
This paper is included in the Proceedings of the 
29th USENIX Security Symposium.

August 12–14, 2020
978-1-939133-17-5

Open access to the Proceedings of the 
29th USENIX Security Symposium 

is sponsored by USENIX.

SHA-1 is a Shambles: First Chosen-Prefix Collision 
on SHA-1 and Application to the PGP Web of Trust

Gaëtan Leurent, Inria, France; Thomas Peyrin, 
Nanyang Technological University, Singapore

https://www.usenix.org/conference/usenixsecurity20/presentation/leurent



SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and
Application to the PGP Web of Trust∗

Gaëtan Leurent
Inria, France

gaetan. leurent@ inria. fr

Thomas Peyrin
Nanyang Technological University, Singapore

thomas. peyrin@ ntu. edu. sg

Abstract
The SHA-1 hash function was designed in 1995 and has
been widely used during two decades. A theoretical col-
lision attack was first proposed in 2004 [29], but due to
its high complexity it was only implemented in practice
in 2017, using a large GPU cluster [23]. More recently,
an almost practical chosen-prefix collision attack against
SHA-1 has been proposed [12]. This more powerful attack
allows to build colliding messages with two arbitrary pre-
fixes, which is much more threatening for real protocols.

In this paper, we report the first practical implementa-
tion of this attack, and its impact on real-world security
with a PGP/GnuPG impersonation attack. We managed
to significantly reduce the complexity of collision attacks
against SHA-1: on an Nvidia GTX 970, identical-prefix
collisions can now be computed with a complexity (ex-
pressed in terms of SHA-1 equivalents on this GPU) of
261.2 rather than 264.7, and chosen-prefix collisions with
a complexity of 263.4 rather than 267.1. When renting
cheap GPUs, this translates to a cost of US$ 11k for a
collision, and US$ 45k for a chosen-prefix collision, within
the means of academic researchers. Our actual attack
required two months of computations using 900 Nvidia
GTX 1060 GPUs.

Therefore, the same attacks that have been practical on
MD5 since 2009 are now practical on SHA-1. In particular,
chosen-prefix collisions can break signature schemes and
handshake security in secure channel protocols (TLS,
SSH), if generated extremely quickly. We strongly advise
to remove SHA-1 from those type of applications as soon
as possible.
We exemplify our cryptanalysis by creating a pair of

PGP/GnuPG keys with different identities, but colliding
SHA-1 certificates. A SHA-1 certification of the first key
can therefore be transferred to the second key, leading
to an impersonation attack. This proves that SHA-1
signatures now offer virtually no security in practice.

∗https://sha-mbles.github.io/

The legacy branch of GnuPG still uses SHA-1 by default
for identity certifications, but after notifying the authors,
the modern branch now rejects SHA-1 signatures (the
issue is tracked as CVE-2019-14855).

1 Introduction

Cryptographic hash functions are present in countless
security applications and protocols, used for various pur-
poses such as building digital signature schemes, message
authentication codes or password hashing functions. In
the key application of digital signatures for example,
hash functions are classically applied on the message be-
fore signing it, as a domain extender and also to provide
security guarantees. Informally, a cryptographic hash
function H is a function that maps an arbitrarily long
message M to a fixed-length hash value (we denote n its
bit size). Collision resistance is the main security prop-
erty expected from a hash function: it should be hard for
an adversary to compute a collision (or identical-prefix
collision), i.e. two distinct messagesM andM ′ that map
to the same hash value H(M) =H(M ′), where by “hard”
one means not faster than the generic 2n/2 computations
birthday attack.

A cryptanalyst will try to find a collision for the hash
function at a reduced cost, but ad-hoc collision attacks
are hard to exploit in practice, because the attacker usu-
ally has little control over the value of the actual colliding
messages (in particular where the differences are inserted,
which are the interesting parts when attacking a digital
signature scheme). Thus, one can consider stronger vari-
ants of the collision attack more relevant in practice, such
as the so-called chosen-prefix collision [25] or CP colli-
sion. Two message prefixes P and P ′ are first given as
challenge to the adversary, and his goal is to compute two
messages M and M ′ such that H(P ‖M) =H(P ′ ‖M ′),
where ‖ denotes concatenation. With such ability, the
attacker can obtain a collision with arbitrarily chosen
prefixes, potentially containing meaningful information.

USENIX Association 29th USENIX Security Symposium    1839

gaetan.leurent@inria.fr
thomas.peyrin@ntu.edu.sg
https://sha-mbles.github.io/


A CP collision can also be found generically with 2n/2

computations (thus 280 for a 160-bit hash function like
SHA-1), but ad-hoc CP collision attacks are much more
difficult to find than plain collision attacks, because of the
uncontrolled internal differences created by the prefixes.
Yet, a CP collision attack was found for the MD5 hash
function [25], eventually leading to the creation of col-
liding X.509 certificates, and later of a rogue Certificate
Authority (CA) [27]. CP collisions have also been shown
to break important internet protocols, including TLS,
IKE, and SSH [1], because they allow forgeries of the
handshake messages if they can be generated extremely
quickly.
Largely inspired by MD4 [19] and then MD5 [20],

SHA-1 [16] is one the most famous cryptographic hash
functions in the world, having been the NIST and de-
facto worldwide hash function standard for nearly two
decades. It remained a NIST standard until its depre-
cation in 2011 (and was forbidden for digital signatures
at the end of 2013). Indeed, even though its successors
SHA-2 or SHA-3 are believed to be secure, SHA-1 has been
broken by a theoretical collision attack in 2004 [29]. Due
to its high technicality and computational complexity
(originally estimated to about 269 hash function calls),
this attack was only implemented in practice in 2017,
using a large GPU cluster [23]. Unfortunately, the SHA-1
deprecation process has been quite slow and one can
still observe many uses of SHA-1 in the wild, because it
took more than a decade to compute an actual collision,
plain collisions are difficult to use directly to attack a
protocol, and migration is expensive.

Very recently, a CP collision attack against SHA-1 has
been described in [12] (but not implemented), which re-
quires an estimated complexity between 266.9 and 269.4

SHA-1 computations. It works with a two-phase strategy:
given the challenge prefixes and the random differences
on the internal state it will induce, the first part of the at-
tack uses a birthday approach to limit the internal state
differences to a not-too-big subset (as done in [22,25]).
From this subset, reusing basic principles of the vari-
ous collision search advances on SHA-1, one slowly adds
successive message blocks to come closer to a collision,
eventually reaching the goal after a dozen blocks. Even
though these advances put the CP collisions within prac-
tical reach for very well-funded entities, it remains very
expensive to conduct and also very difficult to implement
as the attack contains many very technical parts.

1.1 Our Contributions

In this article, we exhibit the very first chosen-prefix
collision against SHA-1, with a direct application to
PGP/GnuPG security. Our contributions are threefold.

Function Collision type Cost Ref.
SHA-1 free-start collision 257.5 [24]

collision 269 [29]
264.7 [22, 23]a
261.2 New

chosen-prefix collision 277.1 [22]
267.1 [12]
263.4 New

Table 1: Comparison of previous and new cryptanalysis
results on SHA-1. A free-start collision is a collision of
the compression function only, where the attacker has
full control on all the primitive’s inputs. Complexities
in the table are given in terms of SHA-1 equivalents on
a GTX-970 GPU (when possible).

aEquivalent to 261 SHA-1 on CPU, 264.7 on GPU

Complexity improvements. While the work of [12]
was mostly about high-level techniques to turn a collision
attack into a chosen-prefix collision attack, we have to
look at the low-level details to actually implement the
attack. This gave us a better understanding of the com-
plexity of the attack, and we managed to significantly
improve several parts of the attacks (See Table 1).

First, we improved the use of degrees of freedom (neu-
tral bits [3] and boomerangs [10]) during the search for
near-collision blocks. This reduces the computational
complexity for both plain and chosen-prefix collision at-
tacks, leading to important savings: on an Nvidia GTX
970, plain collisions can now be computed with a com-
plexity of 261.2 rather than 264.7 (expressed in terms
of SHA-1 equivalents on this GPU). We note that the
general ideas underlying these improvements might be
interesting for cryptanalysis of algorithms beyond SHA-1.

Second, we improved the graph-based technique of [12]
to compute a chosen-prefix collision. Using a larger graph
and more heuristic techniques, we can significantly reduce
the complexity of a chosen-prefix collision attack, taking
full advantage of the improvements on the near-collision
block search. This results in a chosen-prefix collision
attack with a complexity of 263.4 rather than 267.1.

Record computation. We implemented the entire
chosen-prefix collision attack from [12], with those im-
provements. This attack is extremely technical, contains
many details, various steps, and requires a lot of engi-
neering work. Performing such a large-scale computation
is still quite expensive, but is accessible with an aca-
demic budget. More precisely, we can can rent cheap
GPUs from providers that use gaming or mining cards in
consumer-grade PCs, rather that the datacenter-grade
hardware used by big cloud providers. This gives a total

1840    29th USENIX Security Symposium USENIX Association



cost significantly smaller than US$ 100k to compute a
chosen-prefix collision. We give more detailed complexity
and cost estimates in Table 2.
We have successfully run the computation over a pe-

riod of two months, using 900 GPUs (Nvidia GTX 1060).
Our attack uses one partial block for the birthday stage,
and 9 near-collision blocks. We paid US$ 75k to rent the
GPUs from GPUserversrental, but the actual price could
be smaller because we lost some time tuning the attack.
There is also a large variability depending on luck, and
GPU rental prices fluctuate with cryptocurrency prices.

PGP/GnuPG impersonation. Finally, in order to
demonstrate the practical impact of chosen-prefix col-
lisions, we used our CP collision for a PGP/GnuPG
impersonation attack. The chosen prefixes correspond
to headers of two PGP identity certificates with keys of
different sizes, an RSA-8192 key and an RSA-6144 key.
By exploiting properties of the OpenPGP and JPEG
format, we can create two public keys (and their cor-
responding private keys): key A with the victim name,
and key B with the attacker name and picture, such that
the identity certificate containing the attacker key and
picture leads to the same SHA-1 hash as the identity
certificate containing the victim key and name. There-
fore, the attacker can request a signature of his key and
picture from a third party (from the Web of Trust or
from a CA) and transfer the signature to key A. The
signature stays valid because of the collision, while the
attacker controls key A with the name of the victim, and
signed by the third party. Therefore, he can impersonate
the victim and sign any document in her name.

