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Abstract. Lapin is a new authentication protocol that has been de-
signed for low-cost implementations. In a work from RFIDsec 2012,
Berstein and Lange argued that at similar (mathematical) security lev-
els, Lapin’s performances are below the ones of block cipher based au-
thentication. In this paper, we suggest that as soon as physical security
(e.g. against side-channel attacks) is taken into account, this criticism
can be mitigated. For this purpose, we start by investigating masked
hardware implementations of Lapin, and discuss the gains obtained over
software ones. Next, we observe that the structure of our implementa-
tions significantly differs from block cipher ones (for which most results
in side-channel analysis apply), hence raising questions regarding how
to evaluate physical security in this case. We then provide first results
of side-channel analyzes against unprotected and masked Lapin. Despite
interesting properties of the masked implementations, our conclusions
are still contrasted because of the on-chip randomness requirements of
Lapin protocol. These results give strong incentive to design similar but
deterministic protocols, e.g. based on the recently introduced Learning
With Rounding assumption.
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1 Introduction

In [9], Heyse at al. proposed the Lapin authentication protocol based on the
hardness of the Ring-LPN problem. Authors described two different Lapin vari-
ants based on a carefully chosen ring R = F2[X]/f(X). In the first variant, the
ring is constructed with respect to an irreducible polynomial f(X) in F2. This
way the ring becomes a Galois field. In the second variant the polynomial f(X)
is reducible and it factors into distinct irreducible factors over F2, leading to
improved performances (only this second variant will be considered next).

This work has been funded in part by the ERC project 280141 (acronym CRASH),
by the European Commissions 7th framework program’s project TAMPRES, and by
the Belgian Cybercrime Center of Excellence for Training Research and Education
(B-CCENTRE). F.-X. Standaert is an associate researcher of the Belgiam Fund for
Scientific Research (FNRS-F.R.S).
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The claim that such a protocol could provide better performances than stan-
dard solutions using block ciphers gave rise to some debate, as witnessed by
the work of Bernstein and Lange [3]. In this paper, the authors strongly argued
against Lapin, because of its unclear security level, and performances that are
anyway below the ones of lightweight ciphers. In this paper, we aim to mitigate
these criticisms in light of the interesting properties of Lapin regarding side-
channel resistance. Namely, we would like to argue that3 as the (physical) se-
curity level against side-channel attacks required by some application increases,
Lapin gradually becomes an interesting alternative over the AES. The main
reason of this interesting feature is the linearity found in its core operations.

For this purpose, we first propose a generic hardware architecture for Lapin,
and detail the performance gains that can be obtained from its implementation in
an FPGA (compared to previous software implementations of unprotected Lapin
and masked AES). Next, we provide a preliminary evaluation of its side-channel
properties. Interestingly, the situation of Lapin can be compared to recent in-
vestigations of randomness extractors against side-channel attacks [15]. Namely,
they can both be masked quite efficiently, while raising questions regarding how
to best exploit/evaluate side-channel leakage. As a first step in this direction, we
suggest two ways to mount attacks against Lapin: one non-divide-and-conquer
DPA-like attack, and one divide-and-conquer collision-like attack, exploiting the
correlation between the leakage corresponding to multiple messages.

Overall, these results suggest that Lapin could be a promising candidate
for (reasonably) lightweight and physically secure implementations. Yet, and
admittedly, a significant drawback remains that it requires the generation of
randomness on-chip, which may be an issue both from the performance and the
physical security point of view. As the previous work in [9], we ignored this part of
the problem so far, leading to two important questions for further research. First,
how to generate this noise efficiently and in a leakage-resilient manner. Second,
can we build an authentication protocol similar to Lapin, but deterministic, e.g.
using the recently introduced Learning With Rounding assumption [1, 2].

2 Background

In this section we recall the Lapin authentication protocol and the masking
countermeasure.

2.1 The Lapin protocol

Lapin is a two-round authentication protocol, illustrated in Figure 1. It is defined
over the ring R = F2[X]/f(X), where f is a polynomial over F2 of degree n. The
initial public parameters are: λ – security level parameter (in bits); π – mapping
{0, 1}λ → R; τ ∈ (0, 1/2) – Bernoulli distribution parameter; τ ′ ∈ (τ, 1/2) – reader
acceptance threshold. Besides, the secret key of the tag and reader is defined as

K = (s, s′), with (s, s′)
$← R. The protocol is executed as follows.

