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What would be the impact of quantum computers
on symmetric cryptography?
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Motivation

What would be the impact of quantum computers
on symmetric cryptography?

» Some physicists think they can build quantum computers

» NSA thinks we need quantum-resistant crypto (or do they?)
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Expected impact of quantum computers

» Some problems can be solved much faster with quantum computers
» Up to exponential gains
> But we don't expect to solve all NP problems

Kaplan, Leurent, Leverrier & Naya-Plasencia  Quantum Differential and Linear Cryptanalysis FSE 2017 3/25



Introduction Brute-force
0@000000 oo

Expected impact of quantum computers

» Some problems can be solved much faster with quantum computers
» Up to exponential gains
» But we don't expect to solve all NP problems

Impact on public-key cryptography

» RSA, DH, ECC broken by Shor’s algorithm

> Breaks factoring and discrete log in polynomial time
> Large effort to develop quantum-resistant algorithms (e.g. NIST)

Kaplan, Leurent, Leverrier & Naya-Plasencia  Quantum Differential and Linear Cryptanalysis FSE 2017 3/25



Introduction
0@000000

Expected impact of quantum computers

» Some problems can be solved much faster with quantum computers
» Up to exponential gains
» But we don't expect to solve all NP problems

Impact on public-key cryptography

» RSA, DH, ECC broken by Shor’s algorithm

> Breaks factoring and discrete log in polynomial time
> Large effort to develop quantum-resistant algorithms (e.g. NIST)

Impact on symmetric cryptography

» Exhaustive search of a k-bit key in time 2k/2 \with Grover's algorithm
» Common recommendation: double the key length (AES-256)

Kaplan, Leurent, Leverrier & Naya-Plasencia  Quantum Differential and Linear Cryptanalysis FSE 2017 3/25



Introduction
0@000000

Expected impact of quantum computers

» Some problems can be solved much faster with quantum computers
» Up to exponential gains
» But we don't expect to solve all NP problems

Impact on public-key cryptography

» RSA, DH, ECC broken by Shor’s algorithm

> Breaks factoring and discrete log in polynomial time
> Large effort to develop quantum-resistant algorithms (e.g. NIST)

Impact on symmetric cryptography

» Exhaustive search of a k-bit key in time 2k/2 \with Grover's algorithm
» Common recommendation: double the key length (AES-256)

» Encryption modes are secure [Unruh & al, PQC'16]
> Authentication modes broken by superposition queries [Crypto "16]
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Owverview of the talk

Main question

Is AES secure in a quantum setting?

» Symmetric design are evaluated with cryptanalysis:

» Differential (truncated, impossible, ...)
> Linear

> Integral
> Algebraic
>

» We should study quantum cryptanalysis!

» Start with classical techniques

» Do we get a quadratic speedup?
» Do we need a quantum encryption oracle?
» How are different cryptanalysis techniques affected?
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Security notions: Classical

PRF security: given access to P/P~1, distinguishing E from random
Classical setting: classical computations

Classical security: classical queries

vV v v Yy

Cipher broken by adversary with
> data < 2"
> time < 2K
> success > 3/4 P, P

Y /

Frm [E]
—

cipher / random
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Security notions: Quantum Q1

» PRF security: given access to P/P~1, distinguishing E from random
» Quantum setting: quantum computations
» Classical security: classical queries
» Cipher broken by adversary with
> data < 2"
> time < 2k/2
> success > 3/4 P, P!

/

N

cipher / random
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Security notions: Quantum Q2

PRF security: given access to P/P~1, distinguishing E from random
Quantum setting: quantum computations
Quantum security: quantum (superposition) queries

Cipher broken by adversary with

» data < 2"
» time < 2k/2
> success > 3/4 P, P

L Pxlx)0) L Pulx) [P (x))

E
cipher / random
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About the models
Q1 model: classical queries

» Build a quantum circuit from classical values

» Example: breaking RSA with Shor’s algorithm

Q2 model: superposition queries

» Access quantum circuit implementing the primitive with a secret key
» Example: breaking CBC-MAC with Simon’s algorithm

» The Q2 model is very strong for the adversary

» Simple and clean generalisation of classical oracle
» Aim for security in the strongest (non-trivial) model
» A Q2-secure block cipher is useful for security proofs of modes
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Grover’s algorithm