1.2 SHA-1 Usage and Impact
Our work shows that SHA-1 is now fully and practically
broken for use in digital signatures. GPU technology
improvements and general computation cost decrease
will further reduce the cost, making it affordable for any
ill-intentioned attacker in the very near future.

SHA-1 usage has significantly decreased in the last
years; in particular web browsers now reject certificates
signed with SHA-1. However, SHA-1 signatures are still
supported in a large number of applications. SHA-1 is
the default hash function used for certifying PGP keys
in the legacy branch of GnuPG (v 1.4), and those sig-
natures were accepted by the modern branch of GnuPG
(v 2.2) before we reported our results. Many non-web
TLS clients also accept SHA-1 certificates, and SHA-1
is still allowed for in-protocol signatures in TLS and
SSH. Even if actual usage is low (a few percent), the fact
that SHA-1 is allowed threatens the security because a
man-in-the-middle attacker can downgrade the connec-
tion to SHA-1. SHA-1 is also the foundation of the GIT

versioning system, and it is still in DNSSEC signatures.
There are probably a lot of less known or proprietary
protocols that still use SHA-1, but this is more difficult
to evaluate.

1.3 Outline
We first recall SHA-1 inner workings and previous crypt-
analysis on this hash function in Section 2. We then
provide improvements over the state-of-the-art SHA-1
collision attacks in Section 3 and Section 4, and we de-
scribe the details of the SHA-1 chosen-prefix collision
computation in Section 5. Finally, we show a direct ap-
plication of our CP collision attack with a PGP/GnuPG
impersonation (together with discussions on other possi-
ble applications) in Section 6. We discuss SHA-1 usage
and the impact of our results in Section 7. Eventually,
we conclude and propose future works in Section 8.

2 Preliminaries

In this section, we describe the SHA-1 hash function (we
refer to [16] for all the complete details) and summarize
the previous cryptanalysis relevant to our new work.

2.1 Description of SHA-1
SHA-1 is a 160-bit hash function that follows the well-
known Merkle-Damgård paradigm [6,15], with 512-bit
message blocks, and a 160-bit state. The SHA-1 com-
pression function uses the Davies-Meyer construction,
that turns a block cipher E into a compression function:
cvi+1 =Emi+1(cvi)+ cvi, where Ek(y) is the encryption
of the plaintext y with the key k, and + is a word-wise
32-bit modular addition. It is composed of 4 rounds of
20 steps each (for a total of 80 steps), where one step
follows a generalised Feistel network. Since only a single
register value is updated, the other registers being only
rotated copies, we can express the SHA-1 step function
using a single variable:

Ai+1 = (Ai≪ 5)+fi(Ai−1,Ai−2≫ 2,Ai−3≫ 2)
+(Ai−4≫ 2)+Ki+Wi.

whereKi are predetermined constants and fi are boolean
functions (given in Table 3). For this reason, the differ-
ential trails figures in this article will only represent Ai,
the other register values at a certain point of time can
be deduced directly.
The extended message words Wi are computed lin-

early from the incoming 512-bit message block m, the
process being called message extension. One first splits
m into 16 32-bit words M0, . . . ,M15, and then the Wi’s

USENIX Association 29th USENIX Security Symposium    1841



Function Collision type GPU Time Complexity Cost
SHA-1 collision GTX 970 22 years 261.2

GTX 1060 27 years 261.6 US$ 11k
GTX 1080 Ti 8 years 261.6

chosen-prefix GTX 970 99 years 263.4

GTX 1060 107 years 263.5 US$ 45k
GTX 1080 Ti 34 years 263.6

MD5‖SHA-1 both (plain or CP) GTX 970 1400 years 267.2

GTX 1060 1700 years 267.6 US$ 720k
GTX 1080 Ti 540 years 267.6

Table 2: Complexity of the attacks against SHA-1 reported in this paper on several GPUs. The complexity is
given in SHA-1 equivalents (using hashcat benchmarks). For the cost evaluation we assume that one GTX 1060
GPU can be rented for a price of US$ 35/month (the two phases of the attack are easily parallelisable): https:
//web.archive.org/web/20191229164814/https://www.gpuserversrental.com/
To attack MD5‖SHA-1, we use the multicollision attack of Joux [9] with three phases: (i) a CP collision on SHA-1, (ii)
64 collisions on SHA-1, and (iii) 264 evaluations of MD5.

step i fi(B,C,D) Ki

0≤ i < 20 (B∧C)⊕ (B∧D) 0x5a827999
20≤ i < 40 B⊕C⊕D 0x6ed6eba1
40≤ i < 60 (B∧C)⊕ (B∧D)⊕ (C ∧D) 0x8fabbcdc
60≤ i < 80 B⊕C⊕D 0xca62c1d6

Table 3: Boolean functions and constants of SHA-1

are computed as follows:

Wi =
{
Mi, for 0≤ i≤ 15
(Wi−3⊕Wi−8⊕Wi−14⊕Wi−16)≪ 1, for 16≤ i≤ 79

In the rest of this article, we will use the notation X[j]
to refer to bit j of word X.

2.2 Previous Works
We recall here the general state-of-the-art collision search
strategies that we will use for our CP collision attack.
Readers only interested by the applications of our CP
collision attack can skip up to Section 6. In the rest of
the article, unless stated otherwise, difference will refer
to the XOR difference between two bits or the bitwise
XOR difference between two words.

2.2.1 Differential Trails

The first results on SHA-0 (predecessor of SHA-1) and
SHA-1 were differential attacks using trails built by lin-
earizing the compression function (we call these linear
paths, in opposition to non-linear paths which have been
built without linearization), assuming that modular addi-
tions and boolean functions fi in the SHA-1 compression
function are behaving as an XOR. More precisely, the

IV H

m1 m2
〈δM 〉 〈−δM 〉

〈0〉 〈δI〉 〈δO〉 〈δO〉 〈−δI〉 〈−δO〉

〈0〉 〈δO〉 〈0〉NL1 NL2L L

Figure 1: 2-block collision attack using a linear trail
δI

δM δO and two non-linear trails 0 δI and δO −δI
in the first 10∼15 steps. Green values between bracket
represent differences in the state.

32-bit modular addition is replaced by a 32-bit bitwise
XOR and the fi functions are replaced by 3-input XOR
operations. The trails are generated with a succession
of so-called local collisions: small message disturbances
whose influence is immediately corrected with other mes-
sage differences inserted in the subsequent SHA-1 steps,
taking advantage of the linear message expansion.

In 2005, the seminal work of Wang et al. [29] showed
that non-linear differential trails (trails generated without
linearizing the SHA-1 step function) can be used for the
first 10∼15 steps of the compression function, connecting
any incoming input difference to any fixed difference δI
at step 10∼15. Due to the Davies-Meyer construction
used in SHA-1, this gives a collision attack with two
successive blocks, using the same differential trail from
step 10∼15 to 80 (just using opposite signs: 0 δM δO and
δO
−δM −δO), as seen in Figure 1.

2.2.2 Improving the Efficiency of Collision
Search

Once the differential trail is set the attacker must find a
pair of messages that follows it. A simple strategy uses an

1842    29th USENIX Security Symposium USENIX Association

https://web.archive.org/web/20191229164814/https://www.gpuserversrental.com/
https://web.archive.org/web/20191229164814/https://www.gpuserversrental.com/


early-abort tree exploration for the 16 first steps, taking
advantage of the degrees of freedom in the message, while
the remaining steps are probabilistic. More advanced
amortization methods (neutral bits [3], boomerangs [10,
11] or message modification [29]) are used to control more
than 16 steps. Because of this amortization, usually the
first 20 or so steps (which hold with a low probability
because of the non-linear trail) do not contribute to the
final complexity of the attack.

Neutral bits were first introduced for the cryptanal-
ysis of SHA-0 [2, 3]. The idea is to find a small message
modification (one or a few bits), that does not interact
with necessary conditions in the differential path before
a certain step x. Once a message pair following the dif-
ferential path until step x is found, one can get another
pair valid until step x by applying the modification. The
probability that a modification is neutral until a step x
can be pre-analysed before running the attack. A key ob-
servation is that any combination of two of more neutral
bits until step x is likely to also be neutral until step x.

Boomerangs [10] or tunnels [11] are very similar
amortization tools to neutral bits. Basically, they can
be seen as neutral bits that are planned in advance.
A perturbation built from one or a few local collisions
(or relaxed versions) is neutral to the differential path
after a few steps with a certain probability, but extra
conditions are forced in the internal state and message to
increase this probability. Boomerangs are generally more
powerful than neutral bits (they can reach later steps
than classical neutral bits), but consume more degrees
of freedom. For this reason, only a few of them can be
used, but their amortization gain is almost a factor 2.

Note that a lot of details have to be taken into ac-
count when using neutral bits or boomerangs, as many
equations between internal state bits and message bits
must be fulfilled in order for the differential path to be
valid. Thus, they can only be placed at very particular
bit positions and steps.

2.2.3 Chosen-prefix Collision Attacks

Chosen-prefix collision attacks are much harder than
identical-prefix attacks because they have to start from
a random difference in the internal state. To alleviate this
difficulty, the first chosen-prefix collision attack (demon-
strated on MD5 [25]) introduced a birthday search phase,
processing random message blocks until the chaining
variable difference δ belongs to a large predetermined
set S. The set S contains differences that can be slowly
erased by a succession of near-collision blocks, eventu-
ally leading to a collision. Due to the birthday paradox,

it is possible to reach a difference in S with birthday
complexity

√
π ·2n/|S|.