3 Up to some limitations related to the randomness requirements of Lapin - see next.
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Public parameters: R, π:{0, 1}λ → R, τ, τ ′, λ.
Secret key: K = (s, s′) ∈ R2.

Tag Reader

À
c

c
$← {0, 1}λ

Á r
$← R∗; e

$← BerRτ ∈ R

Â z := r · (s · π(c)⊕ s′)⊕ e
(r, z)

Ã if r /∈ R∗ reject

Ä e′ := z − r · (s · π(c)⊕ s′)

Å if HW (e′) > n · τ ′ reject
else accept

Fig. 1. Two-round Lapin authentication protocol.

After the tag is detected in the reader’s vicinity, the reader randomly gen-
erates a challenge c ∈ {0, 1}λ and sends it to the tag (step À in Fig. 1). The λ
parameter determines the security level of the protocol (e.g. λ = 80 bits). In the
meantime, the tag generates parameters r and e (step Á). The parameter r is an
uniformly chosen element of the ring R∗ and e is a low-weight ring element chosen
with Bernoulli distribution over F2 (Berτ ) with parameter (bias) τ ∈]0, 1/2[ (i.e.,
Pr[X = 1] = τ if X ← Berτ ). After receiving the challenge c, the tag maps the
challenge to the ring through π, where π satisfies π(c)⊕π(c′) ∈ R \R∗ ⇔ c = c′.
We denote R∗ the set of elements in R that have a multiplicative inverse. Subse-
quently, the tag responds with (r, z = r · K(c) ⊕ e) ∈ R × R (step Â), where
K(c) = s · c ⊕ s′ is the session key that depends on the shared secret key
K = (s, s′) ∈ R2 and the challenge c. The reader accepts if e′ = z ⊕ r · K(c)
(computed in the step Ä) is a polynomial of low weight (step Å). More details
on the Lapin protocol and all necessary security proofs can be find in [9].

Chinese Reminder Theorem representation (CRT): In this work, we
focus on versions of Lapin over a ring R = F2[X]/f(X) where f(X) factors into
distinct irreducible factors over F2. For an element h in the ring F2[X]/f(X),

we will denote ĥ its CRT representation with respect to the factors of f(X)
(for simplicity f(X) will be further denoted only as f). In other words, if f =
f1 · f2 · · · fm where all fj are irreducible, then:

ĥ
.
= (h mod f1, . . . , h mod fm), ĥi

.
= h mod fi.

For the protocol to be implemented efficiently, all public and private values must
be transformed to the CRT domain. However, in order to obtain the resulting
tag response (r, z), it must be reconstructed from the response (r̂, ẑ) as follows:

(r, z) =


m⊕
i=1

r̂i ·

constant︷ ︸︸ ︷
f

fi
·

[(
f

fi

)−1]
fi

,

m⊕
i=1

ẑi ·

constant︷ ︸︸ ︷
f

fi
·

[(
f

fi

)−1]
fi

 . (1)
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Although constants in the equation can be precomputed, this transformation still
involves m multiplications and additions of size n. Since the transformation from
and to the CRT representation only uses public values, the tag response (r, z)
can be sent to the reader in its CRT representation (r̂, ẑ) without decreasing
Lapin’s security. This way, the computationally extensive transformation can be
performed at the reader side.

The challenge mapping π is defined as π̂(c) = (c, c, c, c, c), i.e. each CRT
component is just the challenge padded with zeroes.

2.2 The masking countermeasure

Masking is a countermeasure against power analysis attacks based on secret shar-
ing, first proposed by Chari et al. [5] and Goubin et al. [7]. Its main objective
is to decrease the correlation between the power consumed by a device and the
data being processed, by applying one (or several) random mask(s) to interme-
diate values. More formally, prior to the execution of the algorithm, all sensitive
values (i.e. all key-dependent intermediate results used during the cryptographic
computations) must be split into shares. Next, the algorithm is implemented in
such a way that the processing is only performed on these shares, which are
recombined at the end of the computation to produce the correct output result.
Given that the shares are refreshed for each new authentication4, masking pro-
vides an increase of the side-channel attacks data complexity that is exponential
in their number, under the assumption that the leakage of each share is indepen-
dent of the others. However, for this exponential security increase to materialize
into strong concrete security, it is required that sufficient noise is present in the
leakage measurements [18].

