 with 𝑟 mod 4 = 1,
SR𝑟 = SRslice consists of the parallel application of 𝑅slice on each slice independently.
This operation maps the nibble with coordinates (𝑥, 𝑦, 𝑧) to (𝑥 + 𝑦 mod 4, 𝑦, 𝑧).
For odd rounds of index 𝑟 with 𝑟 mod 4 = 3, SR𝑟 = SRsheet consists of the parallel
application of 𝑅sheet on each sheet independently. This operation maps the nibble
with coordinates (𝑥, 𝑦, 𝑧) to (𝑥, 𝑦, 𝑧 + 𝑦 mod 4). The SR𝑟 transformation is depicted
on Figure 4.

• A linear layer MC composed of 16 copies of a linear operation 𝑀 over (F4
2)4 which is

applied in parallel to each column of the internal state. The transformation 𝑀 is
defined as:

𝑀 :

⎛⎜⎜⎜⎝
𝑎

𝑏

𝑐

𝑑

⎞⎟⎟⎟⎠ ↦→
⎛⎜⎜⎜⎝

𝛼2(𝑎)⊕ 𝛼2(𝑏)⊕ 𝛼(𝑏)⊕ 𝑐⊕ 𝑑

𝑎⊕ 𝛼(𝑏)⊕ 𝑏⊕ 𝛼2(𝑐)⊕ 𝑐⊕ 𝛼2(𝑑)⊕ 𝛼(𝑑)⊕ 𝑑

𝑎⊕ 𝑏⊕ 𝛼2(𝑐)⊕ 𝛼2(𝑑)⊕ 𝛼(𝑑)
𝛼2(𝑎)⊕ 𝑎⊕ 𝛼2(𝑏)⊕ 𝛼(𝑏)⊕ 𝑏⊕ 𝑐⊕ 𝛼(𝑑)⊕ 𝑑

⎞⎟⎟⎟⎠
where 𝑎 is the nibble with the lowest index, and 𝛼 transforms the four bits 𝑥0, . . . , 𝑥3
of each nibble by the following multiplication⎛⎜⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

𝑥0

𝑥1

𝑥2

𝑥3

⎞⎟⎟⎟⎠ .

This transformation corresponds to the next-state function of an LFSR of length 4,
in Fibonacci mode, with feedback polynomial 𝑋4 + 𝑋3 + 1.
The transformation 𝑀 can be implemented efficiently as depicted on Figure 3 (which
corresponds to Figure 13 in [DL18] up to a rotation of the nibbles).

• The inverse of the previous nibble permutation, namely SR−1
𝑟 .

• A sub-key addition at odd rounds only (i.e. at the end of each super-round). The
sub-key is composed of the XOR of a round constant and either the master key or a
rotated version of the master key:

A. Canteaut et al. 167

Round constant. The round constants RC0 and RC1 are updated by clocking 16
times two independent LFSR of length 16 in Galois mode with respective
feedback polynomial 𝑋16 + 𝑋5 + 𝑋3 + 𝑋2 + 1 and 𝑋16 + 𝑋6 + 𝑋4 + 𝑋 + 1. In
other words, we repeat 16 times the following operation: if the most significant
bit of RC𝑖 is 0, RC𝑖 is replaced by RC𝑖 ≪ 1, otherwise, it is replaced by
(RC𝑖 ≪ 1)^poly𝑖 with poly0 = 0x1002d and poly1 = 0x10053.
The two 16-bit words RC0, RC1 are then xored to the internal state. Bit number 𝑖
in RC0 is added to Bit 0 of the nibble with index 4𝑖, for 0 ≤ 𝑖 ≤ 15. Similarly,
Bit number 𝑖 in RC1 is added to Bit 0 of the nibble with index (4𝑖 + 2), for
0 ≤ 𝑖 ≤ 15.

Round key. If the round index 𝑟 is such that 𝑟 mod 4 = 3, the master key K is xored
to the internal state; otherwise (i.e. when 𝑟 mod 4 = 1), a rotated version of
the key is added instead: the nibble with index 𝑖 receives the key nibble with
index (𝑖 + 20) mod 64, for 0 ≤ 𝑖 ≤ 63.

Table 1: The lookup tables of the S-boxes we use.
𝑥 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝜎0(𝑥) 0 6 14 1 15 4 7 13 9 8 12 5 2 10 3 11
𝜎1(𝑥) 0 9 13 2 15 1 11 7 6 4 5 3 8 12 10 14

(a) 𝜎0 (b) 𝜎1

Figure 2: Bitslice implementation of the S-box layer.

168 Saturnin: a suite of lightweight symmetric algorithms for post-quantum security

𝑎 𝑏 𝑐 𝑑

𝛼 𝛼

𝛼2 𝛼2

𝑎 𝑏 𝑐 𝑑

Figure 3: A 4-bit MDS mapping from [DL18]. The input/output (𝑎, 𝑏, 𝑐, 𝑑) corresponds
to nibbles with index (4𝑖, 4𝑖 + 1, 4𝑖 + 2, 4𝑖 + 3), for 0 ≤ 𝑖 ≤ 15.

Initial state:

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

Internal state after SR𝑟 at Rounds 𝑟 with 𝑟 ≡ 1 mod 4, i.e. after SRslice:

0

13

10

7

4

1

14

11

8

5

2

15

12

9

6

3

16

29

26

23

20

17

30

27

24

21

18

31

28

25

22

19

32

45

42

39

36

33

46

43

40

37

34

47

44

41

38

35

32

45

42

39

36

33

46

43

40

37

34

47

44

41

38

35

Internal state after SR𝑟 at Rounds 𝑟 with 𝑟 ≡ 3 mod 4, i.e. after SRsheet:

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1519

16

17

18

23

20

21

22

27

24

25

26

31

28

29

3034

35

32

33

38

39

36

37

42

43

40

41

46

47

44

4549

50

51

48

53

54

55

52

57

58

59

56

61

62

63

60

Figure 4: Ordering of the 64 nibbles of the internal state after applying SR𝑟 depending on
𝑟 mod 4, when the cube is represented as the collection of its 4 slices.

A. Canteaut et al. 169

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
3

19
35

51

7
23

39
55

11
27

43
59

15
31

47
63

12

13

14

15

28

29

30

31

44

45

46

47

60

61

62

63

𝑥

𝑧𝑦

(a) SRslice (when 𝑟 ≡ 1 mod 4)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
3

19
35

51

7
23

39
55

11
27

43
59

15
31

47
63

12

13

14

15

28

29

30

31

44

45

46

47

60

61

62

63

𝑥

𝑧𝑦

(b) SRsheet (when 𝑟 ≡ 3 mod 4)

Figure 5: Representation of the SR𝑟 operations on the cube.

170 Saturnin: a suite of lightweight symmetric algorithms for post-quantum security

Algorithm 1 Saturnin block encryption
In/Out: X ∈ (F16

2)16, K ∈ (F16
2)16, 𝑅 ∈ N, 𝐷 ∈ {0, 1, ..., 8}

X← X ⊕𝐾
RC0 ← 0xfe00|(𝑅≪ 4)|𝐷; RC1 ← RC0
for all 𝑟 from 0 to 𝑅− 1 do

// First round of the super-round
X← S(X)
X← MC(X)
// Second round of the super-round
if 𝑟 mod 2 ≡ 0 then

X← SRslice(X)
X← MC(X)
X← SR−1

slice(X)
X← X ⊕ rot(K)

else
X← SRsheet(X)
X← MC(X)
X← SR−1

sheet(X)
X← X ⊕ K

end if
// Updating round constants
for all 𝑗 from 0 to 15 do

RC0 ← clockLFSR0(RC0)
RC1 ← clockLFSR1(RC1)

end for
X0 ← X0 ⊕ RC0
X8 ← X8 ⊕ RC1

end for

2.2 The Authenticated Cipher Saturnin-CTR-Cascade
We first propose to use the Saturnin block cipher with modes known for their robustness
against quantum adversaries: we combine the counter mode (Figure 6) for encryption and
the Cascade construction [BCK96] for authentication, following the Encrypt-then-MAC
composition [BN00]. The Cascade construction is used, for example, in NMAC [BCK96],
and our MAC is very similar to NMAC based on Saturnin in Matyas-Meyer-Oseas (MMO)
mode [MMO85]. The nonce has length up to 160 bits and the tag has up to 256 bits (it
can be truncated).

The nonce is first padded into the 161-bit string 𝑁 by appending to the nonce a bit of
value 1, then as many bits of value 0 as needed to reach a total length of 161 bits.

In general, whenever our proposed modes (Saturnin-CTR-Cascade and Saturnin-
Hash) require padding a value of less than 256 bits into a 256-bit block, we use the following
padding rule, and denote as 𝑝𝑎𝑑(𝑥) the padding of block 𝑥.

Padding rule: The padding rule consists in appending a single bit of value 1, followed by
as many zeroes as necessary to reach the next block boundary.

In the counter (CTR) mode depicted on Figure 6, we define a keystream by encrypting
blocks composed of 𝑁 concatenated with a 95-bit counter which is increased by one for
each new call: 𝑧𝑖 = Saturnin1(𝑘, 𝑁‖𝑖 + 1) (the counter starts at 1 for the block 𝑧0). The
counter is encoded with the big-endian convention: if the counter numerical value 𝑢 is:

𝑢 =
94∑︁

𝑖=0
𝑢𝑖2𝑖

then each bit 𝑢𝑖 becomes bit 255 − 𝑖 in the input block. Thus, in a byte-oriented
implementation and with a 128-bit nonce, the input to Saturnin1 for the computation of
𝑧0 will consist in the 16 bytes of the nonce, followed by a byte of value 0x80 (first padding
byte for the nonce), followed by 14 bytes of value 0x00, followed by one byte of value 0x01.

A. Canteaut et al. 171

We split the input plaintext 𝑚 into full blocks 𝑚0, 𝑚1, . . . 𝑚ℓ and a final partial block 𝑚*.
Similarly, the associated data 𝑎 is split into 𝑎0, 𝑎1, . . . 𝑎𝑗 , 𝑎*. The Saturnin-CTR-Cascade
encryption process is then:

• Encryption:

1. For all 𝑖 = 0 to ℓ: 𝑐𝑖 ← 𝑚𝑖 ⊕ Saturnin1(𝑘, 𝑁‖𝑖 + 1)

2. 𝑐* ← 𝑚* ⊕ trunc𝑛(Saturnin1(𝑘, 𝑁‖ℓ + 2)) (where trunc𝑛 truncates its input
to its first 𝑛 bits, 𝑛 being the length, in bits, of 𝑚*).

• Authentication tag:

1. 𝑡← (𝑁‖0)⊕ Saturnin2(𝑘, 𝑁‖0)

2. For all 𝑖 = 0 to 𝑗: 𝑡← 𝑎𝑖 ⊕ Saturnin2(𝑡, 𝑎𝑖)

3. 𝑡← pad(𝑎*)⊕ Saturnin3(𝑡, pad(𝑎*))

4. For all 𝑖 = 0 to ℓ: 𝑡← 𝑐𝑖 ⊕ Saturnin4(𝑡, 𝑐𝑖)

5. 𝑡← pad(𝑐*)⊕ Saturnin5(𝑡, pad(𝑐*))

The ciphertext is 𝑐 = 𝑐0‖𝑐1‖ . . . ‖𝑐ℓ‖𝑐*; it has the same length as the plaintext. The
authentication tag is the last value of 𝑡. When decrypting, the authentication tag is first
recomputed, and compared with the received value; on mismatch, the encrypted message is
rejected. If the authentication tags match, then decryption is identical to encryption. The
comparison between authentication tags should endeavour not to reveal the bit position at
which mismatched tags diverge.

All Saturnin calls use 𝑅 = 10 super-rounds. Five domain values are used:

• Saturnin1: for CTR encryption;

• Saturnin2: for Cascade over the associated data full blocks;

• Saturnin3: for Cascade over the padded last block of associated data;

• Saturnin4: for Cascade over the ciphertext full blocks;

• Saturnin5: for Cascade over the padded last block of ciphertext.

2.3 The Authenticated Cipher Saturnin-Short
For some practical usages, we propose a third authenticated cipher for handling messages
of length strictly less than 128 bits (without additional data) and nonces of size up to 128
bits: Saturnin-Short (Figure 9). We denote by || concatenation of bit-strings, and again
adopt the same padding convention as in Section 2.2 for messages shorter than 128 bits.

In Saturnin-Short, we use the fact that Saturnin has a 256-bit block size, allowing
to mix together the nonce and the message. We use the variant Saturnin6. It is worth
noticing that the ciphertext and the tag are not two separate values. Given a nonce 𝑁 and
a ciphertext 𝑐, the tag can be verified by deciphering 𝑐 and comparing the left half with 𝑁 .

Since Saturnin-Short does not allow additional data, we recommend that protocols
based on Saturnin-Short use a counter as the nonce to prevent reordering of the ciphertexts
and to detect replay attacks.

172 Saturnin: a suite of lightweight symmetric algorithms for post-quantum security

𝑁 ||1

𝐸1

𝑚0

𝑐0

𝑘

𝑁 ||2

𝐸1

𝑚1

𝑐1

𝑘 . . .

𝑁 ||ℓ + 1

𝐸1

𝑚ℓ

𝑐ℓ

𝑘

𝑁 ||ℓ + 2

𝐸1

𝑚*

𝑐*

𝑘

Figure 6: Counter Mode (CTR) encryption (𝐸𝑖 denotes a tweakable block cipher with
Tweak 𝑖. A thick line represents the input of the key.

𝑁 ||0

𝐸2𝑘

𝑎0

𝐸2 . . .

𝑎𝑗

𝐸2

pad(𝑎*)

𝐸3 A

Figure 7: Cascade construction, processing of the associated data. A thick line represents
the input of the key.

𝑐0

𝐸4𝐴

𝑐1

𝐸4 . . .

𝑐ℓ

𝐸4

pad(𝑐*)

𝐸5 Tag

Figure 8: Cascade construction, processing of the ciphertext and computation of the tag.
A thick line represents the input of the key.

𝑁 ||𝑚

𝐸6

𝑐

𝑘

Figure 9: Saturnin-Short with key 𝑘, message 𝑚 and nonce 𝑁 . A thick line represents
the input of the key.

A. Canteaut et al. 173

Table 2: Correspondence between the value of the domain separator 𝐷 and the usage of
SaturninD.