» Search for a marked element in a set X

» Set of marked elements M, with [M| > ¢ - | X|

Classical algorithm

1: loop

2 X < SETUP() > Pick a random element in X, cost S
3: if CHECK(x) then > Check if it is marked, cost C
4 return x

> 1/¢ repetitions expected
» Complexity (S+ C)/¢
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Grover’s algorithm
» Search for a marked element in a set X
» Set of marked elements M, with [M| > ¢ - | X]
Grover Algorithm (as a quantum walk)

Quantum algorithm to find a marked element using:
» SETUP: builds a uniform superposition of inputs in X

» CHECK: applies a control-phase gate to the marked elements

» Only 1//¢ repetitions needed
» Complexity (S+ C)/ /e
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Grover’s algorithm

» Search for a marked element in a set X
> Set of marked elements M, with [M| > ¢ - | X|

Grover Algorithm (as a quantum walk)

Quantum algorithm to find a marked element using:
» SETUP: builds a uniform superposition of inputs in X

» CHECK: applies a control-phase gate to the marked elements

» Only 1//¢ repetitions needed
» Complexity (S+ C)/ /e

» Can produce a uniform superposition of M
» Can provide an oracle without measuring (nesting)
» Variant to measure £ (quantum counting)
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Brute-force attack

» We can use Grover's algorithm for a quantum brute-force key search

Capture a few known plaintext/ciphertext: C; = E-(P;)
SETUP: builds a uniform superposition of {0, 1 }k s=1
CHECK(xk): test whether C; = E(P;) e=2"kc=1

» Complexity O(2k/2)
» Quadratic gain
» Uses the Q1 model

» Classical data (C;, P;)
> Quantum circuit independant of the secret key x*
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Differential distinguisher: classical
» Assume a differential Ji,, dout given, with

h:= — logPrlE(x @ 6in) = E(x) & bout] < n,

Classical algorithm: search for right pairs

1: for0 <i< 2h do

2 x < RAND()

3: if E(x D din) = E(x) @ dout then
4 return cipher

5: return random

» Complexity O(2")
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Differential distinguisher: quantum
» Assume a differential J;,, dout given, with

h := —logPr[E(x @ din) = E(x) © dout] < n,

Quantum algorithm: Grover search for right pair

SETUP: builds a uniform superposition of {0,1}" s=1
CHECK(x): test whether E(x @ 6in) = E(X) ®dout e¢=2"",C=1

» Complexity O(2h/2)
> Quadratic gain
» Uses the Q2 model

» Superposition queries to E with secret key
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Last-Round attack: classical

Jin — Classical algorithm

: for0 <i<2"do

x < RAND()

> Filter possible output differences

if E(x) ® E(x @ din) € Ds, then
Find last key candidates for (x, x & din)
Try all possibilities for remaining key bits

/l P = Z_h

O I

v
A~

p =2 houw Finding partial key candidates costs C;__

Dsin, : » Between 1 and 2kout
> T =2h 4 ph—n+ds . (Ckout + zkfhout)

Kaplan, Leurent, Leverrier & Naya-Plasencia  Quantum Differential and Linear Cryptanalysis FSE 2017 13/25




Differential
oceo

Last-Round attack: quantum Q2

din Quantum algorithm: Grover search for right pair

. SETUP: builds a uniform superposition of
/ X={x:E(x) DE(xD bn) € Dn}
K : L using nested Grover algorithm § = 2(7~4)/2
g P _:2 CHECK(x): Find last key cand. for (x,x & din)
: Run nested Grover over remaining key bits
‘ g = 2""h=4i C = Cliout 4 2(k=howt)/2

Jouit o
/i * » Repeat key recovery with right pair
III E \\\ p= 2 howt » Finding partial key candidates costs C;
\LDW ¥ ; > Between 1 and 2kout/2
fin :

> T = 2/7/2 + 2(h—n+Aﬁn)/2 . (C;‘;OUt —+ Z(k_hout)/z
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Last-Round attack: quantum Q1

5 : » Previous attack uses superposition queries
n :

\ > Alternatively, make 2" classical queries

| > Interesting if 2 < 2k/2

; g > E.g. AES-256

/ p=2"h Quantum algorithm: Grover search for right pair

SETUP: builds superposition of classical data

. using quantum memory S=1
Z CHECK(x): same as Q2
t ; oy . -
IOIL\J X g —=2n h Aﬁny = C/.(()ut + z(k hout)/2
Il : \\
oy
Il : \\ p — Z—hout
vovoV .
Dﬁn

> T = 2h 4 p(h—n+as)/2 . (CZ 4 2(khow) /2

Kaplan, Leurent, Leverrier & Naya-Plasencia  Quantum Differential and Linear Cryptanalysis FSE 2017 15/25