Different types of masking schemes have been proposed in the literature.
Boolean masking (where the sharing is performed using a bitwise XOR oper-
ation) appears as the most natural candidate in our context, since it can take
advantage of the linearity of the computations in Lapin. In this context, the split
of a sensitive value h into d shares requires the generation of d−1 random mask
values qi, and is defined as follows:

h1 = q1, . . . , hd−1 = qd−1, hd = h⊕
d−1⊕
i=1

qi.

Based on this sharing, a masked version of Lapin becomes straightforward to
implement. The secret keys s, s′ and low-weight element e are first divided to
shares s1, s2, . . . , sd; s

′
1, s
′
2, . . . , s

′
d and e1, e2, . . . , ed, respectively. The final result

z is then obtained by recombining shares z1, z2, . . . , zd that are computed as

4 This implies storing all the shares of the secret key, for which the initial split is
assumed to be performed once without leakage (otherwise this initialization can
always be the target of simple attacks).
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follows:

z = (π(c) · s⊕ s′) · r ⊕ e,
= [π(c) · (s1 ⊕ · · · ⊕ sd)⊕ (s′1 ⊕ · · · ⊕ s′d)] · r ⊕ (e1 ⊕ · · · ⊕ ed),
= [(π(c) · s1 ⊕ s′1) · r ⊕ e1]⊕ · · · ⊕ [(π(c) · sd ⊕ s′d) · r ⊕ ed] ,
= z1 ⊕ · · · ⊕ zd,

with

zi
.
= (π(c) · si ⊕ s′i) · r ⊕ ei.

Since Lapin is linear, we can compute the shares zi independently, and there
is no need of interaction between them nor refreshing during the computations,
as opposed to masking non-linear gates within the AES [16], for instance. This
leads to very efficient implementations.

On the independent leakage assumption: In addition, the linearity of Lapin
also allows to compute the shares sequentially. This time separation typically
reduces the risk of glitches and other hardware effects that are well known to
contradict the independence assumption [13]. This is especially interesting in the
context of hardware implementations as considered in the next section; this is
the typical context in which glitches can appear [14].

3 Hardware implementation

In this section we discuss our design choices for (unprotected and masked) Lapin.
We present several implementations of a Lapin co-processor and report their
area and timing performance. A hardware implementation takes advantage of
parallel computing in order to generate sufficient algorithmic noise, which allows
significant security gains in practice (and improved performances).

3.1 Generic architecture

In order to implement the Lapin protocol, we use the same parameter values as
defined in Heyse at al. [9]. The degree of the polynomial f is chosen as n = 621,
the security level parameter λ = 80 bits, Bernoulli distribution bias parameters
τ = 1/6, τ ′ = 0.29 and the number of factors of f as m = 5. The five fj
polynomials are defined as follows:

f1(X) = X
127 ⊕X8 ⊕X7 ⊕X3 ⊕ 1,

f2(X) = X
126 ⊕X9 ⊕X6 ⊕X5 ⊕ 1,

f3(X) = X
125 ⊕X9 ⊕X7 ⊕X4 ⊕ 1,

f4(X) = X
122 ⊕X7 ⊕X4 ⊕X3 ⊕ 1,

f5(X) = X
121 ⊕X8 ⊕X5 ⊕X ⊕ 1.

Assuming that the Lapin protocol is performed on d shares (each of them com-
puted for all m CRT parts), we will denote the i−th share of the j−th CRT part
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for a sensitive variable h as ĥi,j . Next, we propose a flexible architecture that
allows splitting the sensitive variables into arbitrary number of shares. Taking ad-
vantage of generic VHDL coding enables the generation of such implementations
by re-synthetizing the same code with different parameters. For this purpose, we
present the masked Lapin algorithm, the combined polynomial multiplication-
reduction algorithm, and the hardware implementation of the complete Lapin
core.