Value of 𝐷 Use
0 Saturnin block cipher
1 Saturnin-CTR
2 Saturnin-Cascade AD
3 Saturnin-Cascade AD final
4 Saturnin-Cascade message
5 Saturnin-Cascade message final
6 Saturnin-Short
7 Saturnin-Hash
8 Saturnin-Hash final

2.4 The Hash Function Saturnin-Hash
We also propose a 256-bit hash function based on Saturnin with the Merkle-Damgård
construction [Mer90, Dam90], as shown in Figure 10. We use Saturnin16 (i.e. Saturnin
with 16 super-rounds) because we want the compression function to be resistant to related-
key attacks. The compression function uses the MMO mode (𝑓(𝑐𝑖, 𝑚) = 𝐸𝑐𝑖

(𝑚)⊕𝑚) to
compress a 256-bit chaining value 𝑐𝑖 and a 256-bit message block 𝑚. Therefore, Saturnin-
hash is similar to the above Cascade, except that there is no key as starting point but a
fixed value, 0.

As in Saturnin-CTR-Cascade, the input message 𝑚 is split into full blocks 𝑚0, 𝑚1, . . . 𝑚ℓ,
and a final partial block 𝑚* (which may be empty, but is never full). Processing is then:

1. 𝑡← 0 (the all-zero 256-bit block)

2. For all 𝑖 = 0 to ℓ: 𝑡← 𝑚𝑖 ⊕ Saturnin7
16(𝑡, 𝑚𝑖)

3. 𝑡← pad(𝑚*)⊕ Saturnin8
16(𝑡, pad(𝑚*))

The hash output is the final value of 𝑡.

2.5 Values of the Domain Separator
The values of the domain separator 𝐷 are used to describe the variant of Saturnin that
will be used in each role of each mode. We summarize the correspondence in Table 2.

3 Security Claims
In general, we believe that, for each element in the Saturnin suite, there is no attack
significantly better than the generic attacks against the corresponding construction. In
the following, the definition of attack obviously depends on the type of primitive. For a
block cipher, it refers to distinguishing attacks in the SPRP-setting. For authenticated
encryption, it refers to chosen-plaintext attacks breaking the confidentiality of the plaintext
or the integrity of the ciphertext, as specified by the NIST submission requirements. We
now formulate specific security claims.

Classically, the complexity of an attack is determined by the following quantities: 𝒯
is the time complexity, expressed in units equivalent to the cost of one evaluation of the
involved Saturnin block cipher; 𝒟 is the data complexity (encryption and verification
queries), expressed as a number of 256-bit blocks, and 𝑝 is the success probability of an

174 Saturnin: a suite of lightweight symmetric algorithms for post-quantum security

adversary. It is worth noticing that 𝒯 ≥ 𝒟 since the time for generating the data must be
taken into account.

Quantumly, we adapt these definitions. Quantum computations are traditionally
written using quantum circuits and the time complexity is given by the number of quantum
gates in the circuit. For us, 𝒯 is counted in units equivalent to the number of gates
of one evaluation of Saturnin implemented as a quantum circuit (see Appendix A for
more details and definitions regarding quantum computing). Hence our security levels are
independent of the cost of a quantum circuit for Saturnin. 𝒟 is the number of 256-bit
blocks queried to a single superposition oracle. For example, for a mode of encryption with
variable message-length, the adversary chooses the message-length she wants to query and
queries the oracle in superposition over the messages. These oracle calls are interleaved
with the quantum computations and each one requires as many time units as the required
number of (quantum) secret-key computations of Saturnin. For simplicity, we do not
make hybrid classical-quantum security claims and consider that classical oracle calls cost
the same as quantum ones. Indeed, on the one hand, classical queries are a particular
type of quantum queries, so they should be at least easier to make. On the other hand,
assuming the converse means that quantum queries are cheap, and this only strengthens
our claims.

Block cipher. In the following claims, by default, Saturnin denotes the block cipher
with at least 10 super-rounds, i.e. 20 single-rounds as a super-round is formed by 2 rounds.
When explicitly mentioned, Saturnin16 corresponds to the block cipher with 16 super-
rounds or more.

Security Claim for Saturnin block cipher (Section 2.1)

There exists no classical attack in the single-key setting with 𝒯 /𝑝 < 2224.
Saturnin16 provides a similar security level against related-key attacks involving
a small number of keysa.
There exists no quantum attack in the single-key setting with 𝒯 2/𝑝 < 2224.
Saturnin does not provide security against related-key superposition attacks (as
is the case of all known block ciphers).

awith related-key deriving functions satisfying the conditions of [BK03].

Authenticated encryption. In the following security claims, 𝑡 is the length of the tags in
bits (𝑡 is 256 by default, but can be less if the tags are truncated).

None of the AE schemes in Saturnin provides security in nonce-misuse, nonce-
repetition or nonce-superposition scenarios 3. In the single-key setting, we make the
following claims:

Security Claim for Saturnin-CTR-Cascade (Section 2.2)

There exists no classical attack satisfying 𝒟2+𝒯 +𝒟2256−𝑡

𝑝 < 2224.
There exists no quantum attack satisfying 𝒟3+𝒯 2+𝒟22256−𝑡

𝑝 < 2224.

3By nonce-superposition scenario we consider a quantum nonce-misuse scenario in which the adversary
could call the encryption oracle in superposition over the nonces.

A. Canteaut et al. 175

In particular, in the case where 𝑡 = 256 these claims imply that any classical attack with
high success probability must satisfy 𝒟𝒯 > 2224, which corresponds to the birthday bound
at the 224-bit security level.

Security Claim for Saturnin-Short (Section 2.3)

There exists no classical attack with 𝒟2+𝒯 +𝒟2128

𝑝 < 2224.
There exists no quantum attack with 𝒟3+𝒯 2+𝒟22128

𝑝 < 2224.

The AE claims above are written in the single-key setting, assuming that related-key
issues are dealt with at the protocol level. However, we also claim security against classical
related-key attacks (with the same restrictions on the related keys as for the block cipher
claims) when Saturnin is replaced by Saturnin16.

Hash function. The hash function in the Saturnin suite is based on Saturnin16. A
lower number of super-rounds is not recommended. In what follows, ℳ𝑞 is the size of the
quantum memory measured in registers of 256 qubits. In these claims we consider 𝑝 ≥ 1/2.
We assume of course that ℳ𝑞 ≥ 1.

Security Claim for Saturnin-Hash (Section 2.4)

There exists no classical collision attack with 𝒯 < 2112. There exists no classical
second-preimage attack with 𝒯 < 2224−ℓ for messages of length 2ℓ. There exists no
classical preimage attack with 𝒯 < 2224.
There exists no quantum collision attack verifying 𝒯 5 ×ℳ𝑞 < 2448. There exists
no quantum second-preimage attack with 𝒯 < 2112−ℓ/2 for messages of length 2ℓ.
There exists no quantum preimage attack with 𝒯 < 2112.

In particular, the claim for quantum collision attack implies that there is no such attack
with 𝒯 < 275, because we necessarily have ℳ𝑞 < 𝒯 .

Summary of recommended parameters
Our recommended variants of Saturnin use 10 super-rounds for authenticated encryption,
and 16 super-rounds for hashing.

Primary member.
AEAD: Saturnin-CTR-Cascade with 10 super-rounds
Hash: Saturnin-Hash with 16 super-rounds

The primary member combines modes with strong post-quantum security guarantees,
no need for the block-cipher decryption and no patent claims we are aware of. As mentioned
in the previous section, we claim security up to the birthday bound, in the single-key
setting.

Variant: optimized for small messages
AE: Saturnin-Short with 10 super-rounds
Hash: Saturnin-Hash with 16 super-rounds

176 Saturnin: a suite of lightweight symmetric algorithms for post-quantum security

This variant is a special construction dedicated to short messages of at most 128 bits,
without associated data. The authentication security is slightly decreased, equivalent to
truncating the tag to 128 bits.

In practice, if there is a need to encrypt both short messages and longer messages, we
recommend to use Saturnin-CTR-Cascade with a 128-bit tag for longer messages, with
an extra ciphertext bit for domain separation.

4 Implementation
4.1 Bitslice Representation and Conversions
The “cube of nibbles” representation of Saturnin blocks, keys and state values uses
64 nibbles with coordinates (𝑥, 𝑦, 𝑧) (all three coordinates range from 0 to 3). Each nibble
contains four bits, numbered from 0 (least significant) to 3 (most significant).

The “bitsliced” representation [DGV94] splits the value into sixteen registers of 16 bits
each. A bit within a register is indexed by values (𝑖, 𝑏), where 𝑖 is the register number (0
to 15), and 𝑏 is the bit number (0 to 15). Within a register, bit 0 is least significant, and
15 is most significant. The register bits map to the nibble bits in the following way:

(4𝑗 + 𝑘, 𝑏) −→ (𝑏 mod 4, 𝑗, ⌊𝑏/4⌋)𝑘 (0 ≤ 𝑗 ≤ 3, 0 ≤ 𝑘 ≤ 3, 0 ≤ 𝑏 ≤ 15)

i.e. the bits 0 to 3 of the nibble (𝑏 mod 4, 𝑗, ⌊𝑏/4⌋) are the bits 𝑏 of registers 4𝑗, 4𝑗 + 1,
4𝑗 + 2 and 4𝑗 + 3, respectively.

The “bits” representation encodes the registers of the bitsliced representation into bits.
The traditional mixed-endian convention is used: the two octets (bytes) of a register are
encoded in little-endian order (least significant octet first), but bits within each octet are
reputed to be ordered from most significant to least significant. Registers are encoded in
ascending numerical order (0 to 15).

In most practical implementations, Saturnin will operate on keys and blocks which
are already grouped into octets. In that case, this preexisting grouping of bits into octets
is assumed to already follow the convention prescribed above. Therefore, the first two
octets 𝑡0 and 𝑡1, each with numerical value 0 to 255, encode register 0 with numerical value
𝑡0 + 256𝑡1; the next two octets 𝑡2 and 𝑡3 encode register 1 with numerical value 𝑡2 + 256𝑡3;
and so on.

In a byte-oriented implementation, the ordering of bits within a byte matters only for
the padding rule used in Saturnin-Hash and the AEAD modes: when appending a bit of
value 1 followed by zeros, this translates to appending a byte of value 0x80 followed by
bytes of value 0x00.

It shall be noted that in Saturnin-CTR-Cascade, we specified the encoding of the
counter to use big-endian, since this is the standard encoding in other AEAD modes such
as GCM, CCM or EAX. The conversion of the counter numerical values into the values of
the high-index registers will thus imply some byteswapping.

4.2 Re-interpreting the Operations of Saturnin
While specified over a cube, Saturnin is best implemented using a bitsliced approach. For
implementation purposes, the internal state of Saturnin is represented as sixteen 16-bit
registers indexed from 0 to 15 (Figure 1b). In this register representation, the bit of lowest
weight of each register has index 0 and the bit of highest weight has index 15. A bit is then
defined by the index 𝑖 of its register and its index 𝑏 within its register. The correspondence
between the register representation and the cube representation is as follows: the bits with
coordinates (4𝑖, 𝑏), (4𝑖 + 1, 𝑏), (4𝑖 + 2, 𝑏) and (4𝑖 + 3, 𝑏), which are therefore taken from
registers 4𝑖 to 4𝑖 + 3, correspond to nibble (𝑏 mod 4, 𝑖, ⌊𝑏/4⌋) in the cube (see Figure 1).

A. Canteaut et al. 177

Table 3: The correspondence between the input and output bit indices in 𝜋0 and 𝜋1.
𝑖 0 1 2 3

𝜋0(𝑖) 3 0 1 2
𝜋1(𝑖) 2 1 3 0

A slice in the cube corresponds to bits with indices (𝑖, 𝑏) such that ⌊𝑏/4⌋ is constant,
while a sheet corresponds to bits with indices (𝑖, 𝑏) such that (𝑏 mod 4) is constant.
Therefore, the columns in the cube are composed of bits (𝑖, 𝑏) with a constant 𝑏 in the
registers.

The transformations involved in the round function of Saturnin are then implemented
as follows.

S-box Layer. The 4-bit S-boxes 𝜎0 and 𝜎1 are applied in parallel, each over a half of the
whole state. These permutations are such that 𝜎0 = 𝜋0 ∘ 𝜎 and 𝜎1 = 𝜋1 ∘ 𝜎 where 𝜋0 and
𝜋1 are bit permutations. Their action on the index of the bits in each nibble is given in
Table 3.

In the register representation, the S-boxes are applied in a bitsliced fashion over all
registers with indices 4𝑖 + 0, ..., 4𝑖 + 3, where 𝑖 ∈ {0, 2} for 𝜎0 and 𝑖 ∈ {1, 3} for 𝜎1. The
full parallel application of the S-boxes is denoted S and, in the register representation, it
is summarized in Figure 11.

The lookup-tables of the S-boxes are given in Section 2.1.2. They can be implemented
in bitslice over 4 words using the C macros in Figure 11b.

MDS Matrix. The matrix 𝑀 is defined over (F24)4 and is applied in parallel on each
column of the state. In the register representation, it is applied in a bitsliced fashion over
the whole state at once as summarized in Figure 12a.

The matrix is one of the low-cost MDS matrices found in [DL18]. It can be implemented
in a bitsliced fashion using the C macro in Figure 12b.

SRslice. In order to mix the columns in each slice, we use SRslice which consists in the
parallel application of 𝑅slice on each slice independently. This operation maps the nibble
with coordinates (𝑥, 𝑦, 𝑧) to (𝑥 + 𝑦 mod 4, 𝑦, 𝑧). Its implementation on 16-bit registers is
summarized in Figure 13.

It can be implemented by applying to register 𝑖 a rotation of each 4-bit word in it by
⌊𝑖/4⌋. The following C macros implement the 4 such functions we need:

• the rotation by 1 is ((x & 0x7777) << 1) | ((x & 0x8888) >> 3),

• the rotation by 2 is ((x & 0x3333) << 2) | ((x & 0xcccc) >> 2), and

• the rotation by 3 is ((x & 0x1111) << 3) | ((x & 0xeeee) >> 1).

ShiftRows in a Sheet. We proceed with sheets as we did with slices. In order to mix the
columns in each sheet, we use SRsheet which consists in the parallel application of 𝑅sheet
on each sheet independently. This operation maps the nibble with coordinates (𝑥, 𝑦, 𝑧) to
(𝑥, 𝑦, 𝑧 + 𝑦 mod 4). It is summarized in Figure 14. It can be implemented with a rotation
of the 16-bit register 𝑖 by 4⌊𝑖/4⌋.

178 Saturnin: a suite of lightweight symmetric algorithms for post-quantum security

𝑚0

𝐸70

𝑚1

𝐸7 . . .

𝑚ℓ

𝐸7

pad(𝑚*)

𝐸8 Output

Figure 10: The hash function Saturnin-Hash, where 𝐸𝑖 is Saturnin16 with domain
separator 𝑖. A thick line represents the input of the key.

