
Key Recovery Attack against 2.5-round π-Cipher

Christina Boura1, Avik Chakraborti2, Gaëtan Leurent3, Goutam Paul2, Dhiman
Saha4, Hadi Soleimany5,6 and Valentin Suder7

1 University of Versailles, France
christina.boura@uvsq.fr

2 Indian Statistical Institute, Kolkata, India
avikchkrbrti@gmail.com, goutam.paul@isical.ac.in

3 Inria, project-team SECRET, Paris, France
gaetan.leurent@inria.fr

4 Crypto Research Lab, Indian Institute of Technology Kharagpur, India
saha.dhiman@gmail.com

5 Cyberspace Research Institute, Shahid Beheshti University, Iran
6 School of Computer Science, Institute for Research in Fundamental Sciences (IPM),

Iran
h soleimany@sbu.ac.ir

7 University of Waterloo, Canada
valentin@suder.xyz

Abstract. In this paper, we propose a guess and determine attack
against some variants of the π-Cipher family of authenticated ciphers. This
family of ciphers is a second-round candidate of the CAESAR competition.
More precisely, we show a key recovery attack with time complexity little
higher than 24ω, and low data complexity, against variants of the cipher
with ω-bit words, when the internal permutation is reduced to 2.5 rounds.
In particular, this gives an attack with time complexity 272 against the
variant π16-Cipher096 (using 16-bit words) reduced to 2.5 rounds, while
the authors claim 96 bits of security with 3 rounds in their second-round
submission. Therefore, the security margin for this variant of π-Cipher is
very limited.
The attack can also be applied to lightweight variants that are not included
in the CAESAR proposal, and use only two rounds. The lightweight
variants π16-Cipher096 and π16-Cipher128 claim 96 bits and 128 bits
of security respectively, but our attack can break the full 2 rounds with
complexity 272.
Finally, the attack can be applied to reduced versions of two more variants
of π-Cipher that were proposed in the first-round submission with 4
rounds: π16-Cipher128 (using 16-bit words) and π32-Cipher256 (using
32-bit words). The attack on 2.5 rounds has complexity 272 and 2137

respectively, while the security claim for 4 rounds are 128 bits and 256
bits of security.
Keywords. Authenticated Encryption, π-Cipher, CAESAR Competi-
tion, Guess and Determine, Cryptanalysis.

c©IACR 2016. This article is the final version submitted by the authors to the IACR
and to Springer-Verlag in April 2016, to appear in the proceedings of FSE 2016



1 Introduction

Authenticated encryption is a rapidly growing field of cryptography that has wide
applications in diverse industries. Even though some efforts over the past few
years have been devoted to the design and analysis of authenticated encryption
schemes, a well-studied design with the desirable level of security and performance
is not yet available. Lack of secure and efficient authenticated ciphers led to
devastating attacks in extensive applications like TLS and OpenSSL [4, 1]. To
address this challenge, an international contest called CAESAR, funded by the
NIST, plans to hold a multi-year effort to identify a promising new portfolio of
authenticated ciphers, suitable for widespread applications [3]. The CAESAR
competition, launched in 2014, follows the long tradition of contests in secret
key cryptography and aims at selecting a portfolio of authenticated ciphers that
offer perceptible advantages over AES-GCM and that can be recommended for
widespread use. There were 57 proposals accepted for the first round of the
competition and recently, 30 ciphers among these proposals were selected to
continue in the second round.

The π-Cipher [7] family of authenticated ciphers, designed by Gligoroski et al.,
is one of the 30 second-round candidates. It is a special case of encrypt-then-MAC
designs and makes use, as all such CAESAR candidates, of a nonce and process
associated data.

One of the most important design goals of this family of cryptographic
functions is the possibility of parallel computations. Other goals, as claimed by
the designers, are a better security than AES-GCM in the case of a nonce reuse,
and better resistance for producing second-preimage tags. Although the cipher’s
mode of operation is inspired by the sponge construction [2], and is based on a
permutation called the π-function, it has been largely modified by Gligoroski et
al. in order to permit parallel computations.

In the initial submission, the authors proposed six different variants of the
cipher, where each variant offered a particular level of security and used words of
a particular size. More precisely, the level of targeted security, corresponding to
the size of the secret key, ranges from 96 to 256 bits, and each variant uses words
of 16, 32, or 64 bits. For the second round of the competition, only four variants
were kept. Another decision taken by the designers for the second-round version
of the cipher, was to decrease the number of rounds of the π-function from 4 to 3.
In addition, at NIST’s lightweight cryptography workshop, a lightweight version
of the π-Cipher [10] was proposed. The lightweight proposal is composed of two
variants, both using 16-bit words. Since lightweight ciphers must be as small and
power-efficient as possible, the number of rounds in the internal permutation
is further reduced to 2 in the lightweight version. An overview of the different
variants is given in Table 1.