Masked Lapin: The generic masked Lapin algorithm is illustrated in Algo-
rithm 1. First, a padded public challenge π(c) is multiplied by a secret key s
divided into shares ŝi,j for 1 ≤ i ≤ d, 1 ≤ j ≤ m. Following, the result is

added to the secret key s′ divided into shares ŝ′i,j . The sum is then multiplied
by a public random tag response r̂j . Subsequently, the product is added to a
low-weight element êi,j . The last step is to sum all resulting shares to form an
unmasked tag response ẑj . Finally, r̂j and ẑj are sent back to the reader to finish
the authentication process. Note that all computations are performed on all m
CRT parts.

Algorithm 1 Masked Lapin algorithm

Input:
1: Padded public challenge π(c)
2: Public random element r̂
3: Secret keys s and s′ divided to shares ŝ and ŝ′ respectively
4: Secret low-weigh error element e divided into shares ê
Output: Response (ẑ,r̂)
5: for j from 1 to m do
6: ẑj ← 0
7: for i from 1 to d do
8: t̂i,j ← (π(c) · ŝi,j ⊕ ŝ′i,j) · r̂j ⊕ êi,j
9: end for

10: for i from 1 to d do
11: ẑj ← ẑj ⊕ t̂i,j
12: end for
13: end for
14: Return ẑ

Reduction of a low-weight error element e: Unlike the other parameters
in Lapin, the low-weight error element e cannot be generated or pre-stored in
CRT representation directly: its m CRT parts must be calculated prior to other
computations. The reduction of such a large element is not straightforward and
requires additional hardware resources. In order to simplify this problem, we
first write each share of e (a polynomial of degree 621) in Horner form using
five polynomials [e(4), e(3), e(2), e(1), e(0)] of degree 127 (except for e(4) of degree
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109):

êi,j =
((((

e
(4)
i ·X

128⊕e(3)i
)
·X128⊕e(2)i

)
·X128⊕e(1)i

)
·X128⊕e(0)i

)
mod fj . (2)

Next, the polynomial X128 can be reduced by each characteristic polynomial fj
resulting in constant polynomials gj of degree less than deg(fj). After substitu-
tion Equation 2 becomes:

êi,j =
(((

e
(4)
i gj mod fj ⊕ e(3)i

)
· gj mod fj ⊕ e(2)i

)
· gj mod fj ⊕ e(1)i

)
·gj mod fj⊕e(0)i .

(3)
This way, only four multiplications, four reductions and four additions have
to be computed to obtain each êi,j . Moreover, the same hardware as used for
performing the computations in Algorithm 1 can be re-used to calculate the êi,j ’s.
Note that since e(3), e(2), e(1) and e(0) are of degree 127, some extra hardware
is still necessary for their reduction.

Polynomial multiplication and reduction: Examining the previous algo-
rithms reveals that 6× d×m polynomial multiplications, reductions and poly-
nomial additions have to be performed to generate a response ẑ. Among those,
the most time-consuming operations are the polynomial multiplications and sub-
sequent reductions of the products. Although the performances of the ”school-
book” multiplication algorithm is theoretically lower (O(2n)) than the Karatsuba
algorithm (O(nlog23)), it has a very simple structure, and so the resulting imple-
mentation is area-efficient and can operate at high clock frequencies. Moreover,
polynomial reduction and multiplication operations can be executed simultane-
ously in this case, so that no computational time is lost for the reduction step.
For this reason, we have implemented a combined polynomial multiplication-
reduction based on the schoolbook multiplication, as explained in Algorithm 2.

Two input polynomials âi,j and b̂i,j of degree at most nj − 1 (represented with
bit arrays A[nj − 1 : 0] and B[nj − 1 : 0]) are multiplied together while partial
products are reduced by the characteristic polynomial fj of degree nj (repre-
sented with the bit array F [nj : 0]) simultaneously. A closer examination of the
algorithm shows that B is multiplied by one bit of A at a time. Therefore, if
A contains a secret value, Lapin will be vulnerable to a Simple Power Analysis
(SPA) attack, where each partial multiplication leaks one bit of a key. For this
reason, Amust contain only public data. On the contrary, B is processed in larger
blocks (according to the datapath size), so we used it to manipulate sensitive
data (that will additionally be protected against DPA thanks to masking).