Introduction Brute-force Differential Truncated differential Conclusion
00000000 oo 00000 0000000 000

Outline

Truncated differential
Distinguisher
Last-round attack

Kaplan, Leurent, Leverrier & Naya-Plasencia  Quantum Differential and Linear Cryptanalysis FSE 2017 15/25



Truncated differential Con
©000000 00C

Truncated differential distinguisher: classical

» Assume vector spaces Di,, Doyt given (dim. Ai, Agut), with

h:=— lOgX 52% [E(X (S5 (5) D E(X) € Dout] <L n—Aout,

Classical algorithm (using structures)

1: for 0 < i < 2"~24n do

2 x < RAND()

3 L+ {E(x®0):6 € Din}

4: if dy1.y2 € Lst.y1 @ ys € Doyt then
5 return cipher

6:

return random

» Complexity O(2h—4n)
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Truncated differential distinguisher: quantum
» Assume vector spaces Di,, Doy given (dim. Ain, Agut), with

h:=— logx 5l;rD [E(x® ) D E(x) € Dout] € n— Aout,

n

Quantum algorithm: Grover search for structure with right pair

SETUP: builds a uniform superposition of {0,1}" S=1

CHECK(x): test whether Jy1,y2 € x® Din s.t. y1 @ y2 € Doyt

g=2"M+2n Cc=2

Kaplan, Leurent, Leverrier & Naya-Plasencia  Quantum Differential and Linear Cryptanalysis FSE 2017
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Finding collisions
» Fidingy1,y2 € Lsit. y1 ©y» € Doyt truncate and find collisions
Classical algorithm
1: SORT(L)
2: for0 <i< |L|do
& if L[i] = L[i + 1] then return L][i]
4

: return L

» Complexity O(N)
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Finding collisions
» Fidingy1,y2 € Lsit. y1 ©y» € Doyt truncate and find collisions
Classical algorithm
1: SORT(L)
2: for0 <i< |L|do
& if L[i] = L[i + 1] then return L][i]
4: return L

» Complexity O(N)

Quantum algorithmic: Ambainis” element distinctness

» Quantum walk algorithm to find collisions

» Complexity O(N?/3) — less than quadratic speedup!
» Uses memory O(N?/3)
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Truncated differential distinguisher: quantum
» Assume vector spaces Di,, Doy given (dim. Ain, Agut), with

h lOg Pr [ (X@é) SB) E(X) € Dout] <n-— Aout.

x,0€Di

Quantum algorithm: Grover search for structure with right pair

1sion

SETUP: builds a uniform superposition of {0,1}" S=1

CHECK(x): test whether Jyq,y) € x® Dip s.t. y1 B y2 € Dout

o 2‘*h4’2Ain (: = 22[hn/3

» Complexity O(2/2=4in/3) — less than quadratic speedup
» Uses the Q2 model

» Superposition queries to E with secret key
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Last-Round attack: classical

Classical algorithm

. for0 < j < 2h—24in do
x < RAND()
L+ {E(x®):0 € Din}
> Filter possible output differences
if 3y1.y2 € Lst.y1 Dy € Doy then
Find last key candidates for (y1,y>)
Try all possibilities for remaining key bits

/l P = Z—h

S PR S

v
A~

\ p=2"Pu Finding partial key candidates costs Cy_,

Dsi, : » Between 1 and 2kout
= > T = zthin + 2h7n+Aﬁn . (Ck

Kaplan, Leurent, Leverrier & Naya-Plasencia  Quantum Differential and Linear Cryptanalysis
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Last-Round attack: quantum Q2

Assume each structure has pairs with difference in D,

Din :
\ Q2 algo: Grover search for structure with right pair
/! SETUP: unif. superposition S =1,¢& = 224n="
’ p= 2—h CHECK(x): Grover search over pairs in x & Di,
/ : SETUP: Ambainis to find pairs
:I with output in Dy, §' = 2(n=4qw)/3
Y : CHECK(x1,x2): Find last key candidates
' Run nested Grover over remaining key bits,
Dout v & = Z—ZAin+(n—Aﬁn), c = Cltout + Z(k_hout)/z
II' i ‘\\ C = 28in—=(n=An)/6 4 YAin+(Afin—n)/2 (CZOUt + Z(k*hout)/z)
I: : \‘ p= Z_h‘
vy : _ oh/2—(n—Dg) /6
D#in : > T=2 T
- Z(h_n+Aﬁn)/2 C;( —|— Z(k_hout)/2
out
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Last-Round attack: quantum Q1