This two-phase strategy (see Figure 2) was first ap-
plied to SHA-1 in [22], for a cost of 277.1 hash calls. The
improvement compared to the generic 280 attack is not
very large, due to the difficulty for an attacker to build a
large set of differences that can be erased efficiently with
a near-collision block. In [22] a set S of 192 allowable
differences was used, corresponding to differences that
can be reached with a single near-collision block, using a
fixed differential trail, varying the signs of the differences,
and letting some uncontrolled differences spread during
the very last steps.
This was improved in [12] by increasing the size of

the set S. First the set of possible differences that can
be reached efficiently with a near-collision block was
increased to 8768 elements. Another crucial improve-
ment from [12] is the use of a multi-block strategy for
SHA-1 that significantly increases the size of the set
S: it contains differences δ that can be decomposed as
δ = −

(
δ

(1)
O + δ

(2)
O + · · ·+ δ

(r)
O

)
, where each δ

(i)
O can be

reached as the output of a differential trail. Therefore,
the attacker just has to find near-collision blocks with
output differences δ(1)

O , . . . , δ
(r)
O , where each near-collision

block will cancel one of the differences δ(i)
O composing

δ. In particular, a clustering effect appears with this
multi-block strategy, which can be leveraged by the at-
tacker to select dynamically the allowable differences at
the output of each successive block, to further reduce
the attack complexity. This resulted in an estimated CP
collision search complexity in the range of 266.9 to 269.4

hash evaluations, surprisingly not much greater than that
of finding a simple collision.

3 Improving SHA-1 Collision Attack

Our first contribution is an improvement of the colli-
sion attack from Eurocrypt 2013 [22] and its GPU im-
plementation from Crypto 2017 [23]. Through better
use of degrees of freedom (message modifications and
boomerangs) and code improvements, we gained a factor
between 8 and 10 (depending on GPU architecture) on
the time needed to find a conforming block.
Since this part of our work is very technical, we only

give an overview of our results in this section. Technical
details can be found in the full version of the paper [13]
and the corresponding code is available at https://
github.com/SHA-mbles/sha1-cp.

3.1 Analysis of Previous Works
First, we observed some differences between the theo-
retical analysis of [22] and the practical implementation

USENIX Association 29th USENIX Security Symposium    1843

https://github.com/SHA-mbles/sha1-cp
https://github.com/SHA-mbles/sha1-cp


IV
〈0〉

cv
〈δR〉

P/P ′
S

m1
〈δ (1)
M 〉

〈δ (1)
I 〉〈δ (1)

O 〉

〈δ〉 NL1 L

· · ·

H

mr
〈δ (r)
M 〉

〈δ (r)
I 〉 〈δ (r)

O 〉

〈δ+∑
i δ

(i)
O 〉

〈= 0〉

NLr L

u

δ ∈ S

Figure 2: High-level view of a chosen-prefix collision attack. We assume that differences δ ∈ S can be decomposed as
δ =−

(
δ

(1)
O + δ

(2)
O + · · ·+ δ

(r)
O

)
, where each δ(i)

O can be reached as the output of a differential trail.

of [23]. One of the boomerangs (on bit 6 of M6) con-
tradicts one of the conditions used to maximize the
probability of the path. Using this boomerang still im-
proves the attack, because the gain in efficiency is larger
that the loss in probability, but this affect the complex-
ity evaluation. Similarly, one of the neutral bits used in
the GPU code (on bit 11 of M13) contradicts another
condition in the differential path, leading to an increase
in complexity of a factor 20.2.

In our analysis, we assume that the neutral bit on bit
11 of M13 is not used, and that the boomerang on bit 6
ofM6 is only used for the last near-collision block, where
the speed-up is most noticeable, and we have enough
degrees of freedom to include all the boomerangs without
difficulty. Therefore we can estimate more accurately
the complexity of the previous CP attack [12] as 267.1

SHA-1 computations, instead of the range of 266.9 to 269.4

reported previously.

3.2 Additional Boomerangs
We found some additional boomerangs that can be used
to speed-up the attack, on bits 4, 5, and 6 ofM11. Those
boomerangs are not used in previous attacks because
they interact badly with conditions of the differential
trail, but this can be fixed by changing the last correction
of the boomerangs to be a modular addition correction
instead of an XOR correction.
More precisely, boomerangs are based on local colli-

sions: an initial message difference introduces a difference
in the state and another message difference cancels the
state difference at a later step. In previous works, both
message differences affect a single bit, so that they can be
considered either as an XOR difference or as a modular
difference. In this work, we only enforce a fixed modular
difference for some boomerangs; depending on the value
of the initial message, this difference will affect one or
several bits (due to carries). Therefore, we can relax some
of the conditions and make the additional boomerangs

compatible with the differential path.

3.3 Precise Conditions of Neutral Bits
We also improved the rate of partial solutions generated
by looking more precisely at the effect of each neutral
bit. In particular, we found that some neutral bits flip
with very high probability a certain condition after the
step for which they are considered neutral. Therefore,
these bits can be used as message modifications rather
than neutral bits: instead of considering both the initial
message and the message with the neutral bit applied
and to test both of them at the later step, we can directly
test the condition and decide which message to consider.
Using this bit as message modification instead of neutral
bit is more efficient, as one invalid branch in the search
tree will be rightfully not explored.

In some cases, we also found that a bit that is neutral
up to step i can only break some of the conditions of step
i, while the rest will never be impacted. Therefore, we
can test the conditions that are not affected before using
that neutral bit, so as to avoid unnecessary computations.
This strategy can be seen as a more precise neutral bit
approach, where the attacker doesn’t work step-wise, but
instead condition-wise: more fine-grained filtering will
lead to computation savings.
All in all, these tricks result in a better exploration

of the collision search tree by cutting branches earlier.
We give detailed benchmarks results and complexity esti-
mates in Table 4, after implementing our improvements
in the code of [23] (where an Ai-solution refers to an
input pair that is following the differential path until
word Ai inclusive).

3.4 Building Differential Trails
Following [12], we try to reuse as much as possible the
previous works on SHA-1, and to keep our differential
trail as close as possible to the attack of Stevens et

1844    29th USENIX Security Symposium USENIX Association



al. [23], out of simplicity. More precisely, for each block
of the collision phase, as starting point we reused exactly
the same core differential path as in [23]: the difference
positions in the message are the same, and the difference
positions in the internal state are the same after the first
13 steps (roughly). We also tried to keep difference signs
to be the same as much as possible. However, we made
some modifications to the boomerangs and neutral bits
as explained in the previous subsection.

The starting path skeleton is depicted in Figure 3. For
each new block of the near-collision phase, we:

1. collect the incoming chaining variable and its differ-
ences and insert them inside the skeleton;

2. set the signs of the differences in the very last steps
(chosen so as to minimize the final collision com-
plexity according to the graph, see Section 4) and
generate the linear system of all equations regarding
the message words;

3. compute a valid non-linear differential path for the
first steps;

4. generate base solutions, i.e. partial solutions up to
A14, possibly using help of neutral bits;

5. from the base solutions, search for a pair of messages
that fulfils the entire differential path, using neutral
bits, message modifications and boomerangs.

Steps 1 to 4 are done on CPU because they are not too
computationally intensive, but step 5 runs on GPU.

In comparison with a classical collision attack [23], our
paths have fewer degrees of freedom because of additional
constraints on the late-step message bits, and denser
input difference on the chaining variable. However, we
had enough degrees of freedom to find a conforming
messages pair for all blocks during the attack. The use of
the additional short boomerangs reduces also the number
of neutral bits that can be used, but we still had enough
to keep the GPU busy (in stage 5) while the CPU was
producing the base solutions (in stage 4), even though
our computation cluster is composed of low range CPUs.

4 Improving SHA-1 CP Collision Attack

In order to take advantage of the low-level improvements
to collision attack techniques, we must also improve the
high-level chosen-prefix collision attack.

The complexity of the birthday phase depends on the
size of the set S of differences that can be erased from the
state, therefore we need a larger set. For the near-collision
phase, the complexity depends on how we combine the
near-collision blocks to erase the difference in the state.
We improve the graph techniques of [12] and suggest
a more heuristic approach, resulting in a lower average
complexity, but without a guaranteed upper bound.

4.1 Graph Construction
In order to efficiently erase the differences from the set
S, [12] uses a graph where vertices are the state difference
in S, and there is an edge between δ and δ′ if δ′− δ can
be obtained as the output difference of the compression
function (using a near-collision block). The birthday
phase designates a starting node in the graph and we
just have to follow a path leading to the zero difference,
as illustrated in Figure 4. For each edge, we search for
a block with the correct output difference, using near-
collision search, with a cost that depends on the target
difference. In the following, we denote the cost for the
optimal output differences as Cblock; it is equivalent to
the cost of an identical-prefix collision.

Large graph. We started with the same approach as
in [12], building a series of graphs with increasing limits
on the number of blocks allowed. More precisely, we
consider the set of all nodes that are reachable with a
path of cost at most 24 Cblock and up to 10 blocks. This
results in a graph with 236.2 nodes1, which requires 2TB
of storage (storing only the nodes and their cost).

Clustering. In order to minimize the complexity of the
near-collision phase of the attack, [12] uses a clustering
technique to exploit multiple paths in the graph (see
Figure 5). Indeed, the near-collision search does not
have to commit to a fixed output difference. When two
output differences correspond to useful paths in the graph
and are compatible with the same differential path, the
attacker can run the near-collision search and stop as
soon as one of them is obtained.
Concretely, let us assume we have two output differ-

ences δ1 and δ2 compatible with the same differential
trail, that can each be reached with a cost of Cblock.
There are two different ways to erase a difference −δ1−δ2
in the state:

• a block with difference δ1, followed by a block with
difference δ2;

• a block with difference δ2, followed by a block with
difference δ1.

If we don’t decide in advance the target difference for
the first block, the search is expected to reach either δ1
or δ2 with a cost of only 0.5 Cblock, leading to an attack
complexity of 1.5 Cblock rather than 2 Cblock.

In our case, we initially consider nodes at distance up
to 24 Cblock and we run the clustering technique to get a
better estimate of the complexity when we don’t specify
in advance the sequence of differences. After several
weeks of computation on a machine with 48 cores and

1The largest graph suggested in [12] has size 233.7.