Our results. In this work, we present a key recovery attack against several
variants of the π-Cipher, when the π-function is reduced to 2.5 rounds. This
shows that the decision to decrease the number of rounds was precarious. Indeed,

2



the lightweight version is completely broken, and the affected variant that is still
in the second round submission offers only very limited security margin.

More precisely, the time complexity of our attack is 272 for the 16-bit word
variants and 2137 for the 32-bit word variants, while the data complexity remains
very low (a single known plaintext with at least 256 blocks for 16-bit word
variants, and 512 blocks for the 32-bit word variants). The attack is faster than
exhaustive search of the key for the following variants (reduced to 2.5 rounds):

π16-Cipher096 with 16-bit words and 96-bit key.

This variant was proposed with 4 rounds in version 1, 3 rounds in version 2,
and 2 rounds in the lightweight version.

π16-Cipher128 with 16-bit words and 128-bit key.

This variant was proposed with 4 rounds in version 1, and 2 rounds in the
lightweight version.

π32-Cipher256 with 32-bit words and 256-bit key.

This variant was proposed with 4 rounds in version 1.

Our cryptanalysis is a guess and determine attack exploiting a weakness in
the high-level structure of the π-function. Indeed, we show that by knowing two
out of the four output chunks of the π-function and by guessing a third one, we
can easily recover one of the four input chunks of the permutation. This permits
us to recover the internal state and gives us the possibility to recover the secret
key by some very simple operations. Note that our attacks work in the case
when no secret message number is processed. However, the attacks can be easily
extended in cases when a secret message number is used, if one supposes that
the secret message number is known together with the plaintext.

Cryptographic algorithms should be designed with enough security margin
to thwart classical attacks but also to resist to new and unknown vulnerabili-
ties. Surplus security cannot be obtained for free, since it has impacts on the
performance of the ciphers. In particular, due to a number of important limita-
tions in the resources of pervasive devices, it is of utmost importance to analyze
lightweight cryptographic designs that allow reduction of superfluous margins.
Our attack shows that the security margin offered by these three members of
the π-Cipher family is too small and that these variants are much less secure
than expected. This kind of analysis is very important for the progress of the
CAESAR competition, as the final portfolio of the selected authenticated ciphers
should offer a high level of security. Thus, evaluating the security of the remaining
candidates, leads to a more clear overview of which candidates are robust and
which should be eliminated.

Outline. The rest of the paper is organised as follows. In Section 2 we briefly
provide the specifications of π-Cipher. Then, we present our attack on 2.5 round
π-Cipher in Section 3 and we discuss how to mount a full-round attack on the
lightweight version of π-Cipher in Section 4. Finally, we perform a complexity
analysis of our attacks in Section 5 and conclude.

3



2 π-Cipher Specifications

There exist different variants of π-Cipher, depending on the bit-length of the
words used and the expected level of security expressed in bits. Therefore, πω-
Ciphern represents a variant defined with ω-bit words and offering n-bit security.
The six variants of π-Cipher submitted to the first round of the competition,
together with the corresponding parameters, are summarized in Table 1. The
first four rows in the table represent the only four variants conserved for the
second round. Furthermore, the two variants of the recently presented lightweight
π-Cipher proposal [10], are described in the last two rows of Table 1.

Table 1. π-Cipher variants. The first four rows represent the four variants kept for
the second round of the CAESAR competition. The last two rows describe the two
lightweight variants proposed in [10]. PMN and SMN are the two parts of the nonce
and stand for Public Message Number and Secret Message Number respectively. All the
parameters are given in bits.
For variants both in version 1 and 2, there are 4 rounds in v1 and 3 rounds in v2.

Version Variant
Word

PMN SMN
Rate Tag Key

Rounds
size ω r size t length

v1 & v2

π16-Cipher096 16 32 0 or 128 128 128 96 3
π32-Cipher128 32 128 0 or 256 256 256 128 3
π64-Cipher128 64 128 0 or 512 512 512 128 3
π64-Cipher256 64 128 0 or 512 512 512 256 3

v1
π16-Cipher128 16 32 0 or 128 128 128 128 4
π32-Cipher256 32 128 0 or 256 256 256 256 4

Lightweight
π16-Cipher096 16 32 0 or 128 128 128 96 2
π16-Cipher128 16 32 0 or 128 128 128 128 2

2.1 Authenticated Encryption

The encryption/authentication function accepts as input a triplet (K,AD,M),
where K is a secret key, AD is a string of associated data of a blocks, and M is a
message composed of m blocks of size r bits each. The main building block of the
authenticated encryption procedure is a construction that the authors call the
e-triplex component and which is depicted in Figure 1. The encryption procedure
starts by initializing the internal state with the string K||PMN ||10∗, where the
number of 0’s appended should be such that the length of the concatenated
string equals the size of the state of the π-function. This internal state is then
updated by applying the π-function. The result is called the Common Internal
State (CIS) and is used as the initial state for the first parallel computations:

CIS ← π(K||PMN ||10∗).