Lapin architecture: We implemented Lapin as a hardware co-processor core,
synthesized using Xilinx ISE 12.4 for Xilinx Virtex-5 XC5VLX50T FPGAs. Our
implementation is illustrated in Figure 2. All variables are stored in the data
register that is implemented in a dual-port embedded RAM. Random ring ele-
ments r̂ and low-weight error elements e have to be generated by a TRNG. Three
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Algorithm 2 Combined polynomial multiplication-reduction

Input:
1: polynomial âi,j , deg (âi,j) ≤ nj − 1 represented as bit array A[nj − 1 : 0]

2: polynomial b̂i,j , deg
(
b̂i,j
)
≤ nj − 1 represented as bit array B[nj − 1 : 0]

3: characteristic polynomial fj(X) of degree nj represented as bit array Fj [nj : 0]

Output: c(X) =
(
âi,j .b̂i,j

)
mod fj)

4: C ← 0
5: for i from 1 to nj do
6: if A[nj − i] = 1 then
7: C ← C ⊕B
8: end if
9: if C[nj − 1] = 1 then

10: C ← (C � 1)⊕ Fj [nj − 1 : 0]
11: else
12: C ← (C � 1)
13: end if
14: end for
15: Return C[nj − 1 : 0]

distinctive parts can be identified in the datapath of this Lapin core: the polyno-
mial multiplication logic (shown in blue in Figure 2), the reduction logic (in red)
and the addition logic (in green). During multiplication, a public parameter is
stored in the shift register (implemented in logic). By shifting this register, one
bit is selected at a time and multiplied with the secret parameter. The resulting
partial product is stored in the accumulator (also implemented in a dual-port
RAM). Subsequently, this partial product is shifted and added to the next par-
tial product. Whenever the size of this sum exceeds nj bits (nj = deg(fj)),
reduction circuitry is activated in the next clock cycle to reduce the exceeding
bit. Once the multiplication is finished, the result can be summed with a next
secret parameter stored in the data register. Prior to this addition, all exceeding
bits of this parameter are reduced by an auxiliary reduction circuitry. As can
be observed from the figure, multiplication involves shifting of partial products
stored in the accumulator. However, if a partial product of size nj is shifted in
more than one clock cycle (which is the case when k < 128), the most significant
bit of each shifted word must be stored in a carry bit register Cr. This way a
stored carry bit becomes a least significant bit of the next word in the next clock
cycle.

3.2 Performance evaluation

Implementation results: In order to investigate the performance trends re-
sulting from different datapath sizes, we implemented our design for different
values of the k parameter in Figure 2, namely we considered k =8-, 16-, 32-,
64- or 128-bit wide architectures, as summarized in Table 1. These results cor-
respond to an unprotected implementation (i.e. d = 1) – but thanks to the
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Fig. 2. Datapath with multiplication (blue), reduction (red) and addition (green) cir-
cuitry.

linear structure of Lapin, the masked versions have essentially the same cost:
only the memory requirements will increase proportionally to the number of
shares, in order to store intermediate results. We observe that if the datapath
size is decreased by half, the number of allocated fine-grained FPGA resources
does not always decrease accordingly. This can be explained by the fact that
narrower datapaths usually require more multiplexers and more complex control
logic. Moreover, this extra logic increases the overall datapath delays, resulting
in lower maximal clock frequency (see the fifth column in Table 1).

Table 1. Implementation results: resource usage and timing information.

Datapath Slices BRAM fmax Clock cycles
(k) 18kb 36kb (MHz) d = 1 d = 2 d = 3

8 213 2 0 125.3 20,977 41,969 62,961
16 232 2 0 127.5 10,489 20,985 31,481
32 311 1 1 127.2 5,245 10,493 15,741
64 330 0 3 130.2 2,623 5,247 7,871
128 451 0 6 140.3 1,332 2,664 3,996

Timing results: The detailed timing characteristics of our implementations are
given in Table 2 (see Appendix B), in which each line corresponds to the number
of clock cycles required for the computations in one characteristic polynomial
domain (fj), and the last line represents the total number of clock cycles for
the full Lapin execution, i.e. one tag response for one authentication request.
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The left part of the table shows results if no masking is used (secret variables
are not divided into shares, i.e. d = 1); its right part summarizes results for
three-share computations (i.e. d = 3). For completeness, timing characteristics
are again provided for all the aforementioned datapath sizes. The datapath and
the control logic were designed in order to eliminate cycles with no activity (i.e.
pipeline bubbles). As a result, decreasing the datapath size by half results in
doubling the number of clock cycles in most cases. The only exception is the
128-bit datapath where some extra dummy cycles were necessary to avoid RAM
read/write collisions.