0 1 2 3 4 5 6 7 8 9 101112131415

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

(a) As applied in the registers.

#define S_LAYER(a, b, c, d) { \
a ^= b & c; \
b ^= a | d; \
d ^= b | c; \
c ^= b & d; \
b ^= a | c; \
a ^= b | d; \

}

#define PI_0(a, b, c, d, tmp) { \
tmp = a; a = b; b = c; \
c = d; d = tmp; \

}

#define PI_1(a, b, c, d, tmp) { \
tmp = a; a = d; \
d = c; c = tmp; \

}

(b) The main S-box 𝜎 and the bit permutations 𝜋0 and 𝜋1.

Figure 11: The application of the 4-bit S-boxes (S) in the register representation. 𝜎0 is
represented by continuous blue arrows, 𝜎1 by dashed brown ones.

0 1 2 3 4 5 6 7 8 9 101112131415

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

(a) In register representation.

#define MUL(x0, x1, x2, x3, t) { \
t = x3; x3 = x2 ; x2 = x1; x1 = x0; x0 = t; /* ROT */ \
x1 ^= x0; /* XOR */ \

}

#define MDS(x0, x1, x2, x3, x4, x5, x6, x7, \
x8, x9, xa, xb, xc, xd, xe, xf, tmp) { \

x8 ^= xc; x9 ^= xd; xa ^= xe; xb ^= xf; /* C ^= D */ \
x0 ^= x4; x1 ^= x5; x2 ^= x6; x3 ^= x7; /* A ^= B */ \
MUL(x4, x5, x6, x7, tmp); /* B = MUL(B) */\
MUL(xc, xd, xe, xf, tmp); /* D = MUL(D) */\
x4 ^= x8; x5 ^= x9; x6 ^= xa; x7 ^= xb; /* B ^= C */ \
xc ^= x0; xd ^= x1; xe ^= x2; xf ^= x3; /* D ^= A */ \
MUL(x0, x1, x2, x3, tmp); /* A = MUL(A) */\
MUL(x0, x1, x2, x3, tmp); /* A = MUL(A) */\
MUL(x8, x9, xa, xb, tmp); /* C = MUL(C) */\
MUL(x8, x9, xa, xb, tmp); /* C = MUL(C) */\
x8 ^= xc; x9 ^= xd; xa ^= xe; xb ^= xf; /* C ^= D */ \
x0 ^= x4; x1 ^= x5; x2 ^= x6; x3 ^= x7; /* A ^= B */ \
x4 ^= x8; x5 ^= x9; x6 ^= xa; x7 ^= xb; /* B ^= C */ \
xc ^= x0; xd ^= x1; xe ^= x2; xf ^= x3; /* D ^= A */ \

}

(b) As a C macro.

Figure 12: The parallel application of the 16× 16 matrix 𝑀 , i.e. the operation MC.

A. Canteaut et al. 179

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

(a) Before.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

(b) After.

Figure 13: The SRslice operation that mixes the columns in each slice separately.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

(a) Before.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

(b) After.

Figure 14: The SRsheet operation that mixes the columns in each sheet separately.

180 Saturnin: a suite of lightweight symmetric algorithms for post-quantum security

1 #define CLOCK_LFSR_0(x) x = ((x) & 0x8000) ? ((x) << 1) ^ 0x002d : (x) << 1 ;
2 #define CLOCK_LFSR_1(x) x = ((x) & 0x8000) ? ((x) << 1) ^ 0x0053 : (x) << 1 ;

Figure 15: Clocking the LFSRs used to derive the round constants.

Key Addition. The key addition is applied in a very straightforward way by XORing
16-bit registers in the key state with their counterparts in the internal state of the cipher.
In odd super-rounds, each register of the master key is rotated just before being added,
meaning we can use operators combining the XOR and the rotation when available.

Constant Addition. The bits in which the constants RC0 and RC1 are XORed correspond
to registers 0 and 8 respectively. Hence, this operation is implemented using two word-wise
XORs. The 16-bit state of each LFSR naturally corresponds to one 16-bit register, and
one clock of each LFSR is easily implemented using the C macros in Figure 15.

4.3 Operations Count
In order to evaluate the efficiency of Saturnin, we can count the number of operations
required to encrypt one 256-bit block of plaintext. If we assume an ideal 16-bit instruction
set with three-operand instructions, we need the following instructions for one round of
Saturnin:

• 4× 12 instructions for the S-box layer (6 AND/OR, and 6 XOR)

• 38 XOR instructions for the MDS layer

• depending on the round number, either 12 rotation instructions for SRsheet or SR−1
sheet,

or 60 instructions (two ANDs for masking, two shifts, and one OR for each of the 12
registers) for SRslice or SR−1

slice.

• 16 XOR instructions every two rounds for the key addition.4

In total, with 20 rounds plus the last key addition (and ignoring the key schedule), this
makes 2616 instructions to process 256 bits, or 10.2 instructions per bit.

In a hardware setting, the nibble permutations SR and SR−1 are free,5 and we just
need the following operations:

• 64× 12 gates for the S-box layer (6 AND/OR, and 6 XOR)

• 16× 38 XOR gates for the MDS layer

• 256 XOR gates every two rounds for the key addition

In total, with 20 rounds, this sums up to 30336 gates to process 256 bits, or 118.5 gates
per bit. For reference, we can compare this number with the results for SKINNY [BJK+16],
SIMON [BSS+13], NOEKEON [DPVAR00] and AES that are given in [BJK+16], even though
those ciphers have a smaller block size of 128 bits. If we ignore the cost of the key
schedule, at the 128-bit security level, SKINNY requires 130 gates per bit, SIMON requires
136, NOEKEON 100, and AES 202.5. Focusing on ciphers with a 256-bit key, we need 156
operations for SKINNY, 144 for for SIMON, and 283.5 for AES. This shows that Saturnin is
a good candidate for efficient implementations.

4To which two XORs must be added if the subkeys are computed in the fly along with the instructions
implementing the LFSRs updating the round constants.

5This is true for an implementation unrolling 4 rounds (2 super-rounds). An implementation performing
fewer rounds per clock cycle will need additional multiplexers to take the differences between our operations
into account.

A. Canteaut et al. 181

4.4 Software Implementations
In the bitslice representation, the state and keys of Saturnin are naturally expressed
as sequences of 16-bit registers. However, many small microcontrollers now offer a 32-bit
architecture, in particular the ARM Cortex-M line. Bigger architectures may also offer
larger registers. There are several possible strategies for representing the state of one or
several instances of Saturnin. We implemented in C three strategies called bs32, bs32x
and bs64.

In bs32, the sixteen 16-bit registers of Saturnin (𝑟0 to 𝑟15) are stored in eight 32-bit
registers 𝑞0 to 𝑞7, such that the 16 low bits of 𝑞𝑖 contain 𝑟𝑖, and the 16 high bits of 𝑞𝑖

contain 𝑟𝑖+8. This representation allows sharing some operations that are performed
identically on 𝑟𝑖 and 𝑟𝑖+8, such as 𝜎0 (applied on 𝑟0 to 𝑟3, and on 𝑟8 to 𝑟11) and 𝜎1, the
multiplications by 𝛼 in the linear layer MC, and addition of round constants.

In bs32x, two independent Saturnin instances are executed in parallel as described
in [BDP+12] in the case of Keccak. If we call (𝑟𝑖) the sixteen 16-bit state registers of
the first instance, and (𝑠𝑖) the sixteen 16-bit state registers of the second instance, then
we use sixteen 32-bit registers (𝑤𝑖) such that each 𝑤𝑖 contains the interleaved bits of 𝑟𝑖

and of 𝑠𝑖: bit 𝑗 of 𝑟𝑖 is stored in bit 2𝑗 of 𝑤𝑖, and bit 𝑗 of 𝑠𝑖 is stored in bit 2𝑗 + 1 of
𝑤𝑖. This representation allows parallel evaluation of the S-box and linear layers, and,
compared to bs32, simplifies data movements. However, it requires some extra operations
for interleaving the state values on input (and the reverse operation on output), uses twice
as many registers, and is applicable only in cases where parallel evaluation of two Saturnin
instances is possible (e.g. in Saturnin-CTR-Cascade, but not in Saturnin-Hash).

The bs64 representation is an extension of bs32 for 64-bit architectures: it uses eight
64-bit registers, whose low halves contain the 𝑞0 to 𝑞7 values of bs32 for one Saturnin
instance, and whose high halves contain the 𝑞0 to 𝑞7 of another independent instance.
This strategy allows sharing the computations of bitwise operations (e.g. 𝜎0 and 𝜎1), but
requires more operations for the linear layer and the SR operations. Moreover, like bs32x,
it requires two Saturnin instances to evaluate in parallel.

In our tests, bs32x offers a slight performance increase, compared to bs32, on register-
rich architectures (e.g. PowerPC) but not on register-starved CPU (e.g. x86 and low-end
ARM). On 32-bit architectures, bs64 has no advantage over bs32, but even on 64-bit
systems, the bs64 implementation is only marginally faster than bs32, even in optimal
conditions.

Therefore, bs32 seems to be the best performing, and most flexible, on low-end 32-bit
systems of the ARM Cortex line. We reimplemented it in hand-optimized assembly for the
ARM Cortex-M3 and ARM Cortex-M4; the M4 implementation leverages some opcodes
(pkhbt and pkhtb) that the M3 does not feature, making that code slightly smaller and
faster. Figure 16 shows the resulting code footprint (in bytes) and data throughput (in
cycles per byte, for hashing, encrypting, and processing the Additional Authenticated
Data (AAD)). Three implementations (portable C, assembly for Cortex-M4, assembly
for Cortext-M3) are compared. All three implementations follow a common, realistic,
streamable API amenable to integration in various applications.

5 Rationale
5.1 General Structure using the Super-S-box Representation
The main motivation behind the general structure of Saturnin is to mimic the structure
of the AES, which is arguably the best understood symmetric primitive. Indeed, the
Super-S-box view of Saturnin is very similar to an AES operating on 16-bit words, instead
of bytes. Let us denote by S16 the 16-bit Super-S-box in Saturnin, i.e., the permutation
of F16

2 , composed of the succession of an S-box layer, the linear MDS function 𝑀 , and a

182 Saturnin: a suite of lightweight symmetric algorithms for post-quantum security

Implementation Code size Throughput (c/B)
Hash Encrypt AAD

saturnin_portable.c 3956 183 250 128
saturnin_m4.s 2948 111 144 75
saturnin_m3.s 3028 113 147 77

Figure 16: Size and performance of streamable implementations of Saturnin-CTR-
Cascade and Saturnin-Hash on ARM Cortex-M4. The code size is expressed in bytes;
the processing speeds for hashing, encryption, and additional authenticated data, are given
in cycles-per-byte.

second S-box layer. The composition of two rounds of indices (2𝑡, 2𝑡 + 1) can then be seen
as the application of this Super-S-box to each column of the internal state, followed by
SR−1

2𝑡+1 ∘MC ∘ SR2𝑡+1. If 𝑡 is even, then the slices are invariant under SR2𝑡+1. This implies
that the linear layer SR−1

2𝑡+1 ∘MC ∘ SR2𝑡+1 consists of the concatenation of four copies of
the same function L64 of (F16

2)4, which applies to the slices independently.
If 𝑡 is odd, then the sheets are invariant under SR2𝑡+1. In this case, the linear layer

consists of the concatenation of four copies of the same function L64, which applies to the
sheets independently. Moreover, it is easy to prove, e.g. by Theorem 1 in [ADK+14] that
L64 has branch number 5 with respect to F16

2 .
Let us then represent in a 4× 4 matrix C the 16-bit words C0,0, . . . , C3,3 corresponding

to the 16 columns of the cube, where C𝑖,𝑗 corresponds to the column defined by 𝑥 = 𝑖, 𝑧 = 𝑗.
This means that each slice in the cube is a column of Matrix C, while each sheet in the
cube is a row of C. When 𝑡 is even, the linear function L64 then applies to the columns of C
independently, while for odd 𝑡, it applies to its rows. In other words, a super-round has
the following structure: the S-box S16 is applied to each 16-bit word, then L64 is applied
to the four columns of C, and Matrix C is transposed.

Saturnin is then very similar to an AES operating on 16-bit words, except that the
ShiftRows transformation is here replaced by a transposition exactly as it was in Square, a
predecessor of the AES [DKR97]. In the following, this super-S-box view and the previous
notation will be used for analyzing the resistance of Saturnin to the main classes of
attacks.

5.2 On the Building-blocks in the Block Cipher
5.2.1 On the Number of Rounds

The number of rounds has been determined by the security analysis, which shows that, for
most attacks, a super-round in Saturnin offers a resistance similar to a single round in
the AES. Therefore, 10 super-rounds, i.e. 20 rounds, appears to be a natural choice.

5.2.2 On the MDS Matrix 𝑀

The main building-block in the linear layer is the 4×4-MDS matrix 𝑀 over F24 . This matrix
is one of the MDS matrices exhibited in [DL18] with the lowest known implementation
cost. Its Feistel-like structure guarantees that its inverse also has a low implementation
cost.

Moreover, this MDS matrix applies similar operations to 𝑎 and 𝑐 (and to 𝑏 and 𝑑), see
Figure 3. This allows an efficient 32-bit implementation, where the 16 bits corresponding
to 𝑎 and the 16 bits corresponding to 𝑐 are stored in the same register (respectively the 16
bits corresponding to 𝑏 and the 16 bits corresponding to 𝑑).

A. Canteaut et al. 183

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

M
D

S
M

D
S

Fi
gu

re
17

:
St

ru
ct

ur
e

of
8

ro
un

ds
of

Sa
tu

rn
in

,w
ith

th
e

Su
pe

r-
S-

bo
xe

s.

184 Saturnin: a suite of lightweight symmetric algorithms for post-quantum security

5.2.3 On the Design of the Super-S-box and the Choice of 𝜎

The two S-boxes 𝜎0 and 𝜎1, which apply to the nibbles with an even index and with an
odd index respectively, are both chosen as the composition of the same S-box, 𝜎, followed
by two different permutations of the output bits (see Table 3).