4



counter

π function

plaintext

ciphertext

π function

tag

Fig. 1. The e-triplex component of π-Cipher.

By following the same notation as in the sponge construction, we can see
each internal state, say IS, as the concatenation of a rate part and a capac-
ity part: IS = IScapacity||ISrate. In particular, each internal state IS of the
procedure is the concatenation of four 4ω-bit chunks, that we will denote
as IS = IS1||IS2||IS3||IS4. From the specification of π-Cipher, the capacity
part of the state is IScapacity = IS2||IS4, and the rate part of the state is
ISrate = IS1||IS3. The counter, denoted by ctr, is then initialized by extracting
the first 64 bits of CIScapacity. This procedure is depicted at the top left part of
Figure 2.

The next step in the authenticated encryption procedure is the process of the
associated data. The associated data AD is cut into equal-sized blocks: AD =
AD1|| . . . ||ADa. All blocks are treated in parallel by the e-triplex component.
The input to the e-triplex component for the block i is CIS, ctr + i and ADi,
and the output is an intermediate tag t′i. The way that each block of associated
data is processed can be observed in Figure 2. At the end of this procedure a tag
for the associated data T ′ is computed as

T ′ = t′1 �d · · ·�d t
′
a,

where �d is a component-wise addition of vectors of dimension d, where d is
the number of ω-bit words in the rate part (d = 8 for all proposed variants of
π-Cipher). Finally, the internal state is updated in the following way to create a
new internal state that we will denote by CIS′:

CIS′ ← π(CIScapacity||CISrate ⊕ T ′).

After this first phase, the secret message number SMN , if any, is processed.
This procedure is depicted in Figure 2 and described by the following expressions:

IS ← π(CIS′capacity||CIS′rate ⊕ (ctr + a+ 1)),

CIS′′ ← π(IScapacity||ISrate ⊕ SMN).

5



CIS

π

ctr + 1

π

AD1

t′1

π

K||PMN ||10∗

ctr
64

π

ctr + 2

π

AD2

t′2

π

ctr + a

π

ADa

π

t′a

T ′

π

ctr + a+ 1

π

SMN

CIS ′′

t0

CIS CIS CIS CIS ′

CS

AD Processing

π

ctr + a+ 2

π

CIS ′′

C1

M1

t1

π

ctr + a+ 3

π

CIS ′′

C2

M2

t2

π

ctr + a+m+ 1

π

CIS ′′

Cm

Mm

tm

T

Message Processing

T ′′

Fig. 2. π-Cipher encryption structure.

The new state CIS′′ will be used as the common state for the parallel process of
the message blocks. The tag produced during this phase is

T ′′ = T ′ �d t0,

where t0 is the output tag of the last call to the e-triplex component after
absorbing the SMN . If no secret message number is used, then the above steps
are ignored. The authenticated encryption procedure without SMN is depicted
in Figure 4.

In the last phase, the message blocks are treated. As for the associated data,
the message M is cut into blocks M = M1|| . . . ||Mm and each block is processed
in parallel by the e-triplex construction. Note that the length of each message
block, as well as of each ciphertext block is equal to the bitrate, i.e. r bits (e.g.
r = 128 in the case of π16-Cipher096). A unique block counter is associated
with each message block. The counter for the message block Mj is computed as
ctr+a+ j if the secret message number is empty, and as ctr+a+ 1 + j otherwise.

6



During encryption, each e-triplex component takes as input the common state
CIS′′, the counter ctr and a message block Mj and outputs a pair (Cj , tj), where
Cj is a ciphertext block and tj is a partial tag. The final tag T is computed as

T = T ′′ �d t1 · · ·�d tm.

2.2 The π-function

The core of π-Cipher is an ARX-based permutation called the π-function. This
permutation somehow uses similar operations as the hash function Edon-R [8].
We denote the size of the permutation in bits by b and the number of rounds
by R. For the first version of the cipher, R was fixed to 4, however the authors
decided to reduce this number to 3 for the second round of the competition.
The internal state (IS) of the π-function can be seen as a concatenation of four
chunks of four words, so that b = 4× 4× ω bits. The π-function is mainly based
on an operation that will be denoted by ~. However, as our attack does not
take advantage of the internal structure of ~ we omit here its description. The
only important thing to know about this operation in order to understand the
attack is that it is a 2-input 1-output operation (in Figure 3, the two outputs of
a ~ operation are equal) that is invertible with respect to each of its inputs. Its
full specifications can be found in [7]. A round of the π-function is depicted in
Figure 3, where S1 and S2 are constants.

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆s1

s2

Fig. 3. One round of the π-function.

2.3 Previous Cryptanalysis Results

In [6], Fuhr and Leurent showed that forgeries can be computed for the first
round variants of π-Cipher due to a weakness in the padding algorithm. More
precisely, they noticed that the padding used for both the associated data and
the plaintext was not injective. This observation permitted to mount a forgery
attack by producing valid tags and forced the designers to modify the padding
rule for the second round of the competition.