Comparison: The timing comparison of software AES [16], software Lapin [9]
and our hardware Lapin are given in Figure 3. In the case of software Lapin,
the cycle counts for the masked versions are extrapolated from the unprotected
implementation. These results lead to two main observations.

First, we see that masked Lapin implementations indeed become interesting
alternatives over AES ones, as the number of shares increases. This is caused
by the fact the the implementation cost of non-linear operations (which become
dominant in masked AES implementations) increases quadratically with d, while
this increase is only linear in the case of Lapin. Interestingly, the number of
shares for which this gain concretely appears is reasonably small, hence close to
practical interest. The software figures we have for protected implementations of
AES and Lapin on ATMega suggest that Lapin could become more efficient than
AES even with d = 2, but the crossing point can move significantly depending
on the masking scheme used, and the optimization level of the implementation.

Second, we see that (as usual) specialized hardware implementations allow
a significant optimization of the performances of Lapin. Gains already appear
in the comparison of 8-bit architectures: computing a tag response in software
requires 112,500 clock cycles (that can be decreased to 30,000 clock cycles if
precomputation is allowed); our 1-share 8-bit hardware implementation requires
only 20,977 clock cycles in this case (without precomputations). These advan-
tages naturally amplify as we consider larger datapath sizes.

# of shares AES Lapin Lapin
d softw. [16, 8] softw. [9] 8b hardw.

1 5100 112500 20977
2 286844 225016 41969
3 572069 337532 62961
4 1003154 450048 83953
5 1489539 562564 104945
6 2095756 675080 125937
7 2779561 787596 146929 1 2 3 4 5 6 7

0

1

2

3
·106

Number of shares d

C
lo
ck

c
y
c
le
s

Fig. 3. Number of clock cycles vs. number of shares (d) for software AES [16, 8], soft-
ware Lapin [9] and hardware Lapin. With increase of used shares, the computation time
increases quadratically for the AES and only linearly for both Lapin implementations.



Hardware Implementation and Side-Channel Analysis of Lapin 11

4 Side-channel analysis of Lapin

The previous section suggests that Lapin is an interesting candidate for masking.
First, its linearity allows increasing the number of shares for only a linear imple-
mentation cost penalty. Second, it also allows manipulating the shares indepen-
dently, which implies a better chance to fulfill the independent leakage require-
ments that is crucial for masking to provide its expected security improvements.
Third, it is efficiently implemented in hardware with large datapaths, providing
algorithmic noise that is needed for the exponential data complexity increase of
masking to materialize into strong security levels. On the other hand, a limita-
tion of this analysis remains that it “only” considers the security orders of the
masking schemes (i.e. the minimum number of shares of which the leakage must
be exploited to recover key-dependent information). While this is a traditional
approach in side-channel analysis, it remains to understand how these security
orders translate into actual attack complexities. In particular, since Lapin has
a significantly different structure than block ciphers (to which most published
higher-order side-channel attacks apply), it is interesting to study attacks that
exploit the design of its multiplier. In this section, we consequently suggest sev-
eral scenarios to analyze/evaluate a Lapin implementation using side-channel in-
formation, and we study the efficiency of those attacks depending on the masking
order of this implementation. As will be seen, these attacks differ from classical
DPA in some interesting respects.

We first point out that we can attack the CRT components independently:
each component is computed separately, and we can test a key candidate ŝi from
the an authentication transcript without knowing the other CRT components.
In the following we describe attacks on a single CRT component.