USENIX Association 29th USENIX Security Symposium    1845



Collision (old) Collision (new)
GPU arch Hashrate A33 rate SHA-1 A33 rate (r) SHA-1 Gain
K20x (1 GPU) Kepler 1.7GH/s 28k/s 264.4 255k/s 261.2 9.1
GTX 970 Maxwell 3.9GH/s 59k/s 264.5 570k/s 261.2 9.6
GTX 1060 Pascal 4.0GH/s 53k/s 264.7 470k/s 261.6 8.8
GTX 1080 Ti Pascal 12.8GH/s 170k/s 264.7 1500k/s 261.6 8.8

Table 4: Cost of collision attacks. One collision requires on average 248.5 A33-solutions (those results include the
boomerang on M6[8]).
Note: we use the hashrate from hashcat, which is slightly over-optimistic (i.e. attack cost in SHA-1 computations is
overestimated).

i Ai Wi

______________________________
-4: | |
-3: | |
-2: | Incoming Chaining Variable |
-1: | |
00: |______________________________| ----xx------------------------x-
01: ??????????????????????????????-- xx-------------------------x----
02: ???????????????????????????????? x-xx-x---------------------xxx--
03: ???????????????????????????????? --xxxx-----------------------x--
04: ???????????????????????????????? x-xxxx---------------------xx-x-
05: ?????????????????????|?|???????? -x------------------------x----
06: ?????????????????????|?|???????? --x--x-----------------0-0-xxx--
07: ????-------------------0-0?????? xxx-xx------------1-1------x-x--
08: ???x------------------|--0?0--?? ----xx------------------------x-
09: ???-------------------|--1?1--?? xx----------------------0--x----
10: ???--------------------|0|?---?? x-xx-x-------------1-------xxx--
11: ??x--------------------|0|0----- --x-xx-------------------111-x--
12: -------------------------111---- x-xxux---------------------xx---
13: n--------------------------000-- x-xx----------------------1u----
14: --n------------------------111-- --------------------------1-xx--
15: u-1-1--------------------------- x-xxx----------------------n----
16: un0-0--------------------------- ----u----------------------nu---
17: u--1---------------------------- -xxnn----------------------n----
18: u-u0---------------------------- --0-n----------------------n-n--
19: u------------------------------- -xuu-----------------------n----
20: u-u----------------------------- x-nux----------------------nnu--

Figure 3: Skeleton of starting differential path for all blocks during the near-collision phase of our CP collision attack
on SHA-1 (only the first 20 steps are depicted). The MSB’s are on the right and “-” stands for no constraint, while
the notation “|” on two bits vertically adjacent mean that these two bits must be equal. The other notations are
similar to the ones used in [7]. This is only to give a general idea of the differential path used, as several conditions on
the message and/or on the internal state are not represented here.

0

δ

Figure 4: Graph search.

0

δ

Figure 5: With clustering.

δ

0

Figure 6: Bi-directional.

δ

0

Figure 7: Implicit.

1846    29th USENIX Security Symposium USENIX Association



3TB of RAM, we find that almost 90% of the nodes are
actually at distance 6 Cblock or less, as seen in Table 5.
All the differences in this set are active only on a 64-

bit mask. Therefore, we use those bit positions for the
birthday phase: we truncate SHA-1 to the remaining 96
bits2 and we generate a large number of partial collisions
until one of them corresponds to a difference in the
graph.

4.2 Bi-directional Graph
Since the CP collision attack is essentially a path search
in a graph, we can use a bi-directional search to make
the search more efficient. More precisely, when we eval-
uate the cost of a node, instead of just looking it up
in the graph, we recompute all edges starting from the
node to see if they reach the graph and compute the
cost using the clustering formula. This corresponds to a
bi-directional search where we pre-compute in the back-
wards direction the set of values that go to zero after at
most 10 blocks, and during the online phase, we compute
one block forward. This is illustrated by Figure 6, where
black dots correspond to precomputed nodes stored in
the graph, and white dots are only computed during the
online phase.
This can be seen as a time-memory trade-off: we use

nodes at a distance up to 11 blocks, but we only build
explicitly the graph with 10 blocks. Moreover, we can
use nodes that are not reachable with a single trail of
cost below 24 Cblock, and that are therefore excluded
from our initial graph. Indeed, if there exists a trail such
that the cost is below 24 Cblock when removing an edge,
the forward search using that edge will hit the explicit
graph, and we can evaluate the distance of the node.
We can’t compute exactly the size of this implicit

graph, but we can evaluate it experimentally by simulat-
ing the birthday phase of the attack. We found that we
need on average 226.4 attempts before hitting the graph,
which corresponds to a graph size of roughly 238 (assum-
ing that we detect being in the graph with a probability
of 0.75, as was the case with the parameters of [12]).

4.3 Implicit Nodes
Following [12], we build the graph using a set D of 8768
potential output differences with high probability (cor-
responding to a cost up to 8 Cblock). However, there
are many other output differences that can be useful
in our attack, even if they have a lower probability: we
can use a block as long as the new state difference gets
closer to a collision. Therefore, during the near-collision
phase, instead of keeping only blocks with an output

2Given by mask 0x7f000000, 0xfff80001, 0x7ffff000,
0x7fffffc0, 0x7fffffff

difference corresponding to an explicit edge of the graph,
we keep all blocks that follow the trail up to step 61
and we look up the new state difference in the graph
(using the bi-directional strategy above). With a larger
number of usable output differences, the cost of each
block decreases (Figure 7).

Again, we can’t compute explicitly the complexity of
this attack strategy, but we can run simulations. Ac-
cording to our experiments with the graph described
above, the average cost of the near-collision phase is only
2 Cblock, even though most of the nodes in the graph
correspond to a cost of 6 Cblock when following edges
that have been explicitly considered.

Finally, we can use this strategy to reduce the number
of near-collision blocks used in the attack. In practice, we
observed that most of the nodes in our graph can actually
be reached with fewer than 11 blocks. In particular, when
using output differences that do not correspond to edges
of the graph, we often reach an output difference that can
be erased with fewer blocks than expected, in particular
for the first near-collision blocks.

5 Chosen-Prefix Collision Computation

Even though we managed to reduce the cost of the chosen-
prefix collision for SHA-1 to only 263.7 SHA-1 evaluations,
performing such a large-scale computation remains very
expensive. We show that it can be computed with an aca-
demic budget, for a total cost much lower than US$ 100k.

5.1 Attack Parameters

Using the idea described in the previous section, we have
the following parameters for the attack:

• We use a limit of at most 11 blocks, but we aim for
10 blocks at most for the attack (to fit in a 6144-bit
key, see next section);

• The graph G has size roughly 238, but it is not
computed explicitly;

• The birthday stage is a parallel collision search
algorithm (using the distinguished points technique
of [28]) with a mask of 96 bits, and we need about
226.4 partial collisions on those 96 bits. Therefore
the expected complexity of the birthday phase is√
π296226.4 ≈ 262;

• We use chains (consecutive iterations of the func-
tion from a starting point during the distinguished
points technique) of length 228, resulting in a data
complexity of 1/2 TB to store 234 chains;

• We expect a cost of 2 Cblock for the near-collision
phase.

USENIX Association 29th USENIX Security Symposium    1847



Max Cost 1 bl. 2 bl. 3 bl. 4 bl. 5 bl. 6 bl. 7 bl. 8 bl. 9 bl. 10 bl.
1 Cblock 8.17 8.17 8.17 8.17 8.17 8.17 8.17 8.17 8.17 8.17
2 Cblock 9.17 16.30 19.92 22.05 23.13 23.95 24.44 24.55 24.62 24.65
3 Cblock 10.17 17.10 21.76 24.66 26.58 27.95 28.96 29.71 30.31 30.76
4 Cblock 12.53 18.60 22.97 26.34 28.68 30.35 31.56 32.54 33.29 33.88
5 Cblock 12.53 19.65 24.18 27.44 29.83 31.65 33.04 34.14 34.90 35.42
6 Cblock 12.53 19.79 24.81 28.26 30.74 32.62 34.05 35.08 35.67 36.03
7 Cblock 13.09 20.37 25.30 28.82 31.35 33.24 34.59 35.43 35.86 36.15
8 Cblock 13.09 20.62 25.72 29.27 31.81 33.65 34.81 35.54 35.92 36.19

Table 5: Size of the set S with various limits on the maximum cost and on the number of near-collision blocks (log2).

Complexity estimate. Overall, for the attack param-
eters chosen, the birthday part costs about 262.05 SHA-1
computations, while the near-collision part is expected
to require 1 Cblock for the last block, and 1 Cblock in
total for the previous blocks.
As explained in ??, we use the boomerang on M6[8]

for the last block, so that the expected time to find a
conforming block can be estimated directly from the
figures of Table 4 as Cblock = 248.5/r. For the intermedi-
ate blocks, we don’t use this boomerang, so the rate is
reduced to r/1.9 but we only require 248.08 A33-solutions
for one Cblock. Our simulations show that the total cost
for all intermediate blocks is roughly one Cblock, there-
fore it will take time Cblock = 1.9 ·248.08/r. Finally, we
can estimate the total attack time as

262.05 ·h+ 248.5 +1.9 ·248.08

r
,

with r the A33-solution rate (from Table 4), and h the
hash-rate for the birthday phase (from Section 5.3). We
give concrete complexity estimates on several GPUs in
Table 2. Our chosen-prefix collision attack is roughly
four time as expensive as an identical-prefix attack.

5.2 A GPU Cluster
We originally estimated that our attack would cost
around US$ 160k by renting GPUs from a cloud provider
such as Amazon or Google (using spot or preemptible
prices). However, since our computations do not need
much communication between the GPUs, nor fancy inter-
GPU task scheduling, we can consider renting cheaper
GPUs from providers that use gaming or mining cards in
consumer-grade PCs, rather that the datacenter-grade
hardware used by big cloud providers. Services like
gpuserversrental.com rent GTX 1060 or GTX 1080
GPUs for a price below 5 cents per month per CUDA
core; which would give a total cost around US$ 75k to
compute a chosen-prefix collision.
Our cluster was made of 150 machines with 6 GPU

each (with a mix of GTX 1060 3G, and GTX 1060 6G),

and one master node with two 2TB hard drives in a RAID
configuration. The master node had a Core i7 CPU, but
the GPU nodes had low-end Pentium or Celeron CPU
with two cores. Each machine ran Ubuntu Linux, but
there was no cluster management software installed (we
used clush to run commands on all the nodes). We
negotiated a price of US$ 37.8k per month (higher than
current prices), and used the cluster for two months.

Cost analysis. We paid US$ 75.6k for our computa-
tion, but the cost could be as low as US$ 50k with cur-
rently lower GPU prices and less idle time. With the
same methods, computing an identical-prefix SHA-1 col-
lision would cost only about US$ 11k. This is clearly
within reach of reasonable attackers.