7



One of the advertised features of π-Cipher is tag second-preimage resistance,
meaning that it should be hard to generate a message with a given tag, even for
the legitimate key holder. However, Leurent demonstrated in [9] that practical tag
second-preimage attacks could be mounted against π-Cipher by using Wagner’s
generalized birthday attack. More specifically, Leurent showed that tag second-
preimages can be computed with optimal complexities ranging from 222 to 245

depending on the word size ω.
The best attack mentioned by the designers [7, Section 3.3] is a distinguisher

on reduced versions with 1 round, using a guess and determine technique. Their
attack has complexity about 24ω (time and memory); in particular, it is applicable
to the same variants as our attack. Our attack actually uses similar ideas, but
reaches 2.5 rounds, and a full key recovery.

3 Key Recovery Attack against 2.5-round π-Cipher

We describe in this section our key recovery attack against reduced-round variants
of π-Cipher when no secret message number (SMN) is used. The authenticated-
encryption procedure for this case is described in Figure 4. Note that if no SMN
is used then the intermediate tags T ′ and T ′′ are equal and that the state CIS′′

of Figure 2 is equal to the state CIS′. In order to be consistent with the notation
of Section 2, we will keep denoting the common state for processing the message
blocks as CIS′′ even if this is exactly the same as CIS′ in the empty SMN case.

We consider an m-block message M = M1|| · · · ||Mm and an a-block string
of associated data, with the corresponding ciphertext C = C1|| · · · ||Cm. The
message should have at least 16ω blocks, i.e. 256 blocks when ω = 16, and 512
blocks when ω = 32.

We denote the input and output states of the first π-function for processing
the message block Mi by Ii = Ii1||Ii2||Ii3||Ii4 and Oi = Oi

1||Oi
2||Oi

3||Oi
4 respectively,

where each chunk Iij , O
i
j , for 1 ≤ j ≤ 4, is of size 4ω bits.

In our attack, we deploy a guess and determine technique for recovering the
secret key for three variants of the π-Cipher family, where the π-function is
reduced to 2.5 rounds. Our attack targets the first π-function of the message
processing phase, for 16ω consecutive blocks of plaintext. We provide now the
main observations that the attack takes advantage of.

3.1 Observations on the π-Cipher Structure

The first observation concerns the nature of the inner operation ~, that takes
two chunks of size 4ω bits as input and outputs a single chunk of the same size.
This operation is the core of the π-function. It has the property, that when fixing
one of the two input chunks to a constant and letting the other chunk take all
possible values, then the output chunk equally takes all possible values (it defines
a quasi-group).

8



CIS

π

ctr + 1

π

AD1

t′1

π

K||PMN ||10∗

ctr
64

π

ctr + 2

π

AD2

t′2

π

ctr + a

π

ADa

π

t′a

T ′

CIS CIS CIS CIS ′

AD Processing

π

ctr + a+ 1

π

CIS ′′

C1

M1

t1

π

ctr + a+ 2

π

CIS ′′

C2

M2

t2

π

ctr + a+m

π

CIS ′′

Cm

Mm

tm

T

Message Processing
T ′′ = T ′

CIS ′ = CIS ′′

Fig. 4. π-cipher encryption procedure when no secret message number is used.

Observation 1 Both ~(a, .) and ~(., b) are invertible for all a, b ∈ F4ω
2 and if

~(a, b) = c, then the knowledge of any two chunks among a, b and c can determine
the third one.

The next observation is in the core of the guess and determine technique and
exploits a weakness in the high-level structure of the π-function. It shows, that
when the function is reduced to 2.5 rounds, the knowledge of 3 output chunks
of 4 words each, can completely determine an input chunk. This observation
demonstrates that the inverse π-function has a limited diffusion when the number
of rounds is reduced to 2.5, as we can see that in this case an input word does
not depend on all the output words.

Observation 2 Let, I = I1||I2||I3||I4 and O = O1||O2||O3||O4 be the input and
the output state respectively of the π-function reduced to 2.5 rounds. Then the
knowledge of O1, O3 and a guess of O2 can determine I1.

9



Proof. This claim can be proven by the following guess and determine steps
described below. The pictorial description of the steps is given in Figure 5. In
the figure the green boxes denote the determined chunks Di, 1 ≤ i ≤ 9, the
orange boxes denote the guessed chunk i.e. O2 and the chunks denoted by K1, K2

corresponding to O1 and O3 respectively are known. At the end of this procedure,
one computes D9 which corresponds exactly to I1. Note that each step of the
below procedure makes use of Observation 1.

1. Use K1, S1 and G to determine D1 and D2.
2. Use K2 and G to determine D3.
3. Use D1 and D2 to determine D4.
4. Use D2 and D3 to determine D5 and D4, S1 to determine D6.
5. Use D4 and D5 to determine D7.
6. Use D6 and D7 to determine D8.
7. Use D8 and S1 to determine D9. ut

Fig. 5. Guess and determine steps for the first π-function.