Choice of 𝜎. The 4-bit S-box 𝜎 has been chosen among the 4-bit S-boxes with optimal
cryptographic parameters, i.e., in one of the equivalence classes named optimal in the
classification established by Leander and Poschmann [LP07]. These S-boxes are those with
differential uniformity 4 and linearity 8 (i.e. both their MDP and MLP are equal to 2−2).
Among these S-boxes, we only considered those having all nonzero linear combinations
of their coordinates of degree 3. Moreover, we chose for 𝜎 an S-box minimizing the
number of operations in the bitslice implementation, both for 𝜎 and 𝜎−1 in order to
compute efficiently the inverse cipher for decryption with Saturnin-Short. We used a
strategy inspired from [UDI+11] and searched, among all S-boxes with the lowest possible
implementation cost, for those having the required cryptographic properties. It is worth
noticing that the list of low-cost S-boxes computed by Ullrich et al. could not be used in
our case. Indeed, since it is restricted to all S-boxes which could be implemented with at
most 13 instructions, it does not contain any S-box having all its components of degree 3.
Also, we need to minimize the implementation cost of both the S-box and its inverse, which
makes the approach different from [UDI+11]. Instead, we chose to search for S-boxes with
a Feistel-like structure, which can be easily inverted. The best such S-box we could find
requires 6 XOR, 6 nonlinear instructions, corresponding to a total of 12 instructions (with
three operands). Its inverse has a similar implementation cost.

Design of S16. A counterpart of the nice implementation properties of the MDS matrix
𝑀 is that it transforms the subspace of F24 defined by {(𝑥, 𝑥, 0, 0), 𝑥 ∈ F24} into the
subspace {(𝑦, 𝑦, 0, 𝑦), 𝑦 ∈ F24}. This implies that, if the nonlinear layer in S16 uses four
copies of the same S-box 𝜎, then S16 transforms the affine subspace of dimension 4
{(𝑥, 𝑥, 𝜎−1(0), 𝜎−1(0)), 𝑥 ∈ F24} into the affine subspace {(𝑦, 𝑦, 𝜎(0), 𝑦), 𝑦 ∈ F24}. We
considered the propagation of such a 4-dimensional subspace, of a very simple form, as an
unsuitable property. Moreover, this particular structure also explains why the Super-S-box
S16 based on 𝜎 only has a linearity equal to 212 which is higher than expected. For these
two reasons, we decided to use two slightly different S-boxes, one applied to the nibbles
with an even index, and the other one applied to the nibbles with an odd index. We made
an exhaustive search over all pairs of bit permutations (𝜋0, 𝜋1) of the four output bits,
and studied the Super-S-box S16 derived from 𝜋0 ∘ 𝜎 and 𝜋1 ∘ 𝜎. The smallest differential
uniformity that is obtained for these Super-S-boxes is equal to 80, and the smallest linearity
(i.e., the highest magnitude of the Walsh transform) is equal to 3072. They are achieved
simultaneously for two pairs (𝜋0, 𝜋1). Among these two possibilities, we chose the one
leading to the Super-S-box with the lowest number of short cycles: most notably, for our
choice, S16 has one fixed point (the all-zero word) and two cycles of length 6, while for the
other choice, S16 would have one fixed point, two cycles of length 2, one cycle of length 3,
three cycles of length 4, one cycle of length 5 and two cycles of length 6. This motivated the
choice of permutations 𝜋0 and 𝜋1 defined in Table 3: if 𝜎(𝑥0, 𝑥1, 𝑥2, 𝑥3) = (𝑦0, 𝑦1, 𝑦2, 𝑦3),
then 𝜎0(𝑥0, 𝑥1, 𝑥2, 𝑥3) = (𝑦1, 𝑦2, 𝑦3, 𝑦0) and 𝜎1(𝑥0, 𝑥1, 𝑥2, 𝑥3) = (𝑦3, 𝑦1, 𝑦0, 𝑦2).

5.2.4 On the Key Schedule and Constant Addition

Since the key is aligned with the 16-bit structure of the cipher, we can reuse the analysis
done on the AES and its variants to evaluate the security against related-key attacks (see
e.g. [CHP+17]). In particular, using a simple MILP model, we get the following lower

A. Canteaut et al. 185

bounds on the number of active Super-S-boxes in a related-key differential trail:

𝑛 (super-rounds) 1 2 3 4 5 6 7 8 9 10

Active Super-S-boxes 0 1 5 10 12 16 18 22 24 28

Note that these are just lower bounds for truncated trails. In practice, many paths could
be impossible to instantiate with concrete differences; indeed in the truncated model, two
differences can always cancel out, but in a real trail, the constraints can be incompatible.
These bounds are slightly better than the bounds given by the AES key schedule, and are
the motivation behind our offset choice (other offsets gave fewer active S-boxes).

An example of iterative trail with 6 active Super-S-boxes every two super-rounds is
given below, with MR denoting a super-round mixing inside the sheets (i.e. the rows in the
matrix representation) and MC a super-round mixing inside the slices (i.e. the columns
in the matrix representation), and AK and AK’ the key additions with the following key
differences:

𝛿K =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
if 𝑟 = 2𝑡 + 3 (master key K)

if 𝑟 = 2𝑡 + 1 (rotated key K′)

MC AK MR AK’

The first and last super-rounds can be optimized to remove one active Super-S-box, for
instance, with 4 super-rounds:

MC AK MR AK’ MC AK MR

Therefore, this gives a trail with 3𝑟 − 2 active Super-S-boxes for 𝑟 super-rounds (with
𝑟 even), which reaches the bound given above (in this example, we have 1 + 4 + 2 + 3
active Super-S-boxes).

This is close to optimal for a linear key schedule, because there are simple trails where
the full key is active with 7 active Super-S-boxes every two super-rounds, such as:

MC AK MR AK’

Round Constants. The sequence of round constants is generated by two 16-bit LFSRs run
in parallel from the same seed. This aims at an efficient hardware implementation, while
the whole sequence can be stored in software environments. Both feedback polynomials
are primitive polynomials of degree 16 with the smallest number of monomials. They
correspond to the first pair of primitive polynomials with 5 monomials in lexicographical
order satisfying the following property: let us denote by (𝑥𝑡(𝑏))0≤𝑡<512 (resp. (𝑦𝑡(𝑏))0≤𝑡<512)
the binary sequence formed by the concatenation of the successive values of RC0 (resp.
RC1) from the seed defined by the 9-bit integer 𝑏 (corresponding to the concatenation
of the domain separator and the number of super-rounds). Then, in the round-constant
sequences generated from the 29 seeds, all sets of 16 consecutive pairs (𝑥𝑡, 𝑦𝑡) are distinct.
In other words, there is no pair of distinct 9-bit integers 𝑏 and 𝑏′ for which there exists
0 < 𝑡0 < 496 such that 𝑥𝑡(𝑏) = 𝑥𝑡+𝑡0(𝑏′) and 𝑦𝑡(𝑏) = 𝑦𝑡+𝑡0(𝑏′) for all 𝑡 ≥ 0.

186 Saturnin: a suite of lightweight symmetric algorithms for post-quantum security

5.3 On Modes of Operation
The different modes proposed, Saturnin-CTR-Cascade, Saturnin-Short and Saturnin-
Hash, are intended to provide quantum security against chosen plaintext and ciphertext
superposition attacks (IND-qCPA and IND-qCCA), in addition to classical and quantum
security against chosen message attacks and verification queries (IND-CCA). For authenti-
cated encryption, we do not claim security in nonce-misuse scenarios or against the even
stronger model of nonce-superposition attacks.

5.3.1 Generic composition.

One of the most natural ways to design an authenticated encryption scheme is to combine
an encryption scheme and a MAC. The seminal work of Bellare and Namprempre [BN08]
studied several composition methods in the classical setting: MAC-then-encrypt (used in
TLS 1.0), encrypt-and-MAC (as used in SSH), and encrypt-then-MAC (used in IPSec).
They showed that in the classical context, the encrypt-then-MAC construction offers the
strongest security: it is generically secure against chosen-plaintext and chosen-ciphertext
attacks (IND-CCA) assuming that the encryption scheme is secure against chosen-plaintext
attacks (IND-CPA), and the MAC is unforgeable (SUF-CMA). In addition, the encrypt-
then-MAC composition allows to reject forgeries quickly without even decrypting the
ciphertext. This also reduces the risk of inadvertently releasing an unverified plaintext.

In the quantum setting, Soukharev, Jao and Seshadri have revisited these results [SJS16],
and proved that the encrypt-then-MAC composition offers IND-qCCA security under
quantum security assumptions on the MAC and the encryption scheme. Their assumption
on the MAC is SUF-qCMA, which is an adaptation of [BZ13a]. The encryption scheme
needs IND-qCPA security. Both will be defined below.

5.3.2 Quantum Security Definitions

In this section, we formalize our quantum attacker models. In addition to classical
chosen-message and verification queries, the attacker is allowed to make chosen-message
superposition queries to the mode of encryption 𝐸, the MAC 𝑀 , or the full AE construction
𝐸, 𝑀 . She specifies a certain length 𝑟, a nonce 𝑁 and calls a unitary:

|𝑥1, . . . 𝑥𝑟⟩ |𝑦, 𝑧⟩ ↦→ |𝑥1, . . . 𝑥𝑟⟩ |𝑦 ⊕ 𝐸𝑘(𝑥1, . . . 𝑥𝑟; 𝑁)⟩ |𝑧 ⊕𝑀𝑘(𝑥1, . . . 𝑥𝑟; 𝑁)⟩ (1)

where 𝑦 is an 𝑟-block output register. The input registers 𝑥1, . . . 𝑥𝑟 can be in superposition,
while the secret key 𝑘 and the nonce 𝑁 are both classical values. In addition, while the
nonce is chosen by the adversary, it cannot be repeated. Decryption queries in superposition
are considered and formally defined in [SJS16]. In that case, the decryption fails on any
input in the superposition which was the result of a challenge query. This is very similar
to the blinding experiment [AMRS] that we will review below. Note that a quantum
attacker is free to call unkeyed primitives, such as Saturnin-Hash or Saturnin itself, in
superposition, regardless of the security game that is considered.

IND-qCPA. For our modes of encryption, we use the notion of indistinguishability under
message-superposition attacks as defined e.g. in [SJS16]. The adversary is allowed to make
queries of the form (1) and classical challenge queries, in which she chooses two messages
𝑚0, 𝑚1 of equal block lengths, and the challenger replies with the encryption of one of
these two messages. In order to win the game, the adversary must guess which one was
encrypted. In [SJS16], the encryption mode is randomness-based and not nonce-based,
but the adversary chooses the randomness, so the situation is similar to ours.

A. Canteaut et al. 187

qPRF. A quantum-secure pseudorandom function (qPRF, see e.g. [AMRS], Definition 2)
is a family of functions 𝑓𝑘 : 𝑋 → 𝑌 indexed by a key 𝑘, such that any quantum polynomial-
time adversary has negligible advantage in distinguishing a function 𝑓𝑘, with 𝑘 chosen
at random, from a random function 𝑓 : 𝑋 → 𝑌 . Notice that in this definition, while the
adversary queries her oracle in superposition, 𝑘 is a classical value.

qPRP and Quantum Ideal Cipher. Similarly to a qPRF, a cipher is a qPRP if no
polynomial-time adversary can distinguish it, with a randomly chosen key, from a random
permutation (this adversary can make encryption and decryption queries in superposition).
We will also use the stronger definition of a quantum ideal cipher given in [HY18]: it is
indistinguishable from a cipher chosen at random among all ciphers, under encryption and
decryption queries, in superposition over the message and the key. Both definitions are
extensions from the classical ideal cipher and PRP notions.

Quantum Security of MACs. To the best of our knowledge, there are two main notions of
quantum unforgeability for MACs in the literature, from [BZ13a] and [AMRS] respectively.
We use the notion of Blind Unforgeability (BU), which is a quantum extension of EUF-
CMA introduced in [AMRS]. In the blind forgery game, the adversary selects a parameter
𝜀. The challenger generates a key 𝑘 and a random “blinding” of the MAC, 𝐵𝜀, which is
an 𝜀-fraction of the message space on which the adversary can query the MAC, while the
rest is forbidden to her. The adversary, having only access to the blinded version of the
MAC, must then produce a forgery of a message 𝑚 ∈ 𝐵𝜀. This game essentially reduces
to EUF-CMA when the adversary makes only classical queries.

A qPRF is a BU-secure MAC [AMRS], which is why our quantum security arguments
focus on the security as a qPRF. Notice that it also implies the SUF-qCMA security notion
of [BZ13a], hence fits into the composition result of [SJS16]. The definition of the BU game
in [AMRS] considers MACs without nonces, while the definition of SUF-qCMA in [SJS16]
allows some randomness; since nonces are not reused, this does not make much difference.

5.3.3 Saturnin-CTR-Cascade

In this section, we detail the security arguments for Saturnin-CTR-Cascade that motivate
our choice of the Counter mode and Cascade.

Security of CTR. If the underlying block cipher is a PRP, the Counter mode (CTR) is
classically proven secure up to the birthday bound, provided that, for any fixed key, the
inputs of block cipher are never reused [Nat01]. This last condition is obviously guaranteed
by choosing as input to the block cipher the concatenation of the 128-bit nonce and of
a 128-bit counter. In [ATTU16], a generic proof of quantum security is provided for
primitives that XOR the message to a pseudo-random sequence generated from the length
of the message and a random secret key. Hence, our CTR mode being IND-CPA, it is also
IND-qCPA.

Security of the Cascade Construction. We define the compression function ℎ(𝑘, 𝑚) =
Saturnin𝑘(𝑚)⊕𝑚, where Saturnin is used with a domain separator equal to 2, 3, 4 or
5 (but for simplicity, we do not consider the different domain separators, nor associated
data). The Cascade construction builds a function 𝐻 from ℎ by:

𝐻(𝑘, 𝑚0, . . . 𝑥ℓ) = ℎ(. . . ℎ(ℎ(𝑘, 𝑚0), 𝑚1) . . . 𝑚ℓ)) .

A classical proof of security for Cascade is given in [BCK96] and [Bel15]. In [SY17], it
is shown that 𝐻(𝑘, ·) is a qPRF of the key 𝑘 if the underlying compression function ℎ(𝑘, 𝑚)
is also a qPRF. More precisely, if we fix the number ℓ of message blocks as a constant,

188 Saturnin: a suite of lightweight symmetric algorithms for post-quantum security

Theorem 5.1 in [SY17] gives the advantage of a quantum adversary in distinguishing 𝐻 as
34ℓ𝑞3/2

√
𝐴, where 𝐴 is the advantage of an adversary making at most 4𝑞 queries to break

the PRF ℎ.
Assuming that Saturnin is a qPRP, ℎ(𝑘·) is a qPRF of 𝑘. Indeed, let 𝐴 be a

distinguisher for ℎ(𝑘, 𝑚), we can transform it into a distinguisher 𝐵 for 𝐸𝑘(𝑚) from a
random function as follows: 𝐵 calls 𝐴. Whenever 𝐴 queries its oracle, we XOR 𝑚 to the
result and return. If the oracle is a random function, feedforwarding keeps the output
random.