T > Alternatively, use classical queries

Din :
\ » Filter pairs with output in Dy, classically
,’I Q1 algo: Grover search for structure with right pair
/ _- —h
J P —_2 SETUP: builds superposition of classical data
i : using quantum memory $=1
L : H CHECK(x7,x2): Find last key candidates
\ Run nested Grover over remaining key bits
hl s _ 9n—h—Asy  _ * k—hout)/2
Dout v €= Zn ! ! C o Ckout + 2< t)
III : \\‘ P :.Z_hOUt
vy :
D H ,
» T = Zh_Ain -+ Z(h_n"'Aﬁn)/z (C/; -+ 2 k hout )
. FSE 2017 /25
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Summary: simplified complexities
» Simple differential distinguisher
Dc = 2" Dqi = 2" = D¢ Dq; = 2"? = /D¢

Tc = 2" Tgr=2"=T¢ Tay =2"? = /Tc
» Simple differential LR attack
Dc = 2" Doy =2"=Dc Dq, =2"* = /D¢

Te=2"4+C Tau=2"+C Tq=2"2+cCi~Tc
» Truncated differential distinguisher
Dc =24 Dqy =2"%n =D Dqy = 2M?*7%0/3 > /D¢
Te=2"%n T =220 =Tc T =2M2"%0/3 5 Tc
» Truncated differential LR attack Assuming > 1 filtered pairs / structure
D¢ = 2h~4n Day = 204 = D¢ Dgy = 20/2~(1=m)/6 5 /D¢
Te=20%n 1 C, Toy =204 Tap=2M2"080)/6 4 cis /Tc
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Concrete examples

» Truncated differential attacks have less than quadratic speedup
» Can become worse than Grover key search (not an attack)

» The best quantum attack is not always
a quantum version of the best classical attack

LAC (reduced LBlock, n = 64)

» Differential with probability 27615

» Classical distinguisher with complexity 262>
» Quantum distinguisher with complexity 231.75

» Truncated differential with A;y = 12, Aoyt = 20,20 = 244 42553

» Classical distinguisher with complexity 260-9
» Quantum distinguisher with complexity 2334
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Concrete examples

» Truncated differential attacks have less than quadratic speedup
» Can become worse than Grover key search (not an attack)

» The best quantum attack is not always
a quantum version of the best classical attack

KLEIN-64 (n = 64)

» Truncated differential with h = 69.5, A;, = 16, Ag, = 32, k = 64,
kout =32, hout =45

» Classical attack with complexity 2°8-2
» Quantum attack with complexity > 232
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Concrete examples

» Truncated differential attacks have less than quadratic speedup
» Can become worse than Grover key search (not an attack)

» The best quantum attack is not always
a quantum version of the best classical attack

KLEIN-96 (n = 64)

» Truncated differential with h = 78, A, = 32, Ag, = 32, k = 96,
kout = 48, hout =52
» Classical attack with complexity 2%
» Q2 attack with complexity 247-3
» QI attack with complexity 247-96
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Conclusions

We fixed some mistakes from the ToSC version
» Updated version on arXiv:1510.05836

v

v

Quantification of classical attacks using Grover and Ambainis
» Differential, truncated differential and linear cryptanalysis

v

“It's complicated”

v

Up to quadratic speedup

> If key search is the best classical attack,
Grover key search is the best quantum attack

v

Data complexity can only be reduced using quantum queries

v

Cipher with k > n are most likely to see quadratic speedup
» Attacks with classical queries (Q] model) possible

Kaplan, Leurent, Leverrier & Naya-Plasencia  Quantum Differential and Linear Cryptanalysis FSE 2017 25/25


https://arxiv.org/abs/1510.05836

Bonus slide: Linear cryptanalysis
» Linear distinguisher

Dc=1/¢ Dqi =1/ =Dc  Dqy=1/e=+/Dc
Tc=1/€ Tqr =1/ =T¢ Tay =1/e=+/Tc

» Linear attack with ¢ r-round distinguishers (Matsui 1)

DC:-I/82 Dm:€/82>DC DQ2:€/€>\/DC
Te=0/ +25" Tqy =t/ +270/2 Ty =0/e+ 20072 > /T¢

» Last-round linear attack (Matsui 2)

DC:-l/€2 DQ‘|:1/82:DC DQ2=2k°”t/2/€>\/D7C
Te = Gy Tq =1/ 4+/C  Top=/Cc=Tc
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