The last observation aims at showing that the knowledge of the input state of
the π-function for several message blocks can be used to determine the common
state CIS′′.

10



Observation 3 The message processing phase uses the same common internal
state, CIS′′ = CIS′′1 ||CIS′′2 ||CIS′′3 ||CIS′′4 , to process each of the message blocks
Mi, 1 ≤ i ≤ m. Then, the input to the first π-function is Ii = Ii1||Ii2||Ii3||Ii4 =
CIS′′1 ⊕ (ctr + a+ i)||CIS′′2 ||CIS′′3 ||CIS′′4 for each block.

3.2 High Level Description of the Attack

This section provides a high level description of our attack. As already mentioned,
the attack requires a single known plaintext message, with at least 16ω blocks.
The attack can be seen as the succession of the five main steps that we describe
below:

1. Guess and determine step. In this first part of the attack, we target the
first computation of the π-function in the message processing part. Two of
the output chunks are known to the attacker as they only depend on the
plaintext and ciphertext blocks (i.e. Oi

1||Oi
3 = Mi ⊕ Ci). Then by guessing a

third output chunk, namely Oi
2, we are able to determine one input chunk,

Ii1. We repeat this procedure for all message blocks. This step is described
in more details in Subsection 3.3. At the end of this part we are left with
a collection of lists of candidates for one input chunk. We recover the right
value by treating the lists in the way described in the next step.

2. Computation of the intersection of the created lists. During this phase, detailed
in Subsection 3.4, we show how to treat the created lists in order to recover
the right value of the common part for the first input chunk of the π-function,
or more precisely, of the value CIS′′1 ⊕ (ctr + a) from Observation 3.

3. Recovery of the intermediate Ii state. This step shows the procedure to
recover a list of candidates for the state Ii and is described by the Recover-IS
Algorithm in Subsection 3.5.

4. Recovery of the common internal state CIS. We show here how one can
compute the state CIS, once the intermediate state I1 has been completely
identified. This phase is described by the Recover-CIS Algorithm in Subsec-
tion 3.6.

5. Computation of the secret key. This phase is pretty straightforward once
we have recovered CIS, since, as already mentioned in Section 2.1, CIS =
π(K||PMN ||10∗) and π-function is a known permutation.

The high level description of the attack is furnished in Algorithm 1.

3.3 Guess and determine

This section describes the guess and determine phase, which recovers the input
chunk Ii1 of the first π-function for the ith block for the plaintext-ciphertext pair
(M = M1|| · · ·Mi · · · ||Mm, C = C1|| · · ·Ci . . . ||Cm). Note that we can compute
Oi

1||Oi
3 = Mi ⊕ Ci. Then by making a guess on the value of Oi

2, we can compute
Ii1 independently of Oi

4, following Observation 2. In particular, we can compute
it as I1 = π−1(O1‖O2‖O3‖〈0〉)

11



Algorithm 1 Overview of the attack.

Input: 1 Known Plaintext-Ciphertext Pair (M = M1|| · · · ||M16ω, C = C1|| · · · ||C16ω)
Output: Master Key K
1: for all 1 ≤ i ≤ 16ω do
2: Li ← Guess-Determine(Mi, Ci) . Subsection 3.3

3: for all 1 ≤ j ≤ 8ω do
4: S ←

⋂
0≤k<8ω Lj+k ⊕ k . Subsection 3.4

5: if S 6= ∅ then
6: L′0 ← Recover-IS(Mj , Cj , 0,S) . Subsection 3.5
7: L′1 ← Recover-IS(Mj+1, Cj+1, 1,S)
8: Ij , Ij+1 ← {I, J ∈ L′0 × L′1 | I2‖I3‖I4 = J2‖J3‖J4} . Single value expected
9: for all ctr, s.t. ctr + a+ j ≡ 0 mod 8ω do . Subsection 3.6

10: CIS′′ ← Ij ⊕ (ctr + a+ j)
11: CIS ← Recover-CIS(CIS′′)
12: if ctr = first 64 bits of CIScapacity then
13: K||PMN ||10∗ ← π−1(CIS)
14: return K

We compute all candidates for Ii1 corresponding to the 24ω choices of Oi
2,

and store them in a list Li. The guess and determine phase is described in
Algorithm 2.

Note that there will be less than 24ω different values of Ii1 in a list Li as the
π-function is a permutation of the four chunks and not a permutation from one
chunk (Oi

2) to one chunk (Ii1). In the following, we assume that the function
from Oi

2 to Ii1 behaves as a random function, so that the expected size of Li is
(1−e−1)×24ω (see [5, Theorem 2]). In the next part, we describe how to compute
the intersection and filter out the correct value of Ii1 for some 1 ≤ i ≤ 16ω.