In [Zha15], it is shown that quantumly, random functions are indistinguishable from
random permutations up to the quantum birthday bound, which is 2𝑛/3 for 𝑛-bit to 𝑛-bit
functions. The advantage of an adversary solving this problem with 𝑞 queries is 𝐶 × 𝑞3

2𝑛

for some constant 𝐶.

5.3.4 Saturnin-Short

In [BR00], the authors prove the security (assuming a strong PRP) of an encode-then-
encrypt construction. Saturnin-Short can be seen as such, where the encoding corresponds
to appending the nonce 𝑁 , which is transmitted with the message. With small modifications,
confidentiality and authenticity come from Theorems 4.1 and 4.2 in [BR00]. Quantumly,
Saturnin-Short is a qPRF of the key, which implies security against forgeries by [AMRS].

5.3.5 Saturnin-Hash

Contrary to Saturnin-CTR-Cascade and Saturnin-Short, the security of Saturnin-Hash
does not stem from the security of Saturnin as a PRP (resp. qPRP), but as an ideal
cipher (resp. quantum ideal cipher), which is why the mode Saturnin-Hash uses a version
of Saturnin with more rounds.

Classical Security. Classically, the security of Merkle-Damgård is related to that of the
compression function. Ours uses the Matyas–Meyer–Oseas (MMO) mode, similar to the
Cascade: ℎ𝑖+1 = Saturninℎ𝑖

(𝑚𝑖)⊕𝑚𝑖. It is dual to the Davies–Meyer construction, which
injects the message block 𝑚𝑖 into the key, and would give rather ℎ𝑖+1 = Saturnin𝑚𝑖(ℎ𝑖)⊕
ℎ𝑖 [PGV94].

Quantum Security. In [Zha18], Zhandry proves that: if the underlying compression func-
tion cannot be distinguished from a random oracle, then the Merkle-Damgård construction,
provided that it uses a prefix-free encoding (hence a good padding), cannot be distinguished
from a random oracle with more than negligible advantage. The compression function we
use here is: ℎ(𝑥, 𝑦) = Saturnin𝑥(𝑦)⊕ 𝑦. It is easy to see that, if Saturnin is a quantum
ideal cipher, then it is indifferentiable, as required by [Zha18]. There is also another work
on the quantum security of Merkle-Damgård, instantiated with Davies-Meyer in [HY18].
We reckon that a proof such as [HY18] could be done also with the MMO mode, in the
quantum ideal cipher model.

6 Security Analysis
6.1 Security of the Block Cipher against Classical Attacks
As explained in Section 5.1, the structure of the Saturnin block cipher is very similar
to the structure of an AES operating on 16-bit words. The Saturnin block cipher then
benefits from the 20-year cryptanalytic effort against the AES. Most notably, the main
families of attacks against the AES can be directly transposed to Saturnin, by replacing

A. Canteaut et al. 189

the AES 8-bit S-box by the Saturnin 16-bit Super-S-box. Due mainly to Saturnin’s
simplified key-schedule, we have been able to improve the highest number of attacked
rounds with respect to AES, from 7 AES-rounds to 7.5 super-rounds from Saturnin.
Improved best attacks exploiting further this key-schedule might reach up to 8 super-rounds
(which would already be an impressive result), but more than that seems extremely unlikely
from our preliminary analysis, when considering the known cryptanalysis tools.

Differential cryptanalysis. The Super-S-box 𝑆16 has differential uniformity 80, or equiv-
alently the highest probability for a non-trivial differential is 80 × 2−16 = 2−9.68. The
AES structure guarantees that any four consecutive rounds have at least 25 active Super-
S-boxes. This implies that the best differential characteristics over 4 super-rounds and
8 super-rounds have probability at most 2−241.9 and 2−483.9 respectively. Moreover, it is
worth noticing that the proportion of differentials for the Super-S-box with probability
higher than 2−10 is very small since there are only 110 such differentials (among 232);
moreover, all these 110 differentials have exactly five active nibbles.

Linear cryptanalysis. The linearity of the Super-S-box is defined as the highest magnitude
taken by its Walsh transform:̂︁S16(𝛼, 𝛽) =

∑︁
𝑥∈F16

2

(−1)𝛽·S16+𝛼·𝑥, 𝛼, 𝛽 ∈ F16
2 , 𝛽 ̸= 0 .

The linearity of the Super-S-box is equal to 3072, or equivalently the maximal squared
correlation for a linear relation equals 30722 × 2−32 = 2−8.83. By the same arguments as
previously, we deduce that the highest squared correlation for a linear trail (aka linear
potential) over 4 rounds and over 8 rounds is at most 2−220.7 and 2−441.5 respectively.

Algebraic degree. The choice of the 4-bit S-boxes 𝜎0 and 𝜎1 guarantees that all compo-
nents of the Super-S-box (i.e., all non-trivial linear combinations of its coordinates) have
degree 9. The same property also holds for the inverse function, S−1

16 , whose components
have degree 9. It has been shown in [BCD11] that the degree of an SPN does not increase
as fast as expected because of the structure of its S-box layer, which is composed of
several transformations operating on a smaller number of variables. More precisely, when
composing an S-box layer 𝐹 = (𝑆, . . . , 𝑆) with another function, an upper bound on the
resulting degree can be derived from the following quantity, which characterizes the S-box:

𝛾(𝑆) = max
1≤𝑖<𝑚

𝑚− 𝑖

𝑚− 𝛿𝑖

where 𝑚 is the size of the S-box 𝑆 and 𝛿𝑖 is the maximum degree of the product of
𝑖 coordinates of 𝑆. When considering the Saturnin Super-S-box S16, this quantity 𝛾(S16)
can be derived from the degree of S−1

16 . Indeed, it is known from [BC13] that, for any
𝑚-bit permutation 𝑆, the smallest 𝑖 such that 𝛿𝑖 ≥ 𝑚− 1 equals (𝑚− deg 𝑆−1). Here, we
deduce that, for S16, we have 𝛿7 = 15 and 𝛿6 ≤ 14, leading to 𝛾(S16) = 9. We then use
Theorem 2 in [BCD11] for upper-bounding the degree of two super-rounds (without the
last linear layer which does not influence the degree), considered as the composition of
four similar permutations S64 operating on 64 bits. Each of these permutations can be
decomposed as a Super-S-box layer and a transformation of degree 9. We then deduce
that S64 (and then two super-rounds) has degree at most

64− 64− 9
𝛾(S16) = 57 .

Provided that this upper bound is tight both for S64 and its inverse, we can recursively
apply the same arguments for proving that 𝛾(S64) = 57 and that four super-rounds have

190 Saturnin: a suite of lightweight symmetric algorithms for post-quantum security

Table 4: Upper-bound on the algebraic degree of Saturnin when the number of super-
round varies.

𝑟 (super-rounds) 1 2 3 4 5

degree 9 57 233 252 255

degree at most 252. It follows that the full degree in Saturnin is reached after at least
five super-rounds. These results are summed up on Table 4.

It is worth noticing that this general upper-bound is known to provide a good estimate
of the exact degree of the primitive, as shown by the experiments on Keccak [BDPA11]
for instance.

Bicliques. The exhaustive search attack with bicliques [BKR11] always allows to gain a
small factor against the baseline exhaustive key search, by testing all the keys faster than
an evaluation of the cipher. It is applicable to Saturnin, as to any cipher. However, with
this biclique exhaustive search, it is still impossible to retrieve the correct key in less than
2224 operations, not contradicting our security claims.

Impossible Differential Attacks. Impossible differential attacks were introduced by Knud-
sen [Knu95] and by Biham, Biryukov and Shamir [BBS99]. They form one of the cryptanal-
ysis families that provide some of the best known attacks on reduced-round AES [BLNS18],
together with the Demirci-Selcuk MITM attacks [DS08]. They are designed by first writing
an impossible differential transition, which yields a distinguisher for some middle rounds.
With partial key guesses, the differential path can be extended forwards and backwards.
Good guesses of the keys are such that this path cannot occur. Bad guesses make this path
occur as soon as we try enough plaintext-ciphertext pairs, as the middle rounds are replaced
by a random permutation. Hence, the attacker first retrieves a set of sufficiently many
plaintext-ciphertext pairs with good input and output differences, and he uses these pairs
to sieve the subkey space, by trying partial encryptions and decryptions, and removing the
pairs that yield the impossible differential. To date, the best impossible differential attack
on AES-128 [BLNS18] targets 7 rounds and it requires, with 2105 chosen plaintexts, a time
of 2106.88 and memory of 274. We estimate that a similar impossible differential attack
can be applied to 7 super-rounds of Saturnin, with twice these complexity exponents.
As the key-schedule of Saturnin is simpler than that of the AES, it may be possible to
extend this attack to 7.5 super-rounds, as it is the case for DS-MITM attacks, or even 8
super-rounds, which would be a very impressive result.

Figure 21 in Appendix B presents some of the impossible differential distinguishers
that we have studied. When trying to improve the number of rounds with respect to AES,
we considered extending Path A two super-rounds backwards and 1.5 forwards, but we did
not manage to find any configuration that did not involve the whole key, while keeping the
number of needed pairs to test lower than 2256. Please note that other configurations with
3 to 1 states in the middle of the impossible path would rapidly lead to the full key being
involved in the part that activates the whole state. Path B considers a part of the cipher
shifted by one super-round with respect Path A. Due to the key schedule relations, this
second path might be more promising to increase the number of attacked super-rounds by
0.5 or 1, even if we have not been able so far to reach this goal.

Subspace trails. Until recently, all known distinguishers on the AES in the single-key
model could reach at most 4 rounds (which would translate to 4 super-rounds of Saturnin).
However, since 2016, the first 5-round AES-distinguishers appeared [SLG+16, GRR17,

A. Canteaut et al. 191

RBH17, Gra18]. Most notably, these distinguishers led to improved attacks on reduced-
round versions of the cipher, like the attack on 5 rounds described in [BDK+18] based on
the distinguisher exhibited in [Gra18]. The main ingredient of these distinguishers is the
existence of subspace trails, i.e., of two linear subspaces 𝑈 and 𝑉 of states such that the
image by the round function of any coset of 𝑈 is included in a coset of 𝑉 . The previously
mentioned results on the AES exploit such subspace trails over two rounds of the cipher.
The length of the longest subspace trail for a cipher is therefore an essential quantity in
these attacks. However, it has been shown in [LTW18] that, if the S-box does not have
any linear structure (i.e. any component with a constant differential), then all subspace
trails are the direct product of subspace trails of the single S-box, i.e. in our case, the
direct product of 16 subspaces, each of them being either {0} or F16

2 . It can easily be
checked that the Super-S-box S16 does not have any linear structure, implying that the
previous property is valid. Then, Saturnin behaves exactly as the AES with respect to
subspace trails: the fact that the linear layer in the Super-S-box representation consists of
the multiplication of each column in Matrix C by an MDS matrix over F16

2 implies that
the longest subspace trail has a length corresponding to two super-rounds and is obtained
by considering as input linear space a collection of columns of the matrix (i.e., a collection
of slices in the cube representation). It follows that any distinguisher or attack exploiting
this property cannot reach more than five super-rounds.

6.2 DS-MITM attack on 7.5-super-round Saturnin
The DS-MITM attack [DS08, DFJ13] yields the best reduced-round single-key recoveries
on AES to date. There exists a variant for each key length of AES. Indeed, the attack
works by guessing parts of the internal state; hence the ratio between the state size and
the key size is important, and also, the key-schedule relations in AES depend on the key
size. In our case, the key size is equal to the block size, so Saturnin is more analogous
to AES-128 than the others. The best DS-MITM attack on AES-128 reaches 7 rounds,
runs in data 2105, time 2105 and memory 281. It works using a distinguisher on the middle
rounds with the following property: given a constrained input and output differential, the
values of the internal states can only take few possibilities; if we make the input vary,
the sequence of outputs stays in a limited subspace. It is possible to tabulate all these
possibilities (in the simple AES-128 attack, there are 280 of them). The adversary finds
pairs with some input-output difference. She guesses part of the key, allowing a pair
to satisfy the whole inner differential path, and checks whether the middle property is
satisfied for this pair. This fails for all subkey guesses, except the right one, since the
middle property is very constrained. The 7-round attack works against Saturnin, with
twice the complexity exponents.

We now present an improved DS-MITM on 7.5 super-rounds, where the improvement
compared to AES comes from the simpler key-schedule. It is, as could be expected, the
best known cryptanalysis on a reduced-round version of Saturnin. We rewrite Saturnin
as a 4× 4 square of 16-bit “supernibbles” which correspond to columns in the cube. We
write the Super-S-box as 𝑆, which is actually an S-box, followed by MixColumns, followed
by another S-box. In even rounds, the key is XORed to the internal state; in odd rounds,
it is rotated by 5 supernibble-positions (they correspond to the 20 nibble-positions by
which the key is rotated in the cube representation of Saturnin).

Rot.
key

In the differential path that we use for 7.5-super-round Saturnin, the plaintexts are
active in a single row, while the ciphertexts are active in three lines. We will in total
guess 15 supernibbles of the key, corresponding to the intersection of three lines and three

192 Saturnin: a suite of lightweight symmetric algorithms for post-quantum security

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 18: AES byte ordering

T

𝑦1

MC

𝑧1 𝑤1

Round 1

MC

𝑢2

ARK

𝑘2
S

𝑥2

T

𝑦2

MC

𝑧2 𝑤2

Round 2

MC

𝑢3

ARK

𝑘3
S

𝑥3

T

𝑦3

MC

𝑧3 𝑤3

Round 3

MC

𝑢4

ARK

𝑘4
S

𝑥4

T

𝑦4

MC

𝑧4 𝑤4

Round 4

Figure 19: Differential path used in the “internal” property of our DS-MITM attack on
7.5-super-round Saturnin.

columns. In the following, for more clarity, we number the supernibbles with the standard
AES byte numbering. The sequence of states of round 𝑖 is denoted 𝑥𝑖 (after adding the
key), 𝑦𝑖 (after the Super-S-box), 𝑧𝑖 (after transposition) and 𝑤𝑖 (after Super-Mixcolumns).

The attack uses the following property (see Figure 19), which is a variant of the usual
middle-rounds property for the DS-MITM attacks on AES: if we are given a plaintext-
ciphertext pair such that in 𝑦1, only the nibble 0 is active and, in 𝑤4, only the nibbles 0, 4
are active, then if we make 𝑦1[0] take a sequence of 24 arbitrary differences and obtain the
corresponding 32-bit differences in 𝑤4[0, 4], they can only take up to 216×(4+8+2+1) = 2240

values among 232×24 . This allows to efficiently distinguish between 4 AES rounds and a
random cipher.