Of course the underlying weakness of SHA-1 has al-
ways been present, even if it was not public (and maybe
not discovered). We estimate that a PS3 cluster (as
used by Stevens et al. [27], and as deployed by the US
army3) could have implemented this attack for a cost
of a few million dollars in 2010, when SHA-1 was still
the most widely used hash function. This underlines
that the deprection process of SHA-1 should have been
much faster after the publication of the first theoretical
collision attack in 2004.

Looking at the future, this attack will get even cheaper
as computation costs decrease. Following Moore’s law
(that seems to be still valid for GPU4), we estimate that
it should cost less than US$ 10k to generate a SHA-1
chosen-prefix collision by 2025.

5.3 Birthday Phase
In order to simplify the implementation, we implemented
the birthday phase with two distinct steps: in the first
step, each GPU computes independently a series of

3https://phys.org/news/2010-12-air-playstation-3s-
supercomputer.html

4https://blogs.nvidia.com/blog/2017/05/10/nvidia-
accelerates-ai-launches-volta-dgx-workstation-robot-
simulator-more/

1848    29th USENIX Security Symposium USENIX Association

gpuserversrental.com
https://phys.org/news/2010-12-air-playstation-3s-supercomputer.html
https://phys.org/news/2010-12-air-playstation-3s-supercomputer.html
https://blogs.nvidia.com/blog/2017/05/10/nvidia-accelerates-ai-launches-volta-dgx-workstation-robot-simulator-more/
https://blogs.nvidia.com/blog/2017/05/10/nvidia-accelerates-ai-launches-volta-dgx-workstation-robot-simulator-more/
https://blogs.nvidia.com/blog/2017/05/10/nvidia-accelerates-ai-launches-volta-dgx-workstation-robot-simulator-more/


Date Event Complexity # collisions
July 25 Starting cluster setup
July 27 Computation started
August 14 Step 2 unsuccessful 261.9 225.8

August 20 Step 2 unsuccessful 262.4 226.6

August 24 Step 2 unsuccessful 262.6 227.1

August 30 Step 2 successful! 262.9 227.7

Table 6: Timeline of the birthday phase.

Date Event #A61-sol Complexity
September 07 Block 1 founda 216 0.11 Cblock
September 09 Block 2 found 213.5 0.02 Cblock
September 13 Block 3 found 216.9 0.21 Cblock
September 14 Block 4 found 210.8 0.003 Cblock
September 16 Block 5 found 215.5 0.08 Cblock
September 18 Block 6 found 215.5 0.08 Cblock
September 20 Block 7 found 216 0.11 Cblock
September 21 Block 8 found 214.5 0.04 Cblock
September 27 Block 9 foundb 218.2 0.38 Cblock

Table 7: Timeline of the near-collision phase. Cblock
corresponds to 219.17 A61-solutions, excepted for the last
block where the use of an extra boomerang increases it
to 219.58

aTwo solutions found
bUsing the M6[8] boomerang

chains, and in the second step we gather all the results,
sort them to find collisions in the end-points, and re-run
the chain to locate the collisions. Our implementation
runs at a speed of h = 3.5GH/s on GTX 1060 GPUs
(respectively 3.2 GH/s on GTX 970 and 11 GH/s on
GTX 1080 Ti). This is somewhat lower than the hashcat
benchmarks reported in Table 2 because hashcat can
skip some parts of SHA-1, and we have to keep two SHA-1
states in the registers to implement the birthday phase.
Every time we run the second step, we then search the
collisions in the graph, to determine whether we have
reached a useful starting point (this is run on a sepa-
rate machine with at least 1TB or RAM, and we let the
cluster restart the first step in the meantime).

As shown in Table 6, we ran step 2 four times, and
we have been quite unlucky in the birthday phase, only
succeeded after finding 227.7 collisions, rather than the
estimated 226.4. It took us 34 days to compute those
chains, which corresponds to a hashrate 2.9 TH/s for
our cluster (including downtime).

5.4 Near-collision Phase
The near-collision phase is very technical and very com-
plex. Every time a block is found, we have to prepare the
search for the next block. This first requires to traverse
the graph G to find the parameters for the next block:
we have different constraints in the last steps depending
on which output differences are desired. Then, we had
to generate a new non-linear part for the early steps, as
explained in Section 3.4. We used tools similar to [7],
which take a lot of parametrization and trial-and-error
to have a proper non-linear part that fits nicely with the
core differential path.
This was automated to some extent, but still took

between a few hours and a few days of manual work to
prepare for each block (it took more time for the first
blocks because there are more constraints to build the
path, and we were more experienced for the later blocks).
Unfortunately, this means that the GPU cluster was not
doing useful work during this time. We remark that our
attack could have cost less if we had fully automated the
entire cryptanalysis process, or if we had improved the
search algorithm for the non-linear part of the differential
path. This is definitely not impossible to achieve, but it
would require a lot of tedious work.

For the last block, we started the computation without
the boomerang on M6[8], and modified the path and
the code after one day to include it. As explained in
Section 3, this extra boomerang reduces the quality of
A61-solutions, so that we need 4/3 times the number of
solutions (219.58 instead of 219.17), but it almost doubles
the production rate of these solutions. In total, this
reduces the computation time by a factor 1.9/4/3≈ 1.4.

As expected, intermediate blocks cost much less than
Cblock (the cost of a block with a pre-determined output
difference) because we can target a large number of
output differences. Only the last block is expected to
cost Cblock. However, we were quite lucky in this phase
of attack, because we found all the blocks after only 0.9
Cblock, rather than the estimated 2 Cblock. In particular,
the last block was found after only 218.2 A61-solutions
(0.38 Cblock), instead of the expected 219.58.

A timeline of the near-collision phase is given in Ta-
ble 7, and the chosen-prefix collision is given in the full
version of the paper [13].

5.5 Resources Used
A quick overview of the resources used for each part is
given in Table 8. If we evaluate the total useful GPU
time spent for the attack, we have roughly 78 years for
the birthday phase, 25 years for blocks 1 to 9, and 10
years for the last block. This means that roughly 75% of
our GPU time was useful. If we convert the attack time

USENIX Association 29th USENIX Security Symposium    1849



to SHA-1 evaluations, we arrive at a total of 263.6, which
is quite close to the estimate of 263.5 given in Table 2.

6 Application to PGP Web of Trust

Our demonstration of a chosen-prefix collision targets
the PGP/GnuPG Web of Trust. More precisely, our goal
is to create two PGP keys with different UserIDs, so
that key B is a legitimate key for Bob (to be signed
by the Web of Trust), but the signature can be trans-
ferred to key A which is a forged key with Alice’s ID.
This will succeed if the hash values of the identity cer-
tificates collide, as in previous attacks against X.509
MD5-based certificates [25,27]. Moreover, due to details
of the PGP/GnuPG certificate structure, our attack can
reuse a single collision to target arbitrary users Alice
and Bob: for each victim, the attacker only needs to
create a new key embedding the collision, and to collect
a SHA-1 signature. This is arguably the first practical
attack against a real world security application using
weaknesses of SHA-1.

6.1 Exploiting a Chosen-prefix Collision
We now focus on the identity certificates that will be
hashed and signed. Following RFC 4880 [5], the hash
computation done during certificate signing receives the
public key packet, then a UserID or user attribute packet,
and finally a signature packet and a trailer. The idea of
the attack is to build two public keys of different sizes, so
that the remaining fields to be signed are misaligned, and
we can hide the UserID of key A in another field of key B.
Following RFC 4880, the signature packet is protected
by a length value at the beginning and at the end, so that
we have to use the same signature packet in key A and
key B (we cannot stuff data in the hashed subpacket).
Therefore, we can only play with the UserID and/or user
attribute packets. Still, a user attribute packet with a
JPEG image gives us enough freedom to build colliding
certificates, because typical JPEG readers ignore any
bytes after the End of Image marker (ff d9). This gives
us some freedom to stuff arbitrary data in the certificate.

More precisely, we build keys A and B as follows. Key
A contains an 8192-bit RSA public key, and a UserID
field corresponding to Alice. On the other hand, key B
contains a 6144-bit RSA public key, the UserID of Bob
and a JPEG image. Therefore, when Bob gets a cer-
tification signature of his key, the signer will sign two
certificates: one containing his public key and UserID,
and another one containing the public key and the image.
The public keys A and B and the image are crafted in
such a way to generate a collision between the certificates
with the key A and Alice’s UserID, and the certificate
with key B and the image.

6.1.1 Content of Identity Certificates

Figure 8 shows a template of the values included in
the identity certificate: those values are hashed when
signing a key, and we want the two hashes to collide. In
this example, the UserID field of key A contains “Alice
<alice@example.com>”, and the image in key B is a
valid JPEG image that will be padded with junk data
after the End of Image marker. The real JPEG file is 181
bytes long5 (from ff d8 to ff d9), and it is padded with
81 bytes, so that the file included in the key is 262 bytes
long (here the padding includes 46 bytes corresponding
to the end of the modulus of key A, 5 bytes corresponding
to the exponent of key A, and 30 bytes corresponding
to Alice’s UserID).

In Figure 8, we use the following symbols:

01 Bytes with a fixed value are fixed by the specifications,
or chosen in advance by the attacker (length of fields,
UserID, user attribute, ...)

?? Represent bytes that are determined by the chosen-
prefix collision algorithm (the messages M and M ′
to generate a collision)

!! Represent bytes that are selected after finding the
collision, to generate an RSA modulus with known
prime factors

.. Represent bytes that are copied from the other cer-
tificate

** Represent time-stamps chosen by the attacker
$$ Represent the time-stamp chosen by the signer

Underlined values correspond to packet headers (type
and length).

6.1.2 Attack Procedure

To carry out the attack, we have to perform the following
steps:

1. Build a chosen-prefix collision with prefixes “99
04 0d 04 ** ** ** ** 01 20 00” and “99 03
0d 04 ** ** ** ** 01 18 00”, after filling the **
with two arbitrary time-stamps. The chosen-prefix
collision must have at most 10 near-collision blocks.
This determines the ?? bytes of the keys.