Algorithm 2 Build the list of candidates for the first input chunk of the first
π-function.
Input: Plaintext-ciphertext block M,C
Output: List L of possible candidates for I1
1: function Guess-Determine(M,C)
2: L ← ∅
3: O1||O3 ←M ⊕ C
4: for all O2 do
5: I1 ← π−1(O1||O2||O3||〈0〉) . Following Observation 2
6: L ← L ∪ {I1}
7: return L

3.4 Intersecting the lists

In this phase, we compare the list of candidates for Ii1 for each message block,
using the fact that they are all derived from a common state CIS′′. More precisely,

12



the first input chunk to the first π-function of each block is computed as:

Ii1 = CIS′′1 ⊕ (ctr + a+ i), for 1 ≤ i ≤ 16ω.

By construction of the lists Li, we have that:

CIS′′1 ⊕ (ctr + a+ i) ∈ Li, for 1 ≤ i ≤ 16ω.

Let j ∈ {1, . . . , 8ω} be such that ctr + a + j ≡ 0 mod 8ω (i.e. j ≡ −(ctr +
a) mod 8ω). In other words, with ω = 16, j is the first message block such that
the 7 least significant bits of ctr + a+ j are equal to zero (and similarly, 8 bits
when ω = 32). This implies:

(ctr + a+ j) + k = (ctr + a+ j)⊕ k for 0 ≤ k < 8ω

CIS′′1 ⊕ (ctr + a+ j)⊕ k ∈ Lj+k for 0 ≤ k < 8ω

CIS′′1 ⊕ (ctr + a+ j) ∈ Lj+k ⊕ k for 0 ≤ k < 8ω

Thus,

CIS′′1 ⊕ (ctr + a+ j) ∈
8ω−1⋂
k=0

(Lj+k ⊕ k).

We will compute this intersection for all guesses of j ∈ {1, . . . , 8ω}. We are
interested now in determining the size of the intersection of the 8ω lists. Each
list has about (1− e−1)24ω elements. If the guess of j is wrong, we assume that
the lists are independent; an element is a part of all the 8ω lists with probability
(1− e−1)8ω. As there is a total of 24ω elements, the probability that there is no

element in the intersection is (1− (1− e−1)8ω)2
4ω

. This probability is very close
to one: (

1−
(
1− e−1

)8ω)24ω
= exp

(
24ω ln(1−

(
1− e−1)8ω

))
≥ 1 + 24ω ln

(
1−

(
1− e−1

)8ω)
≈ 1− 24ω

(
1− e−1

)8ω
≈ 1− 0.98ω

In particular, it is about 1− 2−20 for ω = 16.
On the contrary, if the guess is right, the intersection contains 1 element.

With high probability, the test at line 5 of Algorithm 1 will succeed only for the
correct value of j, and the corresponding set S will contain a single value.

3.5 Recovering the intermediate state

So far, we have recovered the value CIS′′1 ⊕ ctr + a+ j, that is to say the first
chunk Ij1 of the input of the first π-function. In addition, the least significant bits

of ctr + a+ j are known to be zero, so that we can compute Ij+k
1 = Ij1 ⊕ k for

0 ≤ k < 8ω (adjusting the effect of the counter).

13



From this, we can build a small list of candidates for any Oj+k
2 . We just have

to try all 24ω values Oj+k
2 , recompute Ij+k

1 , and compare the result to the known
value. We know that there will be at least one remaining value, and there can be
a few false positives.

Now we make a guess of Oj+k
4 and use the invertibility of the π-function to

built a list L′k of all potential values of the full input Ij+k of the permutation.
This second phase of guess and determine through the π-function is demonstrated
in Figure 6. The list L′k contains about 24ω values. This step is described in
Algorithm 3.

In order to identify the correct value in the list, we build the lists L′0 and L′1,
and we use the way Ij and Ij+1 are derived from CIS′′. In particular, we have
Ij2‖Ij3‖Ij4 = Ij+1

2 ‖Ij+1
3 ‖Ij+1

4 . This allows us to recover the correct value Ij and
Ij+1.

Fig. 6. Guessing O4 after I1 has been determined

3.6 Recovering the Common Internal State CIS

In this section we show how to recover the common internal states CIS′′ and
CIS. We remind once again, that the state CIS′ is equal to CIS′′. From the

14



Algorithm 3 Build the list of candidates for the full input of the first π-function,
knowing the first input chunk.

Input: Plaintext-ciphertext block M,C; index k; list of I1 candidates S
Output: List L of candidates for I2||I3||I4
1: function Recover-IS(M,C, k,S)
2: L ← ∅
3: O1||O3 ←M ⊕ C
4: for all O2 do
5: I ← π−1(O1||O2||O3||〈0〉)
6: if I1 ⊕ k ∈ S then . Only one candidate expected
7: for all O4 do
8: I ← π−1(O1||O2||O3||O4)
9: L ← L ∪ {I2||I3||I4}

10: return L

previous sections, the input state of the first π-function for message block j, Ij

has been recovered. Note that

Ij = Ij1 ||Ij2 ||Ij3 ||Ij4 = CIS′′1 ⊕ (ctr + a+ j)||CIS′′2 ||CIS′′3 ||CIS′′4 .