The proof of this property uses arguments inherited from rebound attacks [MRST09].
We first guess the value of Δ𝑦1[0], the difference in 𝑦1[0], for the given pair. We obtain the
difference in 𝑥2. We guess the four nibbles 𝑥2[0, 1, 2, 3] and obtain the differences in 𝑦2,
hence 𝑥3. On the other side, we guess Δ𝑤4[0, 4], hence obtaining Δ𝑦4; we guess 8 more
state nibbles to obtain Δ𝑥4, hence Δ𝑦3. It remains to match between the two differences.
There is on average one solution (we assume that the solutions to the differential equation
of the Super-S-box are tabulated). At this point, we know the whole sequence of states
𝑥2[0, 1, 2, 3], 𝑥3[0 . . . 15], 𝑥4[0, 1, 4, 5, 8, 9, 12, 13] for the given pair. So we can propagate
the arbitrary sequence of differences in 𝑦1[0] up to 𝑤4[0, 4], whose values can be computed
and stored.

Attack. We use the usual DS-MITM attack principle, but reorder the steps as done in the
last section of [BNPS19]. First of all, using 2225 encryption queries (grouped into structures
that make the first line of the input take all 264 possibilities), we build 214×16 = 2224

plaintext-ciphertext pairs verifying the input-output differential. We then build a table
of size 215×16 = 2240, indexed by all 2240 guesses of 𝐾 (the whole key, except the nibble
number 3) and associated to good pairs of plaintext. The rest of the computation consists

A. Canteaut et al. 193

𝑃

Plaintexts

MC

𝑈

ARK

𝐾∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙
S

𝑥0

T

𝑦0

MC

𝑧0 𝑤0

Round 0

MC

𝑈𝑟

ARK

𝐾𝑟∙∙∙∙

∙∙∙∙

∙∙∙∙

∙
∙∙

S

𝑥1

T

𝑦1

MC

𝑧1 𝑤1

Round 1

MC

𝑈

ARK

𝐾∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙
S

𝑥2

T

𝑦2

MC

𝑧2 𝑤2

Round 2

MC

𝑈𝑟

ARK

𝐾𝑟∙∙∙∙

∙∙∙∙

∙∙∙∙

∙
∙∙

S

𝑥3

T

𝑦3

MC

𝑧3 𝑤3

Round 3

MC

𝑈

ARK

𝐾∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙
S

𝑥4

T

𝑦4

MC

𝑧4 𝑤4

Round 4

MC

𝑈𝑟

ARK

𝐾𝑟∙∙∙∙

∙∙∙∙

∙∙∙∙

∙
∙∙

S

𝑥5

T

𝑦5

MC

𝑧5 𝑤5

Round 5

MC

𝑈

ARK

𝐾∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙
S

𝑥6

T

𝑦6

MC

𝑧6 𝑤6

Round 6

MC

𝑈𝑟∙∙∙
ARK

𝐾𝑟∙∙∙∙

∙∙∙∙

∙∙∙∙

∙
∙∙

S

𝑥7

T

𝑦7

MC

𝑧7

Round 7

MC

𝑈

ARK

𝐾∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙

𝐶

Ciphertexts

Figure 20: Full differential path used in the DS-MITM attack on 7.5-super-round Saturnin.
We denote the master key 𝐾 and its rotated version (for odd rounds) 𝐾𝑟. 𝑈 and 𝑈𝑟 are
respectively 𝑀𝐶−1(𝐾) and 𝑀𝐶−1(𝐾𝑟).

194 Saturnin: a suite of lightweight symmetric algorithms for post-quantum security

in finding the good key guess in this table:

• For each of the 2224 pairs, we find the 216 key guesses such that the whole differential
path is satisfied: we have 3 supernibbles conditions in round 0 in order to reach the
input of the internal property, while we have (9 + 2) supernibble conditions in rounds
6 and 5 respectively for reaching the output of the internal property. As we have 15
supernibbles of the key involved and a total of 14 supernibble conditions, we obtain
around 216 posibilities for the 15 words of the key that lead to the internal property.
In less than 2240 time, thanks to early-abort techniques [LKKD08], we associate each
key guess, with the good corresponding pairs leading to the correct path.

• Consider a key guess and its corresponding pair. Let 𝑃, 𝑥0 . . . 𝑧7, 𝐶 and 𝑃 ′, 𝑥′0 . . . 𝑧′7, 𝐶 ′

be the respective sequences of internal states for this pair. We create a set of 24

plaintexts by making the difference in 𝑦1[0] assume the 24 arbitrary values chosen
before. Due to the knowledge of the key supernibbles, we know the value of 𝑦1[0],
so we can propagate its difference to 𝑤0[0], and know the necessary state nibbles to
complete our plaintext sequence. We encrypt this sequence with the secret-key oracle,
obtaining 24 ciphertexts. We then partially decrypt the corresponding ciphertexts
and obtain the sequence of differences in 𝑤4[0, 4], since we know the necessary key
supernibbles. In total, this requires 2244 encryptions, after which we have stored 2244

256-bit blocks with the associated keys.

• Then, we perform an exhaustive search in the middle. We compute all possible
sequences of 24 differences in 𝑤4[0, 4], for all choices of internal state supernibbles,
and we search a collision with some key guess in the table. There are 2240 sequences
to compute, each costs 24 partial Saturnin encryptions.

In the end, we expect only one collision to occur, which gives the good key guess
(that we can complete easily after). This slightly improved attack mainly works because
of the simpler key-schedule of Saturnin, which allows to reuse multiple times the key
guesses, contrary to AES-128. The attack complexities are 2244 chosen-plaintext queries,
an equivalent time, and 2244 memory (counted in 256-bit blocks).

6.3 Security of the Block Cipher Against Quantum Attacks
Given a few plaintext-ciphertext pairs, a quantum adversary can perform a naive exhaustive
search for the key using Grover’s algorithm [Gro96]. It requires approximately 2256/2 = 2128

iterations (we claim that it requires more than 2112 encryptions), each of which contains
basic operations and an evaluation of an implementation of Saturnin as a quantum circuit
(see [GLRS16] for the AES). We do not go into the details of such an implementation, but
we point out that it would require at least as many quantum gates as classical gates (and
possibly more, due to the necessity of reversibility), with interleaved layers of quantum
error correction. Error-correcting operations are quantum, but classically controlled, and
they provoke an overhead with respect to classical computations.

In its super-S-box representation, Saturnin has shape similar to AES, with a 256-bit
state. To date, there does not exist much literature on quantum attacks on reduced-round
AES in the secret-key setting, i.e. procedures that retrieve the secret key faster than
Grover’s algorithm. A first analysis was made in [BNPS19]. The authors show that
quantum versions of the Square attack can target up to 6 rounds of AES-128 and 7 rounds
of AES-192 and AES-256 (as it is the case classically), and they construct a quantum
DS-MITM attack on 8-round AES-256. All these procedures only require classical plaintext
queries to a secret-key oracle. No attack was found with a better speed-up than quadratic,
so for now it seems safe to claim, at least, the same quantum security margin as the
classical one.

A. Canteaut et al. 195

We should remark here that the DS-MITM attack of [BNPS19] reaches 8 rounds in a
case where the key length is the double of the block length. On the contrary, the quantum
security margin of Saturnin, the highest number of rounds attacked with a procedure
faster than Grover, would likely be similar to that of AES-128. Indeed, we do not know
of any better quantum attack than an adaptation of the Square for 6-round AES (its
time, data and memory complexity being roughly the square of the original ones, given
in Table 3 of [BNPS19]). The quantum security margin seems therefore bigger, with 6
reached super-rounds versus 7.5 classically.

We also remark that computing input-output pairs with target differences is the
bottleneck of classical impossible differential and DS-MITM attacks against AES-128. This
operation seems to enjoy less than a quadratic quantum speedup, as this requires finding
partial collisions [BHT98, Amb07], and in some cases, it may require high amounts of
quantum memory. Hence it may be difficult to make quantum versions of these attacks
competitive against an exhaustive search for the key. The attack of [BNPS19] actually
overcomes this issue by using only a low amount of classically computed pairs.

6.4 Security of the Modes of Operation
In this section, we summarize the best attacks known against Saturnin-CTR-Cascade,
Saturnin-Short and Saturnin-Hash. As these attacks are generic, we first detail some
generic variants of quantum exhaustive search. We do not consider parallelization (classical
nor quantum).

Quantum Search with Limited Time. Let 𝑓 : {0, 1}𝑛 → {0, 1} be a random oracle, such
that 1 has a single preimage, and let us look for this preimage with superposition access
to 𝑓 , with a time limitation 𝒯 . By running Grover’s algorithm for 𝒯 steps, we obtain the
good result with success probability 𝒯 2

2𝑛 , instead of 𝒯2𝑛 classically. Both are optimal. As
each iteration uses a single query to 𝑓 , if we put a data limitation 𝒟 instead, we obtain a
probability 𝒟2

2𝑛 . This is also why quantum exhaustive search has a worse parallelization
speedup than its classical counterpart: stopping Grover’s algorithm after some time makes
the success probability decrease quadratically.

Quantum Collision Search with Limited Memory. Let 𝑓 : {0, 1}𝑛 → {0, 1}𝑛 be a
random oracle, with superposition query access. An algorithm by Brassard, Høyer and
Tapp [BHT98] allows to retrieve a collision of 𝑓 in approximately 2𝑛/3 superposition queries,
using 2𝑛/3 classical memory with quantum random access. But this model seems currently
far away from practical realizations. Some authors [GR04, Ber09, JS19] argue that a
quantity ℳ𝑞 of such memory would certainly require 𝑂(ℳ𝑞) classical computations at
each step, due to quantum error correction, reducing significantly its practical advantages.
Without quantum random-access, an alternative collision search can be done using [CNS17]
in 22𝑛/5 superposition queries, using only as many qubits as required by Grover iterations
and oracle evaluations. It is worth noticing that, while the query lower bound for random
functions is known to be 2𝑛/3, there exists no proof that better memory usage than [BHT98]
or better time complexity than [CNS17] is impossible, but no such algorithm is known. We
subsume [CNS17] and [BHT98] with a single (maybe non tight) bound of 𝒯 5 ×ℳ𝑞 = 22𝑛

where ℳ𝑞 is the quantum memory available and 𝒯 is the quantum time complexity.

Quantum Collision Search with Limited Data. With 𝒟 quantum queries, quantum
collision search succeeds with an optimal probability 𝒟3

2𝑛 [Zha15]. The best method consists
in applying a truncated version of [BHT98]: we first query 𝒟/2 elements, store them in
quantum-accessible memory and run 𝒟/2 iterates of Grover’s algorithm, searching for a
match on this intermediate table.

196 Saturnin: a suite of lightweight symmetric algorithms for post-quantum security

Classical Attacks against Saturnin-CTR-Cascade. Let 𝑡 be the tag length and 𝑝 the
probability of success of a classical adversary against Saturnin-CTR-Cascade in breaking
its confidentiality, integrity or authenticity. We have:

𝑝 <
𝒯

2256 + 𝒟2

2256 +𝒟2−𝑡

where the adversary is entitled to encryption or verification queries of a total of 𝒟 blocks,
and 𝒯 computation time. Indeed, the adversary succeeds in breaking the PRP security of
Saturnin, i.e. in finding the key, with probability 𝒯

2256 if she has time 𝒯 . She can output
a collision after 𝒟 encryption queries with probability 𝒟2

2256 , breaking the AE scheme as a
PRF. Finally, she can simply ask verification queries of random ciphertexts and tags. Each
of them has a probability 2−𝑡 of being accepted: the verifier will decipher and recompute
the corresponding tag, ending up with a random string that must match the adversary’s
tag. Hence the probability of success after 𝒟 verification queries is 𝒟2−𝑡.

Quantum Attacks against Saturnin-CTR-Cascade. With the same notations as above,
we obtain:

𝑝 <
𝒯 2

2256 + 𝒟3

2256 +𝒟22−𝑡

where the adversary is entitled to encryption or verification queries of a total of 𝒟 blocks (in
superposition), and 𝒯 computation time. Indeed, the adversary succeeds in breaking the
PRP security of the block cipher, with probability 𝒯 2

2𝑛 if she has time 𝒯 (see Section 5.3).
Furthermore, she succeeds in breaking the AE scheme as a PRF with probability 𝒟3

2𝑛 , since
this is the advantage of outputting a collision after 𝒟 queries. Finally, she succeeds with
probability 𝒟22−𝑡 in making the verifier accept a random tag, using Grover’s algorithm
with the verifier as oracle.

Attacks against Saturnin-Short. In Saturnin-Short, the generic attacks are slightly
different from Saturnin-CTR-Cascade. Although the tag is not truncated to 128 bits,
the attack using verification queries applies as if it were the case. Indeed, a forgery using
verification queries amounts to finding 𝑐, 𝑁 such that 𝐸−1

𝑘 (𝑐) contains 𝑁 on its 128 right
bits. 𝑁 is not queried in superposition, and the adversary has only access to the verification
result, not the value. So this amounts to looking for 2256 good elements (sound pairs
𝑐, 𝑁) among 2256+128 (all choices) with the verifier as oracle. Classically, the probability
of success after 𝒟 trials is 𝒟2−128.

Quantumly, Grover’s algorithm speeds up the search for a random ciphertext and nonce
giving a good verification result. With 𝒟 superposition verification queries, the success
probability is 𝒟22−128, so everything happens as if the tag was actually truncated to 128
bits.

Attacks against Saturnin-Hash. The best known attacks (finding a collision or a preim-
age) are the generic attacks given in Section 5.3. The best time is 285 with a quantum-
accessible memory of size 285. Without quantum-accessible memory, the best quantum
time known is 2102, given by [CNS17].

Acknowledgements
The authors would like to thank the reviewers, especially Joan Daemen for his careful
reading of this paper. They are also particularly grateful to Xavier Bonnetain for very
helpful discussions and comments, and in particular for an invaluable remark detecting a
weakness on a preliminary version of Saturnin. This project has received funding from

A. Canteaut et al. 197

the European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement no. 714294 - acronym QUASYModo).

References
[ADK+14] Martin R. Albrecht, Benedikt Driessen, Elif Bilge Kavun, Gregor Leander,

Christof Paar, and Tolga Yalçin. Block ciphers - focus on the linear layer (feat.
PRIDE). In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,
Part I, volume 8616 of LNCS, pages 57–76. Springer, Heidelberg, August
2014.

[Amb07] Andris Ambainis. Quantum walk algorithm for element distinctness. SIAM
J. Comput., 37(1):210–239, 2007.