2. Choose a tiny JPEG image to include in key B (fixed
orange bytes), and an arbitrary UserID to include
in key A (fixed yellow bytes)

3. Select “!!” bytes in B to obtain a modulus with
known factors

4. Select “!!” bytes in A to obtain a modulus with
known factors

5. Generate key B with the modulus and the padded
JPEG. Ask for a signature of the key.

5Building a JPEG image smaller than 256 bytes is not easy,
but it is possible

1850    29th USENIX Security Symposium USENIX Association



Phase Step Main resource Repetitions Wall time
Setup Preparation of the graph CPU and RAM ≈ 1 month
Birthday Computing chains GPU 34 days

Sorting chains Hard drive 4 × ≈ 1 day
Locating collisions GPU 4 × < 1/2 day
Searching in graph RAM 4 × < 1/2 day

Blocks Building trail & code Human Time 9 × ≈ 1 day
Finding block GPU 8 × 3 hours – 3 days
Checking results in graph RAM 8 × < 1/2 hour
Finding last block GPU 1 × 6 days

Table 8: Resources used for the attack

6. Copy the signature to key A.

We point out that the chosen-prefix collision is com-
puted before choosing the UserIDs and images that will
be used in the attack. Therefore, a single CPC can be
reused to attack many different victims. This contrasts
with attacks on X.509 certificates [25, 27], where the
identifier is hashed before the public key.

In order to build the modulus (steps 3 and 4 above), we
use the same strategy as in previous works [25,27]. More
precisely, the high order bits are fixed by previous steps,
and the low-order bits can be chosen freely. Therefore
we have to find a modulus in an interval [A,B] with a
known factorisation. We select a random prime P (in
the order of B−A), and we compute Q = bB/P c. If
Q is a prime, we use P ∗Q as the modulus: we have
A ≤ P ∗Q ≤ B when P ≤ B−A+ 1. This takes a few
minutes in practice.
We note that the factors of the modulus are unbal-

anced. With the template of Figure 8, we expect factors
of 88 bits and 6056 bits for Key B, and 368 bits and
7824 bits for key A. In practice we managed to find a CP
collision with fewer blocks than in Figure 8, so that key
B actually has factors of 1112 bits and 5032 bits. This
makes both keys hard to factor. As mentioned in [14], it
is possible to find modulus with somewhat larger factors
using more advanced techniques.

6.1.3 Example Keys

An example of a pair of keys generated with this proce-
dure can be directly downloaded from these URLs:

Key A: https://SHA-mbles.github.io/alice.asc

Key B: https://SHA-mbles.github.io/bob.asc

The keys can be examined with pgpdump -i to see
that they include the same signature.

In our demonstration, we chose a time-stamp far in the
future to avoid malicious usage of our collision. However,

an attacker that can repeat our work will obviously use
a valid time-stamp.

6.1.4 Attack Variant

We also found an alternative attack, exploiting the PGP
key format in a slightly different way, where key B con-
tains a short public key followed by a JPEG image. We
would consider both the public key and the image as the
prefix, and stuff the CPC blocks inside the image (after
the EOI marker). This variant leaves a smaller space
for the CPC blocks, but the advantage is that key A
is less suspicious because it doesn’t need to contain a
valid JPEG file inside the modulus (the modulus is really
made of random-looking blocks). On the other hand, this
variant requires to compute a new CPC for each key B.

6.2 Impact
As explained in Section 7.1, the “classic” branch of
GnuPG (v1.4) uses SHA-1 by default for identity cer-
tifications, and there is still a non-negligible number of
keys signed with SHA-1. Before our attack was disclosed,
SHA-1 signatures were also accepted by the “modern”
branch of GnuPG (v2.2). This made the attack usable
in practice.
In addition, a single CPC can be reused to attack

many different victims, so that the cost of the CPC is
just a one-off cost. Given our cost estimation around
US$ 50k, this is well within reach of strong adversaries.

7 SHA-1 Usage and Disclosure

SHA-1 is still used in a surprising number of security
applications. It is supported in many secure channel
protocols (TLS, SSH), and remains actually used for
some fraction of the connections. It is also used for PGP
identity certifications, and it is the foundation of GIT
versioning system. We expect there are also an important

USENIX Association 29th USENIX Security Symposium    1851

https://SHA-mbles.github.io/alice.asc
https://SHA-mbles.github.io/bob.asc


Key A (RSA-8192) Key B (RSA-6144)

0x0000 99 04 0d 04 ** ** ** ** 01 20 00 ?? ?? ?? ?? ?? 99 03 0d 04 ** ** ** ** 01 18 00 ?? ?? ?? ?? ??
?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??
?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??
?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??

0x0040 ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??
?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??
?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??
?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??

...
...

0x02c0 ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??
?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??
?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??
?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??

Collision here!

0x0300 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..← !! !! !! !! !! !! !! !! !! !! !! 00 11 01 00 01
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..← d1 00 00 01 19 c0 57 01 10 00 01 01 00 00 00 00
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..← 00 00 00 00 00 00 00 00 ff d8 ff db 00 43 00 ff
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..← ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

0x0340 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..← ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..← ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..← ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..← c0 00 0b 08 00 40 00 58 01 01 11 00 ff c4 00 28

0x0380 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..← 00 01 01 01 00 00 00 00 00 00 00 00 00 00 00 00
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..← 00 00 04 03 10 01 00 00 00 00 00 00 00 00 00 00
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..← 00 00 00 00 00 00 ff da 00 08 01 01 00 00 3f 00
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..← d0 4e a0 01 3a 80 04 ea 01 3a 80 04 e0 00 a0 13

0x03c0 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..← 8a 13 82 84 e2 84 e0 00 00 28 4e 00 0a 13 8a 13
.. .. .. .. .. .. .. .. .. .. .. .. .. !! !! !!↔ a8 00 4e a1 3a 80 4e 28 4e 28 07 ff d9 .. .. ..
!! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !!→ .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
!! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !!→ .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

0x0400 !! !! !! !! !! !! !! !! !! !! !! 00 11 01 00 01→ .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
b4 00 00 00 19 41 6c 69 63 65 20 3c 61 6c 69 63→ .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
65 40 65 78 61 6d 70 6c 65 2e 63 6f 6d 3e 04 10→ .. .. .. .. .. .. .. .. .. .. .. .. .. .. 04 10
01 02 00 06 05 02 .. .. .. .. 04 ff 00 00 00 0c← 01 02 00 06 05 02 $$ $$ $$ $$ 04 ff 00 00 00 0c

Figure 8: Construction of colliding OpenPGP identity certificates. The colour corresponds to the packets hashed
when computing the signature: first, the public key packet (with header), then the UserID or user attribute , and
finally the signature packet and trailer . Arrows show when a value is chosen in one key and copied to the other.

number of proprietary systems using SHA-1, but getting
actual data on this is difficult.

Collisions and chosen-prefix collisions do not threaten
all those usages (in particular HMAC-SHA-1 seems rela-
tively safe), but there are several settings that are directly
affected by chosen-prefix collisions:

• PGP identities can be impersonated if trusted third
parties sign identity certificates with SHA-1 (see 7.1)

• X.509 certificates could be broken if some CAs issue
SHA-1 certificates with predictable serial numbers

(see 7.2)
• TLS and SSH connections using SHA-1 signatures

to authenticate the handshake could be attacked
with the SLOTH attack [1] if the CP collision can
be generated extremely quickly (see 7.3 and 7.4)

We stress that when a protocol supports several hash
functions, those attacks are possible as long as SHA-1 is
supported by implementations, even if it is not selected
during normal use. A man-in-the-middle attacker will
just force the parties to use SHA-1.

1852    29th USENIX Security Symposium USENIX Association



More generally, as cryptographers, we recommend to
deprecate SHA-1 everywhere, even when there is no direct
evidence that this weaknesses can be exploited. SHA-1
has been broken regarding collision resistance for 15
years, and there are better alternatives available, well-
studied, and standardized (SHA-2 [17], SHA-3 [18]). There
is no good reason to use SHA-1 in modern security soft-
ware. Attacks only get better over time, and the goal of
the cryptanalysis effort is to warn users so that they can
deprecate algorithms before the attacks get practical.
As a stopgap measure, the collision-detection library

of Stevens and Shumow [26] can be used to detect attack
attempts (it successfully detects our attack).

Responsible disclosure. We have tried to contact
the authors of affected software before announcing this
attack, but due to limited resources, we could not notify
everyone. We detail below the main affected products,
some of the responses we received, and countermeasures
deployed at the time of writing. More up to date infor-
mation will be available on the website of the attack:
https://sha-mbles.github.io.

7.1 SHA-1 Usage in GnuPG
There are currently two supported branches of GnuPG:
GnuPGv1 is the “legacy” (or “classic”) branch, and
GnuPGv2 is the “modern” branch. The first version of
GnuPGv2 dates back to 2006, and the “legacy” branch
is no longer recommended, but the transition took a
long time. In particular, GnuPGv1 was still the default
version in Fedora 29 (released in October 2018), and in
Ubuntu 16.04 LTS (which is supported until April 2021).

GnuPG supports many different algorithms, including
SHA-1. Moreover, SHA-1 is the default algorithm for iden-
tity certification in GnuPGv1. This is why we targeted
PGP in our demonstration of chosen-prefix collisions. Af-
ter we disclosed our results to the GnuPG team, SHA-1
signatures have been deprecated in the GnuPGv2 branch
(commit edc36f5, CVE-2019-14855).

Web of Trust. The original trust model of PGP was
the Web of Trust. Instead of using a central PKI, users
sign each other’s keys to attest of their identity (e.g.
when attending a key signing party), and trust such
certificates from third parties. A scan of the PGP Web
of Trust (i.e. identity certifications on public keyservers)
shows that roughly 1% of the identity certifications issued
in 2019 use SHA-1. This probably corresponds to usage
of GnuPGv1 with the default settings, and would make
our attack feasible.

CAcert. CAcert (http://cacert.org/) is one of the
main CAs for PGP keys, and they still use SHA-1 to

sign user keys. We have first contacted them by email
on December 14th, and got an answer on January 6th
acknowledging this issue. They are now planning a switch
to a secure hash function for key certification.

7.2 SHA-1 Usage in X.509 Certificates
The CA/Browser Forum decided to sunset SHA-1 in
October 2014, and its members are not supposed to issue
SHA-1 certificates after 2016. Web browsers have enforced
similar rules, and all modern browsers now reject SHA-1
certificates.