By making a guess for the value of the counter ctr, we can compute the value of
CIS′′ which equals CIS′.

The next step is to retrieve the tag T ′′ and therefore T ′ (since both tags are
equal) by computing T ′′ = T �d t1 �d · · ·�d t16ω, where each tag ti, 1 ≤ i ≤ 16ω
can be recovered from the knowledge of CIS′′, ctr and the message blocks.

Once this step is done, the recovery of the common internal state CIS is
immediate, as one can compute it as CIS = π−1(CIS′)⊕ T ′. Note that, at this
point, we can easily verify if the guess of ctr was correct, since ctr corresponds to
64 bits extracted directly from the initial state CIS (as described in Section 2.1).
The above procedure is described by Algorithm 4.

Algorithm 4 Recover the initial state CIS.

Input: Common Internal State CIS′′, corresponding message M
Output: Common Internal State CIS
1: function recover-CIS(CIS′′,M)
2: for 1 ≤ i ≤ 16ω do
3: Compute ti from CIS′′ and Mi

4: T ′ = T �d t1 �d · · ·�d t16ω
5: CIS ← π−1(CIS′)capacity||π−1(CIS′)rate ⊕ T ′
6: return CIS

15



3.7 Key recovery

Once the internal state CIS has been successfully recovered, one can retrieve
the master key K by simply inverting the π-function, as described by Line 13 of
Algorithm 1.

3.8 About the use of SMN

The above described analysis supposes that no secret message number is used.
This is a legitimate assumption, as |SMN | = 0 is a valid scenario mentioned in
the cipher’s proposal. Our attack can be easily extended to the case when an
SMN is used if one supposes that this number is known to the attacker together
with the plaintext. In the case that the knowledge of SMN is not available to
the attacker, our analysis fails. However, it is still possible to mount a forgery
attack in this case.

More precisely (see Figure 2), if one is given an m-block message M with
associated data AD and the corresponding tag T , one can easily construct a
forgery as follows. Suppose that the new message Mforged has (m+ 1) blocks
where the first m blocks are identical to the first m blocks of M (i.e., M is a
prefix of Mforged) and the last block of Mforged is any fixed value. We follow the
steps of Algorithm 1 with message M up to Step 8. At this point we intend to
recover ctr. However, we cannot follow the same strategy as the one followed in
Algorithm 1 since CIS cannot be recovered without the knowledge of SMN . But
we can use the value of Cs which is the output of the SMN processing branch (see
Figure 2). So basically we guess ctr to determine CIS′′ as before. Subsequently,
we ascertain the value ctr by exploiting the relation (π−1(CIS′′))rate = Cs. Since
at this point, ctr is known, we can easily compute tm+1 and thus, the new tag
T forged will be given by T � tm+1.

4 Key Recovery Attack against Full Round Lightweight
Version of π-Cipher

We argue here that the previously presented attack against various versions of
the π-Cipher CAESAR candidate, completely breaks the lightweight version [10]
of the same cipher, where the number of rounds is reduced to 2.

The only difference with the previous attack is that, as the number of rounds
is reduced, the guess and determine part of the attack is slightly modified to fit
this reduction. This part, depicted at the left part of Figure 7 is described by the
following steps:

1. Use K1 and G to determine D1.
2. Use K2 and G to determine D2.
3. Use D1 and S1 to determine D3.
4. Use D1 and D2 to determine D4.
5. Use D3 and D4 to determine D5.

16



6. Use D5 and S1 to determine D6.

After the chunk I1 has been determined, the other chunks I2, I3 and I4
can be derived by further guessing the value of O4, as shown at the right part
of Figure 7. The other steps of the attack remain unchanged, thus we ignore their
full description.

Fig. 7. Guess and determine phases for the attack on lightweight π-Cipher variants.

5 Complexity Analysis

Time complexity. The two steps of the attack with the highest time complexity
are the guess and determine step, and the intersection of lists. The guess and
determine step involves 16ω lists and we evaluate the π-function 24ω times for
each list. This gives a time complexity of 16ω× 24ω evaluations of the π-function.

Each list will be stored as a bit-field: we use an array of 24ω bits, where a
bit b is set to one if and only if the value b is in the list. This allows to compute
the intersection of two lists efficiently, with only 24ω bit-operations. We have to
compute 64ω2 list intersections at Line 4 of Algorithm 1. This amounts to a total
complexity of 64ω2 × 24ω bit-operations.

Since a computation of the π-function obviously requires more than 4ω bit-
operations, we will neglect the time complexity of lists intersection, and the
total complexity is 16ω × 24ω evaluations of the π-function. This leads to a time
complexity of 272 when ω = 16 and 2137 when ω = 32.

17



Memory complexity. The memory complexity of the attack comes from the
storage of lists. As explained above, each list Li takes only 24ω bits, for a total
storage of 16ω × 24ω bits. On the other hand, lists L′0 and L′1 contain 24ω values
of 16ω bits, so we must store the full values. We can store a single list, and
compute the intersections with the second list on the fly, so that this step also
requires 16ω × 24ω bits of storage.