[AMRS] Gorjan Alagic, Christian Majenz, Alexander Russell, and Fang Song.
Quantum-secure message authentication via blind-unforgeability. IACR Cryp-
tology ePrint Archive, Report 2018/1150. https://eprint.iacr.org/2018/
1150.

[ATTU16] Mayuresh Vivekanand Anand, Ehsan Ebrahimi Targhi, Gelo Noel Tabia, and
Dominique Unruh. Post-quantum security of the CBC, CFB, OFB, CTR,
and XTS modes of operation. In Tsuyoshi Takagi, editor, Post-Quantum
Cryptography - 7th International Workshop, PQCrypto 2016, pages 44–63.
Springer, Heidelberg, 2016.

[BAK98] Eli Biham, Ross J. Anderson, and Lars R. Knudsen. Serpent: A new block
cipher proposal. In Serge Vaudenay, editor, FSE’98, volume 1372 of LNCS,
pages 222–238. Springer, Heidelberg, March 1998.

[BBS99] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack
reduced to 31 rounds using impossible differentials. In Jacques Stern, editor,
EUROCRYPT’99, volume 1592 of LNCS, pages 12–23. Springer, Heidelberg,
May 1999.

[BC13] Christina Boura and Anne Canteaut. On the influence of the algebraic degree
of 𝐹−1 on the algebraic degree of 𝐺 ∘ 𝐹 . IEEE Trans. Information Theory,
59(1):691–702, 2013.

[BCD11] Christina Boura, Anne Canteaut, and Christophe De Cannière. Higher-order
differential properties of Keccak and Luffa. In Antoine Joux, editor, FSE 2011,
volume 6733 of LNCS, pages 252–269. Springer, Heidelberg, February 2011.

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for
message authentication. In Neal Koblitz, editor, CRYPTO’96, volume 1109
of LNCS, pages 1–15. Springer, Heidelberg, August 1996.

[BDK+18] Achiya Bar-On, Orr Dunkelman, Nathan Keller, Eyal Ronen, and Adi Shamir.
Improved key recovery attacks on reduced-round AES with practical data and
memory complexities. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 185–212. Springer,
Heidelberg, August 2018.

[BDP+12] Guido Bertoni, Joan Daemen, Mickaël Peeters, Gilles Van Assche, and
Ronny Van Keer. The Keccak implementation overview. https://keccak.
team/files/Keccak-implementation-3.2.pdf, 2012.

https://eprint.iacr.org/2018/1150
https://eprint.iacr.org/2018/1150
https://keccak.team/files/Keccak-implementation-3.2.pdf
https://keccak.team/files/Keccak-implementation-3.2.pdf

198 Saturnin: a suite of lightweight symmetric algorithms for post-quantum security

[BDPA11] Guido Bertoni, Joan Daemen, Mickaël Peeters, and Gilles Van Assche. The
Keccak reference. Submission to the SHA-3 competition (round 3), 2011.
https://keccak.team/files/Keccak-reference-3.0.pdf.

[Bel15] Mihir Bellare. New proofs for NMAC and HMAC: Security without collision
resistance. Journal of Cryptology, 28(4):844–878, October 2015.

[Ber09] Daniel J. Bernstein. Cost analysis of hash collisions: Will quantum computers
make SHARCS obsolete. In SHARCS 2009, pages 105–116, 2009. Available
at http://skew2011.mat.dtu.dk/proceedings/.

[BHT98] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum cryptanalysis of hash
and claw-free functions. In Claudio L. Lucchesi and Arnaldo V. Moura, editors,
LATIN 1998, volume 1380 of LNCS, pages 163–169. Springer, Heidelberg,
April 1998.

[Bih97] Eli Biham. A fast new DES implementation in software. In Eli Biham, editor,
FSE’97, volume 1267 of LNCS, pages 260–272. Springer, Heidelberg, January
1997.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II,
volume 9815 of LNCS, pages 123–153. Springer, Heidelberg, August 2016.

[BK03] Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key
attacks: RKA-PRPs, RKA-PRFs, and applications. In Eli Biham, editor, EU-
ROCRYPT 2003, volume 2656 of LNCS, pages 491–506. Springer, Heidelberg,
May 2003.

[BK09] Alex Biryukov and Dmitry Khovratovich. Related-key cryptanalysis of the
full AES-192 and AES-256. In Mitsuru Matsui, editor, ASIACRYPT 2009,
volume 5912 of LNCS, pages 1–18. Springer, Heidelberg, December 2009.

[BKN09] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic. Distinguisher and
related-key attack on the full AES-256. In Shai Halevi, editor, CRYPTO 2009,
volume 5677 of LNCS, pages 231–249. Springer, Heidelberg, August 2009.

[BKR11] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique
cryptanalysis of the full AES. In Dong Hoon Lee and Xiaoyun Wang, ed-
itors, ASIACRYPT 2011, volume 7073 of LNCS, pages 344–371. Springer,
Heidelberg, December 2011.

[BLNS18] Christina Boura, Virginie Lallemand, María Naya-Plasencia, and Valentin
Suder. Making the impossible possible. Journal of Cryptology, 31(1):101–133,
January 2018.

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Rela-
tions among notions and analysis of the generic composition paradigm. In
Tatsuaki Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS, pages
531–545. Springer, Heidelberg, December 2000.

[BN08] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Re-
lations among notions and analysis of the generic composition paradigm.
Journal of Cryptology, 21(4):469–491, October 2008.

https://keccak.team/files/Keccak-reference-3.0.pdf
http://skew2011.mat.dtu.dk/proceedings/

A. Canteaut et al. 199

[BNPS19] Xavier Bonnetain, María Naya-Plasencia, and André Schrottenloher. Quantum
security analysis of AES. IACR Cryptology ePrint Archive, Report 2019/272,
2019. https://eprint.iacr.org/2019/272.

[BR00] Mihir Bellare and Phillip Rogaway. Encode-then-encipher encryption: How
to exploit nonces or redundancy in plaintexts for efficient cryptography. In
Tatsuaki Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS, pages
317–330. Springer, Heidelberg, December 2000.

[BSS+13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK families of lightweight
block ciphers. Cryptology ePrint Archive, Report 2013/404, 2013. http:
//eprint.iacr.org/2013/404.

[BZ13a] Dan Boneh and Mark Zhandry. Quantum-secure message authentication codes.
In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013,
volume 7881 of LNCS, pages 592–608. Springer, Heidelberg, May 2013.

[BZ13b] Dan Boneh and Mark Zhandry. Secure signatures and chosen ciphertext
security in a quantum computing world. In Ran Canetti and Juan A. Garay,
editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 361–379.
Springer, Heidelberg, August 2013.

[CHP+17] Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. A security
analysis of Deoxys and its internal tweakable block ciphers. IACR Trans.
Symm. Cryptol., 2017(3):73–107, 2017.

[CNS17] André Chailloux, María Naya-Plasencia, and André Schrottenloher. An
efficient quantum collision search algorithm and implications on symmet-
ric cryptography. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASI-
ACRYPT 2017, Part II, volume 10625 of LNCS, pages 211–240. Springer,
Heidelberg, December 2017.

[Dae95] Joan Daemen. Cipher and hash function design, strategies based on linear
and differential cryptanalysis. PhD thesis, K.U. Leuven, 1995. http://jda.
noekeon.org/.

[Dam90] Ivan Damgård. A design principle for hash functions. In Gilles Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 416–427. Springer, Heidelberg,
August 1990.

[DFJ13] Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. Improved key recovery
attacks on reduced-round AES in the single-key setting. In Thomas Johansson
and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS,
pages 371–387. Springer, Heidelberg, May 2013.

[DGV94] Joan Daemen, René Govaerts, and Joos Vandewalle. A new approach to block
cipher design. In Ross J. Anderson, editor, FSE’93, volume 809 of LNCS,
pages 18–32. Springer, Heidelberg, December 1994.

[DKR97] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The block cipher
Square. In Eli Biham, editor, FSE’97, volume 1267 of LNCS, pages 149–165.
Springer, Heidelberg, January 1997.

[DL18] Sébastien Duval and Gaëtan Leurent. MDS matrices with lightweight circuits.
IACR Trans. Symm. Cryptol., 2018(2):48–78, 2018.

https://eprint.iacr.org/2019/272
http://eprint.iacr.org/2013/404
http://eprint.iacr.org/2013/404
http://jda.noekeon.org/
http://jda.noekeon.org/

200 Saturnin: a suite of lightweight symmetric algorithms for post-quantum security

[DPVAR00] Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent Rijmen.
Nessie proposal: NOEKEON. First Open NESSIE Workshop, see also http:
//gva.noekeon.org/papers/2000-NESSIE-Noekeon-Spec.pdf, 2000.

[DR99] Joan Daemen and Vincent Rijmen. AES Proposal: Rijndael. Submission to
the NIST AES competition, 1999.

[DR02a] Joan Daemen and Vincent Rijmen. AES and the wide trail design strategy
(invited talk). In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332
of LNCS, pages 108–109. Springer, Heidelberg, April / May 2002.

[DR02b] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The
Advanced Encryption Standard. Information Security and Cryptography.
Springer, 2002.

[DS08] Hüseyin Demirci and Ali Aydin Selçuk. A meet-in-the-middle attack on
8-round AES. In Kaisa Nyberg, editor, FSE 2008, volume 5086 of LNCS,
pages 116–126. Springer, Heidelberg, February 2008.

[Gag17] Tommaso Gagliardoni. Quantum Security of Cryptographic Primitives. PhD
thesis, Darmstadt University of Technology, Germany, 2017.

[GBB+08] Henri Gilbert, Ryad Benadjila, Olivier Billet, Gilles Macario-Rat, Thomas
Peyrin, Matt Robshaw, and Yannick Seurin. SHA-3 proposal: ECHO. Sub-
mission to NIST, 2008. https://ehash.iaik.tugraz.at/uploads/9/91/
Echo.pdf.

[GHS16] Tommaso Gagliardoni, Andreas Hülsing, and Christian Schaffner. Semantic
security and indistinguishability in the quantum world. In Matthew Robshaw
and Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS,
pages 60–89. Springer, Heidelberg, August 2016.

[GJ75] Terry Gilliam and Terry Jones. Monty Python and the Holy Grail. Distributed
by EMI Films, 1975.

[GKM+08] Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian
Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen. Grøstl
– a SHA-3 candidate. Submission to NIST, 2008. http://www.groestl.info/
Groestl.pdf.

[GLRS16] Markus Grassl, Brandon Langenberg, Martin Roetteler, and Rainer Stein-
wandt. Applying Grover’s algorithm to AES: Quantum resource estimates.
In Tsuyoshi Takagi, editor, Post-Quantum Cryptography - 7th International
Workshop, PQCrypto 2016, pages 29–43. Springer, Heidelberg, 2016.

[GM08] Samuel Galice and Marine Minier. Improving integral attacks against Rijndael-
256 up to 9 rounds. In Serge Vaudenay, editor, AFRICACRYPT 08, volume
5023 of LNCS, pages 1–15. Springer, Heidelberg, June 2008.

[GR04] Lov K. Grover and Terry Rudolph. How significant are the known collision
and element distinctness quantum algorithms? Quantum Information &
Computation, 4(3):201–206, 2004.

[Gra18] Lorenzo Grassi. Mixture differential cryptanalysis: a new approach to distin-
guishers and attacks on round-reduced AES. IACR Trans. Symm. Cryptol.,
2018(2):133–160, 2018.

http://gva.noekeon.org/papers/2000-NESSIE-Noekeon-Spec.pdf
http://gva.noekeon.org/papers/2000-NESSIE-Noekeon-Spec.pdf
https://ehash.iaik.tugraz.at/uploads/9/91/Echo.pdf
https://ehash.iaik.tugraz.at/uploads/9/91/Echo.pdf
http://www.groestl.info/Groestl.pdf
http://www.groestl.info/Groestl.pdf

A. Canteaut et al. 201

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. In
28th ACM STOC, pages 212–219. ACM Press, May 1996.

[GRR17] Lorenzo Grassi, Christian Rechberger, and Sondre Rønjom. A new structural-
differential property of 5-round AES. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages
289–317. Springer, Heidelberg, April / May 2017.

[HY18] Akinori Hosoyamada and Kan Yasuda. Building quantum-one-way functions
from block ciphers: Davies-Meyer and Merkle-Damgård constructions. In
Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part I,
volume 11272 of LNCS, pages 275–304. Springer, Heidelberg, December 2018.

[IAC+08] Sebastiaan Indesteege, Elena Andreeva, Christophe De Cannière, Orr Dunkel-
man, Emilia Käsper, Svetla Nikova, Bart Preneel, and Elmar Tischhauser.
The LANE hash function. Submission to NIST, 2008. https://www.esat.
kuleuven.be/cosic/publications/article-1181.pdf.

[JS19] Samuel Jaques and John M. Schanck. Quantum cryptanalysis in the RAM
model: Claw-finding attacks on SIKE. IACR Cryptology ePrint Archive,
Report 2019/103, 2019. https://eprint.iacr.org/2019/103.

[KLLN16a] Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and María Naya-Plasencia.
Breaking symmetric cryptosystems using quantum period finding. In Matthew
Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II, volume 9815
of LNCS, pages 207–237. Springer, Heidelberg, August 2016.

[KLLN16b] Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and María Naya-Plasencia.
Quantum differential and linear cryptanalysis. IACR Trans. Symm. Cryptol.,
2016(1):71–94, 2016. http://tosc.iacr.org/index.php/ToSC/article/
view/536.

[KM10] Hidenori Kuwakado and Masakatu Morii. Quantum distinguisher between
the 3-round Feistel cipher and the random permutation. In ISIT 2010, pages
2682–2685. IEEE, 2010.

[KM12] Hidenori Kuwakado and Masakatu Morii. Security on the quantum-type
even-mansour cipher. In ISITA 2012, pages 312–316. IEEE, 2012.

[Knu95] Lars R. Knudsen. Truncated and higher order differentials. In Bart Preneel,
editor, FSE’94, volume 1008 of LNCS, pages 196–211. Springer, Heidelberg,
December 1995.

[LKKD08] Jiqiang Lu, Jongsung Kim, Nathan Keller, and Orr Dunkelman. Improving
the efficiency of impossible differential cryptanalysis of reduced Camellia and
MISTY1. In Tal Malkin, editor, CT-RSA 2008, volume 4964 of LNCS, pages
370–386. Springer, Heidelberg, April 2008.

[LP07] Gregor Leander and Axel Poschmann. On the Classification of 4 Bit S-Boxes.
In Claude Carlet and Berk Sunar, editors, WAIFI 2007, volume 4547 of LNCS,
pages 159–176. Springer, Heidelberg, June 2007.