However, SHA-1 certificates are still present for legacy
purposes, on services that are used by older clients that
can not be upgraded. In particular, it remains possible
to buy a SHA-1 certificate today, and there are a few
recently-issued certificates in use on the web6. There are
also a few old SHA-1 certificates still in use7. Those cer-
tificates are rejected by modern web browsers, but they
can be accepted by non-web TLS clients. For instance,
it seems that the Mail application in Windows 10 can
open an IMAP session secured with a SHA-1 certificate
without warning.

Chosen-prefix collisions against MD5 have been able
to break the security of certificates in the past, with
the creation of a Rogue CA by Stevens et al. [27], and
in the wild by the flame malware [21]. If some of the
CAs still issuing SHA-1 certificates use predictable serial
numbers, a similar attack might be possible today (being
located at the beginning of the “to-be-signed” part of
the certificate, if the serial number is unpredictable then
the CP collision attack is thwarted as a crucial part of
the hashed input is not controlled by the attacker).

7.3 SHA-1 Usage in TLS
Besides certificates, there are two places where SHA-1
can be used in the TLS protocol: SHA-1 can be used
to sign the handshake, and HMAC-SHA-1 can be used to
authenticate data in the record protocol.

Handshake. Client authentication in TLS uses a sig-
nature of the transcript, which can be abused using CP
collisions, as shown by the SLOTH attacks [1]. However,
this remains far from being a practical attack, because

6Some examples can be found by searching through
certificate transparency logs: http://web.archive.org/
web/20191227165750/https://censys.io/certificates?q=
tags%3Atrusted+AND+parsed.signature.signature_algorithm.
name%3ASHA1%2A+AND+parsed.validity.start%3A%5B2019-01-
01+TO+%2A%5D

7As seen in this scan: http://web.archive.org/web/
20191227165038/https://censys.io/ipv4?q=443.https.tls.
validation.browser_trusted%3AYes+AND+443.https.tls.
certificate.parsed.signature_algorithm.name%3ASHA1%2A

USENIX Association 29th USENIX Security Symposium    1853

https://sha-mbles.github.io
http://cacert.org/
http://web.archive.org/web/20191227165750/https://censys.io/certificates?q=tags%3Atrusted+AND+parsed.signature.signature_algorithm.name%3ASHA1%2A+AND+parsed.validity.start%3A%5B2019-01-01+TO+%2A%5D
http://web.archive.org/web/20191227165750/https://censys.io/certificates?q=tags%3Atrusted+AND+parsed.signature.signature_algorithm.name%3ASHA1%2A+AND+parsed.validity.start%3A%5B2019-01-01+TO+%2A%5D
http://web.archive.org/web/20191227165750/https://censys.io/certificates?q=tags%3Atrusted+AND+parsed.signature.signature_algorithm.name%3ASHA1%2A+AND+parsed.validity.start%3A%5B2019-01-01+TO+%2A%5D
http://web.archive.org/web/20191227165750/https://censys.io/certificates?q=tags%3Atrusted+AND+parsed.signature.signature_algorithm.name%3ASHA1%2A+AND+parsed.validity.start%3A%5B2019-01-01+TO+%2A%5D
http://web.archive.org/web/20191227165750/https://censys.io/certificates?q=tags%3Atrusted+AND+parsed.signature.signature_algorithm.name%3ASHA1%2A+AND+parsed.validity.start%3A%5B2019-01-01+TO+%2A%5D
http://web.archive.org/web/20191227165038/https://censys.io/ipv4?q=443.https.tls.validation.browser_trusted%3AYes+AND+443.https.tls.certificate.parsed.signature_algorithm.name%3ASHA1%2A
http://web.archive.org/web/20191227165038/https://censys.io/ipv4?q=443.https.tls.validation.browser_trusted%3AYes+AND+443.https.tls.certificate.parsed.signature_algorithm.name%3ASHA1%2A
http://web.archive.org/web/20191227165038/https://censys.io/ipv4?q=443.https.tls.validation.browser_trusted%3AYes+AND+443.https.tls.certificate.parsed.signature_algorithm.name%3ASHA1%2A
http://web.archive.org/web/20191227165038/https://censys.io/ipv4?q=443.https.tls.validation.browser_trusted%3AYes+AND+443.https.tls.certificate.parsed.signature_algorithm.name%3ASHA1%2A


the CP collision has to be computed in a very short time
(timeout value is generally set to a few seconds, but can
be up to several minutes).

In TLS 1.0 and 1.1, the handshake is hashed with the
concatenation of SHA-1 and MD5. Using the multicolli-
sion attack from Joux [9], computing a CP collision for
MD5‖SHA-1 is not much harder than for SHA-1. We give
concrete figures in Table 2, showing that this is probably
within reach of a well motivated adversary.

In TLS 1.2, the hash function used is configurable. The
vast majority of TLS 1.0/1.1 clients and server support
SHA-1, and many servers actually prefer to use SHA-1,
even when the client offers better algorithms8,9.

In TLS version 1.3, MD5 and SHA-1 have been removed.

Ciphersuites. The large majority of clients and
servers support ciphersuites where HMAC-SHA-1 is used
to authenticate the packets, at least for interoperability
reasons. It seems that usage of HMAC-SHA-1 represents a
few percent of all the connections10,11. This usage is not
threatened by our attack, but we recommend to avoid
SHA-1 usage when possible.

OpenSSL. The next version of OpenSSL will no longer
allow X.509 certificates signed using SHA-1 at security
level 1 and above (commit 68436f0). Since security level
1 is the default configuration for TLS/SSL, this will
prevent SHA-1 usage for certificates.
Debian Linux had previously set the default configu-

ration to security level 2 (defined as 112-bit security) in
the latest release (Debian Buster); this already prevents
dangerous usage of SHA-1 (for certificates and handshake
signature).

7.4 SHA-1 Usage in SSH
SHA-1’s usage in SSH is similar to its usage in TLS. The
SSH-2 protocol supports usage of SHA-1 to sign the tran-
script (at the end of the key exchange), and HMAC-SHA-1
to authenticate the data in the record protocol. As in
the TLS case, usage of SHA-1 to sign the transcript has
been shown to be potentially vulnerable to the SLOTH

8http://web.archive.org/web/20191227174651/https:
//censys.io/domain/report?field=443.https.tls.signature.
hash_algorithm

9http://web.archive.org/web/20191227174551/https:
//censys.io/domain?q=443.https.tls.signature.hash_
algorithm%3Asha1

10See https://telemetry.mozilla.org/new-pipeline/dist.
html#!measure=SSL_CIPHER_SUITE_FULL, were buckets 5, 61 and
63 correspond to HMAC-SHA-1 ciphersuites

11http://web.archive.org/web/20191226134753/https:
//censys.io/domain/report?field=443.https.tls.cipher_
suite.name.raw

attack [1], but this is not practical given the timing con-
straints (usually just a few seconds, but can be configured
to a longer period of time).

Again, the choice of cryptographic algorithms depends
on a negotiation between the client and server, so it is
hard to know exactly what will be selected. However,
scans of the IPv4 space from censys at the time of writing
show that roughly 17% of servers use SHA-1 to sign the
transcript12, and 9% of servers use HMAC-SHA-1 in the
record protocol13. This mostly corresponds to servers
running old versions of SSH daemons.

OpenSSH. Due to our results, since version 8.2 of
OpenSSH a “future deprecation notice” is included, ex-
plaining that SHA-1 signatures will be disabled in the
near-future.

7.5 Other Usages of SHA-1

DNSSEC. SHA-1 is still used in DNSSEC, with 18%
of the top-level domains using SHA-1 at the time of writ-
ing14. Since DNSSEC signatures include user-supplied
content, CP collisions could be used to attack the
DNSSEC system.

GIT. GIT relies heavily on SHA-1 to identify all ob-
jects in a repository. It does not necessarily require cryp-
tographic security from SHA-1, but there are certainly
some attack scenarios where attacks on SHA-1 would mat-
ter. In particular, signed GIT commits are essentially
signatures of a SHA-1 hash, so they would be sensitive
to collision attacks.
The GIT developers have been working on replacing

SHA-1 for a while15, and they use a collision detection
library [26] to mitigate the risks of collision attacks.

Timestamping. Many timestamping servers appar-
ently support SHA-1, such as: https://sectigo.com/
resources/time-stamping-server

8 Conclusion and Future Works

This work shows once and for all that SHA-1 should
not be used in any security protocol where some kind
of collision resistance is to be expected from the hash
function. Continued usage of SHA-1 for certificates or for

12http://web.archive.org/web/20191226130952/https:
//censys.io/ipv4/report?field=22.ssh.v2.selected.kex_
algorithm

13http://web.archive.org/web/20191226131928/https:
//censys.io/ipv4/report?field=22.ssh.v2.selected.client_
to_server.mac

14https://www.dns.cam.ac.uk/news/2020-02-14-sha-
mbles.html

15https://git-scm.com/docs/hash-function-transition/

1854    29th USENIX Security Symposium USENIX Association

http://web.archive.org/web/20191227174651/https://censys.io/domain/report?field=443.https.tls.signature.hash_algorithm
http://web.archive.org/web/20191227174651/https://censys.io/domain/report?field=443.https.tls.signature.hash_algorithm
http://web.archive.org/web/20191227174651/https://censys.io/domain/report?field=443.https.tls.signature.hash_algorithm
http://web.archive.org/web/20191227174551/https://censys.io/domain?q=443.https.tls.signature.hash_algorithm%3Asha1
http://web.archive.org/web/20191227174551/https://censys.io/domain?q=443.https.tls.signature.hash_algorithm%3Asha1
http://web.archive.org/web/20191227174551/https://censys.io/domain?q=443.https.tls.signature.hash_algorithm%3Asha1
https://telemetry.mozilla.org/new-pipeline/dist.html#!measure=SSL_CIPHER_SUITE_FULL
https://telemetry.mozilla.org/new-pipeline/dist.html#!measure=SSL_CIPHER_SUITE_FULL
http://web.archive.org/web/20191226134753/https://censys.io/domain/report?field=443.https.tls.cipher_suite.name.raw
http://web.archive.org/web/20191226134753/https://censys.io/domain/report?field=443.https.tls.cipher_suite.name.raw
http://web.archive.org/web/20191226134753/https://censys.io/domain/report?field=443.https.tls.cipher_suite.name.raw
https://sectigo.com/resources/time-stamping-server
https://sectigo.com/resources/time-stamping-server
http://web.archive.org/web/20191226130952/https://censys.io/ipv4/report?field=22.ssh.v2.selected.kex_algorithm
http://web.archive.org/web/20191226130952/https://censys.io/ipv4/report?field=22.ssh.v2.selected.kex_algorithm
http://web.archive.org/web/20191226130952/https://censys.io/ipv4/report?field=22.ssh.v2.selected.kex_algorithm
http://web.archive.org/web/20191226131928/https://censys.io/ipv4/report?field=22.ssh.v2.selected.client_to_server.mac
http://web.archive.org/web/20191226131928/https://censys.io/ipv4/report?field=22.ssh.v2.selected.client_to_server.mac
http://web.archive.org/web/20191226131928/https://censys.io/ipv4/report?field=22.ssh.v2.selected.client_to_server.mac
https://www.dns.cam.ac.uk/news/2020-02-14-sha-mbles.html
https://www.dns.cam.ac.uk/news/2020-02-14-sha-mbles.html
https://git-scm.com/docs/hash-function-transition/