For ω = 16 this leads to a memory complexity of 269 bytes, while for ω = 32,
we need to store 2134 bytes.

Table 2 presents a summary of our attacks on different variants of π-Cipher.
The last three columns of this table contain the time, data and memory com-
plexities of the attacks.

Table 2. Summary of our attacks against different variants of π-Cipher. The data
complexity is counted as the number of known plaintexts. The minimal number of
blocks of each plaintext is denoted in the parenthesis.

Version Variant
Word Security # Rounds Time Data Memory
size ω Claim Attacked (# KP) (bytes)

v1 & v2 π16-Cipher096 16 96 2.5/3 272 1 (256 B) 269

v1
π16-Cipher128 16 128 2.5/4 272 1 (256 B) 269

π32-Cipher256 32 256 2.5/4 2137 1 (512 B) 2134

Lightweight
π16-Cipher096 16 96 2/2 272 1 (256 B) 269

π16-Cipher128 16 128 2/2 272 1 (256 B) 269

6 Conclusion

In this work we provided an analysis of the security level offered by the π-Cipher
family of authenticated ciphers. The designers of π-Cipher decided to decrease
the number of rounds of the π-function from 4 to 3 for the second round of the
CAESAR competition and to consider only 2 rounds for the recently proposed
lightweight version. However, when reducing the number of rounds, special care
must be taken, as this can lead to a dangerous reduction of the security margin
offered by the new variants.

Our results indicate that π-Cipher, whose round function is reduced to 2.5
rounds, is vulnerable against guess and determine attacks. More precisely, we
manage to recover the secret key in three reduced-round versions of the π-Cipher
as well as in the two lightweight variants of the cipher. Taken together, these
results suggest that the decision taken by the designers to reduce the number of
rounds for the candidates of the second round of the CAESAR competition as
well as for the lightweight version was risky.

In this work, we focused on the application of deterministic guess and de-
termine properties. As a possible direction for future research, one can explore

18



other guess and determine methods for breaking the full version of the cipher.
Alternatively, it would be also challenging to see if the analysis of the properties
of the ~ operation could lead to the extension of our attack to an extra half
round. Furthermore, a question that naturally arises after this analysis is whether
increasing the number of rounds of the cipher is the only remedy to resist to our
attack, or whether there is another tweak that could be applied to render the
cipher immune against such type of cryptanalysis.

Acknowledgments. This work was initiated during the group sessions of the
5th Asian Workshop on Symmetric Cryptography (ASK 2015) held in Singapore.
Christina Boura and Gaëtan Leurent are partially supported by the French
Agence Nationale de la Recherche through the BRUTUS project under Contract
ANR-14-CE28-0015. Avik Chakraborti and Goutam Paul are thankful to the
Centre of Excellence in Cryptology (Project CoEC) and R. C. Bose Centre for
Cryptology and Security of Indian Statistical Institute for partial support towards
their work. Finally, the work of Hadi Soleimany is partly supported by grants
from IPM and Shahid Beheshti University.

References

1. AlFardan, N.J., Paterson, K.G.: Lucky Thirteen: Breaking the TLS and DTLS
Record Protocols. In: Society, I.C. (ed.) IEEE Symposium on Security and Privacy
2013 (2013)

2. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the Indifferentiability of the
Sponge Construction. In: EUROCRYPT 2008. Lecture Notes in Computer Science,
vol. 4965, pp. 181–197. Springer (2008)

3. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness (2014), http://competitions.cr.yp.to/caesar.html/

4. Duong, T., Rizzo, J.: Here Come The XOR Ninjas
5. Flajolet, P., Odlyzko, A.M.: Random mapping statistics. https://hal.inria.fr/inria-

00075445 (2006)
6. Fuhr, T., Leurent, G.: Observation on π-Cipher. CAESAR’s competition mailing

list (November 2014)
7. Gligoroski, D., Mihajloska, H., Samardjiska, S., Jacobsen, H., El-Hadedy, M.,

Jensen, R., Otte, D.: π-Cipher v2.0. Submission to the CAESAR competition
(2014), http://competitions.cr.yp.to/caesar-submissions.html/

8. Gligoroski, D., Ødeg̊ard, R.S., Mihova, M., Knapskog, S.J., Kocarev, L., Drápal, A.,
Klima, V.: Cryptographic hash function EDON-R′. In: 1st International Workshop
on Security and Communication Networks. pp. 85–95. IEEE (2009)

9. Leurent, G.: Tag Second-preimage Attack against π-cipher. https://hal.inria.fr/hal-
00966794 (March 2014)

10. Mihajloska, H., El-Hadedy, M., Gligoroski, D., Skadron, K.: Lightweight version of
π-cipher. In: NIST Lightweight Cryptography Workshop 2015 (July 2015)

19