[LTW18] Gregor Leander, Cihangir Tezcan, and Friedrich Wiemer. Searching for
subspace trails and truncated differentials. IACR Trans. Symm. Cryptol.,
2018(1):74–100, 2018.

https://www.esat.kuleuven.be/cosic/publications/article-1181.pdf
https://www.esat.kuleuven.be/cosic/publications/article-1181.pdf
https://eprint.iacr.org/2019/103
http://tosc.iacr.org/index.php/ToSC/article/view/536
http://tosc.iacr.org/index.php/ToSC/article/view/536

202 Saturnin: a suite of lightweight symmetric algorithms for post-quantum security

[Mer90] Ralph C. Merkle. A certified digital signature. In Gilles Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 218–238. Springer, Heidelberg,
August 1990.

[MMO85] Stephen M. Matyas, Carl H. Meyer, and Jeffrey M. Oseas. Generating strong
one-way functions with cryptographic algorithm. IBM Technical Disclosure
Bulletin 27, 1985.

[MN07] Mitsuru Matsui and Junko Nakajima. On the power of bitslice implementation
on intel core2 processor. In Pascal Paillier and Ingrid Verbauwhede, editors,
CHES 2007, volume 4727 of LNCS, pages 121–134. Springer, Heidelberg,
September 2007.

[MPP09] Marine Minier, Raphael C.-W. Phan, and Benjamin Pousse. Distinguishers
for ciphers and known key attack against Rijndael with large blocks. In Bart
Preneel, editor, AFRICACRYPT 09, volume 5580 of LNCS, pages 60–76.
Springer, Heidelberg, June 2009.

[MRST09] Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thom-
sen. The rebound attack: Cryptanalysis of reduced Whirlpool and Grøstl.
In Orr Dunkelman, editor, FSE 2009, volume 5665 of LNCS, pages 260–276.
Springer, Heidelberg, February 2009.

[Nak08] Jorge Nakahara Jr. 3D: A three-dimensional block cipher. In Matthew K.
Franklin, Lucas Chi Kwong Hui, and Duncan S. Wong, editors, CANS 08,
volume 5339 of LNCS, pages 252–267. Springer, Heidelberg, December 2008.

[Nat01] National Institute of Standards and Technology. SP 800-38A: Recommen-
dation for Block Cipher Modes of Operation: Methods and Techniques,
December 2001.

[Nat16] National Institute of Standards and Technlology. Submission re-
quirements and evaluation criteria for the post-quantum cryptog-
raphy standardization process, 2016. https://csrc.nist.gov/
CSRC/media/Projects/Post-Quantum-Cryptography/documents/
call-for-proposals-final-dec-2016.pdf.

[Nat18] National Academies of Sciences, Engineering, and Medicine. Quantum Com-
puting: Progress and Prospects. The National Academies Press, Washington,
DC, 2018.

[NC02] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum
information. AAPT, 2002.

[NP07] Jorge Nakahara Jr. and Ivan Carlos Pavão. Impossible-differential attacks on
large-block Rijndael. In Juan A. Garay, Arjen K. Lenstra, Masahiro Mambo,
and René Peralta, editors, ISC 2007, volume 4779 of LNCS, pages 104–117.
Springer, Heidelberg, October 2007.

[PGV94] Bart Preneel, René Govaerts, and Joos Vandewalle. Hash functions based
on block ciphers: A synthetic approach. In Douglas R. Stinson, editor,
CRYPTO’93, volume 773 of LNCS, pages 368–378. Springer, Heidelberg,
August 1994.

[RBH17] Sondre Rønjom, Navid Ghaedi Bardeh, and Tor Helleseth. Yoyo tricks with
AES. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017,
Part I, volume 10624 of LNCS, pages 217–243. Springer, Heidelberg, December
2017.

https://csrc.nist.gov/CSRC/media/ Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/ Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/ Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf

A. Canteaut et al. 203

[Sas10] Yu Sasaki. Known-key attacks on Rijndael with large blocks and strength-
ening ShiftRow parameter. In Isao Echizen, Noboru Kunihiro, and Ryôichi
Sasaki, editors, IWSEC 10, volume 6434 of LNCS, pages 301–315. Springer,
Heidelberg, November 2010.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In 35th FOCS, pages 124–134. IEEE Computer Society Press,
November 1994.

[Sim94] Daniel R. Simon. On the power of quantum computation. In 35th FOCS,
pages 116–123. IEEE Computer Society Press, November 1994.

[SJS16] Vladimir Soukharev, David Jao, and Srinath Seshadri. Post-quantum se-
curity models for authenticated encryption. In Tsuyoshi Takagi, editor,
Post-Quantum Cryptography - 7th International Workshop, PQCrypto 2016,
pages 64–78. Springer, Heidelberg, 2016.

[SLG+16] Bing Sun, Meicheng Liu, Jian Guo, Longjiang Qu, and Vincent Rijmen.
New insights on AES-like SPN ciphers. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 605–624.
Springer, Heidelberg, August 2016.

[SY17] Fang Song and Aaram Yun. Quantum security of NMAC and related con-
structions - PRF domain extension against quantum attacks. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, Part II, volume 10402 of
LNCS, pages 283–309. Springer, Heidelberg, August 2017.

[UDI+11] Markus Ullrich, Christophe De Cannière, Sebastian Indesteege, Özgül Küçük,
Nicky Mouha, and Bart Preneel. Finding optimal bitsliced implementations
of 4x4-bit s-boxes. In SKEW 2011, 2011. Available at http://skew2011.mat.
dtu.dk/proceedings/.

[WGR+13] Qingju Wang, Dawu Gu, Vincent Rijmen, Ya Liu, Jiazhe Chen, and Andrey
Bogdanov. Improved impossible differential attacks on large-block Rijndael.
In Taekyoung Kwon, Mun-Kyu Lee, and Daesung Kwon, editors, ICISC 12,
volume 7839 of LNCS, pages 126–140. Springer, Heidelberg, November 2013.

[Zha15] Mark Zhandry. A note on the quantum collision and set equality problems.
Quantum Information & Computation, 15(7&8):557–567, 2015.

[Zha18] Mark Zhandry. How to record quantum queries, and applications to quantum
indifferentiability. Cryptology ePrint Archive, Report 2018/276, 2018. https:
//eprint.iacr.org/2018/276.

[ZWP+08] Lei Zhang, Wenling Wu, Je Hong Park, Bon Wook Koo, and Yongjin Yeom. Im-
proved impossible differential attacks on large-block Rijndael. In Tzong-Chen
Wu, Chin-Laung Lei, Vincent Rijmen, and Der-Tsai Lee, editors, ISC 2008,
volume 5222 of LNCS, pages 298–315. Springer, Heidelberg, September 2008.

http://skew2011.mat.dtu.dk/proceedings/
http://skew2011.mat.dtu.dk/proceedings/
https://eprint.iacr.org/2018/276
https://eprint.iacr.org/2018/276

204 Saturnin: a suite of lightweight symmetric algorithms for post-quantum security

A Some Quantum Computing Notions
Quantum Computing and Oracles We refer to [NC02] for a comprehensive introduction
to quantum computing. While it is certainly difficult to assert the effective time of yet-to-
be-implemented quantum operations, we use as common ground the quantum circuit model.
Quantum and classical time complexities can only be compared roughly; but two quantum
circuits, as they are written in the same abstract manner, can be compared precisely. By
replacing classical exhaustive search by quantum exhaustive search, i.e. Grover’s search,
the notions of quantum level of security, quantum security margin and quantum attack
become immediately available, by analogy with their classical counterparts.

A quantum circuit consists of a sequence of operations (or quantum gates) applied to a
pool of qubits. Qubits are the analogue of classical bits. Classically, the state of a bit is
either 0 or 1. Quantumly, the state of a qubit is a vector in a two-dimensional Hilbert space,
with a canonical basis {|0⟩ , |1⟩}. The qubits are first prepared in an arbitrary state, say
|0⟩. The operations, quantum gates and oracle queries, are all unitary operators; and they
are all reversible. Via entanglement, a general 𝑛-qubit system can only be described on a
basis of 2𝑛 vectors. But all information on the system is not accessible. The different basis
vectors |𝑖⟩ have complex amplitudes 𝛼𝑖, such that |𝛼𝑖|2 is the probability to obtain 𝑖 upon
measurement of the system. A measurement destroys the state (the superposition collapses)
and replaces it with |𝑖⟩ for the obtained 𝑖. Consequently, only 𝑛 bits of information can
be extracted from an 𝑛-qubit quantum system. The sequence of quantum gates causes
constructive and destructive interferences between the states, which reduce the amplitude
of “bad states” and increase that of “good states”, so that, upon measurement, we expect
a meaningful result.

Throughout this document, we use the circuit model. We do not need to specify exactly
the universal gate set used, as regarding quantum attacks, our complexities will be given
in multiples of a quantum circuit for Saturnin.

Oracles. Classically, an oracle (for encryption, decryption, verification. . .) can be seen
as a black-box function 𝑓 which takes an adversary-controlled input 𝑥 and returns 𝑓(𝑥).
Quantumly, a superposition oracle is a unitary 𝑂𝑓 which takes an input |𝑥⟩ |𝑏⟩ and
returns |𝑥⟩ |𝑏⊕ 𝑓(𝑥)⟩. The output 𝑓(𝑥) is only written on the additional register, ensuring
reversibility. The input state can be in any superposition, but this does not make the
adversary in power to compute “all possibilities at once”, for example to query a secret-key
oracle on all the codebook in one query, since the information can only obtained by
measurement, and a measurement makes the superposition collapse.

Simon’s algorithm. Given superposition query access to a function 𝑓 : {0, 1}𝑛 → {0, 1}𝑛

which “hides” a period 𝑠, i.e. 𝑓(𝑥⊕ 𝑠) = 𝑓(𝑥) for all 𝑠, Simon’s algorithm [Sim94] recovers
𝑠 using 𝑂(𝑛) queries to 𝑂𝑓 and little (polynomial in 𝑛) computation overhead.

Grover’s algorithm. Given superposition query access to a function 𝑓 : {0, 1}𝑛 → {0, 1},
such that 𝑓−1(1) contains 2𝑡 elements, Grover’s algorithm [Gro96] recovers a preimage of
1 in 𝑂(2(𝑛−𝑡)/2) time and queries to 𝑂𝑓 instead of 𝑂(2𝑛−𝑡) classical time and queries to
𝑓 . This algorithm consists in iterating 𝑂(2(𝑛−𝑡)/2) times a unitary operator which uses a
query to 𝑂𝑓 to move some amplitude towards the elements of 𝑓−1(1).

BHT Collision Search Algorithm. The algorithm of [BHT98] uses Grover’s search as a
subroutine. It makes 2𝑛/3 queries, stores them in quantum hardware, and looks for a
collision on one of the queried elements. The probability for a random element to collide
on this table is 2𝑛/3

2𝑛 , so this Grover’s search step requires time 2𝑛/3. This algorithm is
optimal for a random function.

A. Canteaut et al. 205

B Impossible Differential Distinguishers
We reproduce here the two impossible differential distinguishers that we have studied for
Saturnin. The whole cubic state of the cipher is represented as its 4 slices. We denote
by S the S-Box layer, MD the operation SRslice ∘MC ∘ SR−1

slice and by MS the operation
SRsheet ∘MC ∘ SR−1

sheet.

206 Saturnin: a suite of lightweight symmetric algorithms for post-quantum security

AK

S

MC

S

MD

AK

S

MC

S

MS

AK

S

MC

S

MD

AK

S

MC

S

AK

S

MC

S

MS

AK

S

MC

S

MD

AK

S

MC

S

MS

AK

S

MC

S

Figure 21: Paths A (left) and B (right).

A. Canteaut et al. 207

C On the Name
The transcription of the French pronounciation of “Saturnin” is given in Figure 22.

Figure 22: How to pronounce Saturnin using the International Phonetic Alphabet.

There are multiple motivations for this name.

Saturnin the Duck. The duck is undeniably a symbol of lightness because it floats. It
has been famously used as the reference for lightness throughout the ages, for instance by
Sir Bedevere [GJ75]. The bantamweight weight class in boxing is also named after a small
duck, and corresponds to lightweight fighters. As it turns out, Saturnin is the most famous
duck in France: it was the hero of a well-known TV show6. A Saturnin-like7 yellow duck
is shown in Figure 23a.

Kepler’s Mysterium Cosmographicum. The astronomer made the following observation
in his 1596 opus, as described on his wikipedia page:

[Kepler] found that each of the five Platonic solids could be inscribed and
circumscribed by spherical orbs; nesting these solids, each encased in a sphere,
within one another would produce six layers, corresponding to the six known
planets—Mercury, Venus, Earth, Mars, Jupiter, and Saturn. By ordering
the solids selectively—octahedron, icosahedron, dodecahedron, tetrahedron,
cube—Kepler found that the spheres could be placed at intervals corresponding
to the relative sizes of each planet’s path, assuming the planets circle the Sun.

This system is summarized in Figure 23b. As we can see, the planet Saturn is associated
with the cube—the exact shape of our cipher.

(a) A Saturnin-like duck
(credit: Fir0002/Flagstaffotos).

(b) From Kepler’s Mysterium Cosmographicum, via
Wikipedia.

Figure 23: Satunin pictures

Wisdom. The planet Saturn is a symbol of the wisdom coming with age, a fitting
metaphor for our reliance on the knowledge accumulated since the publication of the AES.

6https://fr.wikipedia.org/wiki/Les_Aventures_de_Saturnin.
7https://commons.wikimedia.org/wiki/File:Duckling_-_domestic_duck.jpg

https://fr.wikipedia.org/wiki/Les_Aventures_de_Saturnin
https://commons.wikimedia.org/wiki/File:Duckling_-_domestic_duck.jpg

	Introduction
	Post-quantum Symmetric Cryptography
	Lightweight and Post-quantum: towards Saturnin
	Security claims

	Specification
	The Block Cipher Saturnin
	The Authenticated Cipher Saturnin-CTR-Cascade
	The Authenticated Cipher Saturnin-Short
	The Hash Function Saturnin-Hash
	Values of the Domain Separator

	Security Claims
	Implementation
	Bitslice Representation and Conversions
	Re-interpreting the Operations of Saturnin
	Operations Count
	Software Implementations

	Rationale
	General Structure using the Super-S-box Representation
	On the Building-blocks in the Block Cipher
	On Modes of Operation

	Security Analysis
	Security of the Block Cipher against Classical Attacks
	DS-MITM attack on 7.5-super-round Saturnin
	Security of the Block Cipher Against Quantum Attacks
	Security of the Modes of Operation

	Some Quantum Computing Notions
	Impossible Differential Distinguishers
	On the Name