authentication of handshake messages in TLS or SSH is
dangerous, and there is a concrete risk of abuse by a well-
motivated adversary. SHA-1 has been broken regarding
collision resistance since 2004, but it is still used in many
security systems. We strongly advise users to remove
SHA-1 support to avoid downgrade attacks.
We also show that gaming or mining GPUs offer a

cheap and efficient way to attack symmetric cryptog-
raphy primitives. In particular, it now costs less than
US$ 100k to rent GPUs and break cryptography with a
security level of 64 bits (i.e. to compute 264 operations
of symmetric cryptography).
The cost of our attack is roughly four times the cost

of a plain collision attack, so there is limited room for
improvements in terms of complexity.

On the other hand, we believe there is some possibility
to reduce the number of blocks used in the attack without
increasing the complexity much. Firstly, with a better
use of the global parameters of the general chosen-prefix
collision attack. By playing with the number of blocks,
the allowable probabilities and the size of the graph, one
could probably find a better configuration. Secondly, by
not considering only the core differential trail from [23],
but using other interesting ones, we would increase the
pool of available differences and in turn reduce the re-
quired number of blocks.

Acknowledgements

The authors would like to thank Vesselin Velichkov for
his help with regards to an initial analysis of neutral
bits applicability on SHA-1 and Werner Koch for his
comments on the applicability of our attacks on PGP.
The authors would also like to thank gpuserversrental.
com for their efficient service regarding the GPU cluster
renting. The second author is supported by Temasek
Laboratories, Singapore.

A small part of the experiments presented in this paper
were carried out using the Grid’5000 testbed, supported
by a scientific interest group hosted by Inria and includ-
ing CNRS, RENATER and several Universities as well
as other organizations (see https://www.grid5000.fr).
Development and small scale experiments before launch-
ing the main computation were carried out on the rioc
cluster from Inria.

References

[1] Karthikeyan Bhargavan and Gaëtan Leurent. Tran-
script collision attacks: Breaking authentication in
TLS, IKE and SSH. In NDSS 2016. The Internet
Society, February 2016.

[2] Eli Biham and Rafi Chen. Near-collisions of SHA-0.
In Franklin [8], pages 290–305.

[3] Eli Biham, Rafi Chen, Antoine Joux, Patrick Car-
ribault, Christophe Lemuet, and William Jalby. Col-
lisions of SHA-0 and reduced SHA-1. In Ronald
Cramer, editor, EUROCRYPT 2005, volume 3494
of LNCS, pages 36–57. Springer, Heidelberg, May
2005.

[4] Gilles Brassard, editor. CRYPTO, volume 435 of
Lecture Notes in Computer Science. Springer, 1990.

[5] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and
R. Thayer. RFC 4880 - OpenPGP Message Format.
Internet Activities Board, November 2007.

[6] Ivan Damgård. A Design Principle for Hash Func-
tions. In Brassard [4], pages 416–427.

[7] Christophe De Cannière and Christian Rechberger.
Finding SHA-1 characteristics: General results and
applications. In Xuejia Lai and Kefei Chen, editors,
ASIACRYPT 2006, volume 4284 of LNCS, pages
1–20. Springer, Heidelberg, December 2006.

[8] Matthew Franklin, editor. CRYPTO 2004, volume
3152 of LNCS. Springer, Heidelberg, August 2004.

[9] Antoine Joux. Multicollisions in iterated hash func-
tions. Application to cascaded constructions. In
Franklin [8], pages 306–316.

[10] Antoine Joux and Thomas Peyrin. Hash functions
and the (amplified) boomerang attack. In Alfred
Menezes, editor, CRYPTO 2007, volume 4622 of
LNCS, pages 244–263. Springer, Heidelberg, August
2007.

[11] Vlastimil Klima. Tunnels in hash functions: MD5
collisions within a minute. Cryptology ePrint
Archive, Report 2006/105, 2006. http://eprint.
iacr.org/2006/105.

[12] Gaëtan Leurent and Thomas Peyrin. From colli-
sions to chosen-prefix collisions application to full
SHA-1. In Yuval Ishai and Vincent Rijmen, edi-
tors, EUROCRYPT 2019, Part III, volume 11478
of LNCS, pages 527–555. Springer, Heidelberg, May
2019.

[13] Gaëtan Leurent and Thomas Peyrin. SHA-1 is a
Shambles - First Chosen-Prefix Collision on SHA-1
and Application to the PGP Web of Trust. Cryptol-
ogy ePrint Archive, Report 2020/014, 2020. https:
//eprint.iacr.org/2020/014.

USENIX Association 29th USENIX Security Symposium    1855

gpuserversrental.com
gpuserversrental.com
https://www.grid5000.fr
http://eprint.iacr.org/2006/105
http://eprint.iacr.org/2006/105
https://eprint.iacr.org/2020/014
https://eprint.iacr.org/2020/014


[14] Marc Stevens. Attacks on Hash Functions and
Applications. PHD Thesis, Leiden University, June
2012.

[15] Ralph C. Merkle. One Way Hash Functions and
DES. In Brassard [4], pages 428–446.

[16] National Institute of Standards and Technology.
FIPS 180-1: Secure Hash Standard, April 1995.

[17] National Institute of Standards and Technology.
FIPS 180-2: Secure Hash Standard, August 2002.

[18] National Institute of Standards and Technology.
FIPS 202: SHA-3 Standard: Permutation-Based
Hash and Extendable-Output Functions, August
2015.

[19] Ronald L. Rivest. The MD4 message digest algo-
rithm. In Alfred J. Menezes and Scott A. Vanstone,
editors, CRYPTO’90, volume 537 of LNCS, pages
303–311. Springer, Heidelberg, August 1991.

[20] Ronald L. Rivest. RFC 1321: The MD5 Message-
Digest Algorithm. Internet Activities Board, April
1992.

[21] Marc Stevens. Counter-cryptanalysis. In Ran
Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part I, volume 8042 of LNCS, pages 129–146.
Springer, Heidelberg, August 2013.

[22] Marc Stevens. New collision attacks on SHA-1 based
on optimal joint local-collision analysis. In Thomas
Johansson and Phong Q. Nguyen, editors, EURO-
CRYPT 2013, volume 7881 of LNCS, pages 245–261.
Springer, Heidelberg, May 2013.

[23] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange
Albertini, and Yarik Markov. The first collision for
full SHA-1. In Jonathan Katz and Hovav Shacham,

editors, CRYPTO 2017, Part I, volume 10401 of
LNCS, pages 570–596. Springer, Heidelberg, August
2017.

[24] Marc Stevens, Pierre Karpman, and Thomas Peyrin.
Freestart collision for full SHA-1. In Marc Fis-
chlin and Jean-Sébastien Coron, editors, EURO-
CRYPT 2016, Part I, volume 9665 of LNCS, pages
459–483. Springer, Heidelberg, May 2016.

[25] Marc Stevens, Arjen K. Lenstra, and Benne
de Weger. Chosen-prefix collisions for MD5 and
colliding X.509 certificates for different identities.
In Moni Naor, editor, EUROCRYPT 2007, volume
4515 of LNCS, pages 1–22. Springer, Heidelberg,
May 2007.

[26] Marc Stevens and Daniel Shumow. Speeding up
detection of SHA-1 collision attacks using unavoid-
able attack conditions. In Engin Kirda and Thomas
Ristenpart, editors, USENIX Security 2017, pages
881–897. USENIX Association, August 2017.

[27] Marc Stevens, Alexander Sotirov, Jacob Appelbaum,
Arjen K. Lenstra, David Molnar, Dag Arne Osvik,
and Benne de Weger. Short chosen-prefix collisions
for MD5 and the creation of a rogue CA certificate.
In Shai Halevi, editor, CRYPTO 2009, volume 5677
of LNCS, pages 55–69. Springer, Heidelberg, August
2009.

[28] Paul C. van Oorschot and Michael J. Wiener. Par-
allel collision search with cryptanalytic applications.
Journal of Cryptology, 12(1):1–28, January 1999.

[29] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu.
Finding collisions in the full SHA-1. In Victor Shoup,
editor, CRYPTO 2005, volume 3621 of LNCS, pages
17–36. Springer, Heidelberg, August 2005.

1856    29th USENIX Security Symposium USENIX Association


	Introduction
	Our Contributions
	SHA-1 Usage and Impact
	Outline

	Preliminaries
	Description of SHA-1
	Previous Works
	Differential Trails
	Improving the Efficiency of Collision Search
	Chosen-prefix Collision Attacks


	Improving SHA-1 Collision Attack
	Analysis of Previous Works
	Additional Boomerangs
	Precise Conditions of Neutral Bits
	Building Differential Trails

	Improving SHA-1 CP Collision Attack
	Graph Construction
	Bi-directional Graph
	Implicit Nodes

	Chosen-Prefix Collision Computation
	Attack Parameters
	A GPU Cluster
	Birthday Phase
	Near-collision Phase
	Resources Used

	Application to PGP Web of Trust
	Exploiting a Chosen-prefix Collision
	Content of Identity Certificates
	Attack Procedure
	Example Keys
	Attack Variant

	Impact

	SHA-1 Usage and Disclosure
	SHA-1 Usage in GnuPG
	SHA-1 Usage in X.509 Certificates
	SHA-1 Usage in TLS
	SHA-1 Usage in SSH
	Other Usages of SHA-1

	Conclusion and Future Works