As a starting point, we consider a non-protected implementation of Lapin,
and we study how to apply a standard DPA attack. In order to evaluate power
analysis on our implementation of Lapin, we first have to study what parts of
the computations are key-dependent, and how it might affect the power con-
sumption. In our analysis we target the first multiplication s · π(c) in the Lapin
protocol, where s is a secret value, and c is a challenge that can be set by the at-
tacker. Our architecture for Lapin includes a large accumulator that is updated
at each clock cycle, as shown in Figure 2, and we assume that this accumulator
will induce a significant leakage dependent on its value a. In order to simplify
our analysis, we use a Hamming weight model, i.e. we assume that the power
consumption is correlated with HW(a), and we run simulations where the sam-
ples are computed as HW(a) +N , with N a Gaussian-distributed random noise.
Our attacks will typically exploit the fact that, when computing a · c, the mul-
tiplication algorithm updates the accumulator a as (we consider the optimized
multiplication with an 80-bit c):

a0 = 0 ai+1 ←

{
2 · ai ⊕ s if c[80− i] = 1

2 · ai otherwise.
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Hence, the value of the a after a few cycles of computation is a small multiple
of the secret:

a80 = s · c ai = s ·
i∑

j=1

c[80− j]Xi−j .

Cautionary note: Assuming Hamming weight leakages is admittedly a simpli-
fication of the real measurements used in side-channel attacks. However, it is a
reasonable abstraction for preliminary analyses, that has been used in numerous
contexts [12]. While the actual complexities provided by these simulated attacks
are only meaningful up to the extent that true leakages behave similarly, they are
usually informative to confirm whether some attack techniques can be successful.
This is typically what the following results aim to exhibit, i.e. how side-channel
attacks against Lapin differ from standard DPA against block ciphers.

4.1 A first DPA-like attack against unprotected Lapin.

In an unprotected design, the leakage reveals the Hamming weight of multiples
of the secret, with a chosen multiplier mi(c) =

∑i
j=1 c[80 − j]Xi−j , depending

on the challenge c and the cycle i we target. If we exploit several different cycles
in a given trace, we can get information about HW(ai) = HW(s · mi(c)) for
the same c and different values of i. However, the same information can also be
obtained by targeting a fixed cycle ι of the computation if we capture several
traces and send the appropriate challenges cj so that mι(cj) = mj(c).

In a DPA attack, we guess a small part of the key, then predict the value of
the leakage for a key guess according to a model, and compare the prediction
to the actual measurements in order to rank the key candidates. For a block
cipher, the key is usually divided according to the structure of the cipher; for
instance, an attack on the AES will target the key bytes independently because
each SBox in the first round depends on a single key byte. In the case of Lapin
there is no such natural division of the key, but we can study the key bits required
to compute some bits of the accumulator.

Recovering a few key bits. For a given t, if mi(c) is of degree at most t
(e.g. if i ≤ t), we can compute the p least significant bits of s ·mi(c) from the p
least significant and the t − 1 most significant bits of s. This allows to build a
simple DPA attack: after guessing the key bits, we compute the least significant
bits of ai and we consider the remaining bits as algorithmic noise. We can then
compute the correlation between the leaked weight of a and the weight of the
predicted bits, and use it to rank the key candidates.

Note that if there is no measurement noise, we can only use 2t different
measures in this attack, because there are only 2t different polynomials of degree
t or lower. Extra measures are only useful to reduce the measurement noise.

We implemented this attack using Pearson’s correlation coefficient as a com-
parison tool [4], and we show an example of results in Figure 8 in Appendix A.
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We can see from this example that the information from the measures is not suf-
ficient to recover exactly the secret key bits; there is a cluster of key candidates
with the same correlation coefficient. This is due to the algebraic structure of
the multiplier; for instance, if we consider two key candidate s and s′ = s · X,
our prediction for the least significant bit of the accumulator using the key s
will match the second-least significant bit of the accumulator for candidate s′.
Therefore, both candidates will be in the same cluster.

Recovering the full key. As opposed to a typical side channel attack on a
block cipher, we don’t have independent parts of the key affecting different parts
of the computation. Therefore, we don’t attack key parts independently using
a divide-and-conquer approach, but we recover key information gradually: if we
have a good candidate for n bits of the key, we generate key candidates for n+ 1
bits by considering both values for the next key bit. This defines a tree of key
candidates, and we explore the tree following the best candidates.

More precisely, we compute a score for the candidates as the ratio of Pearson’s
correlation coefficient over the expected correlation coefficient for the right key
(the square root of the number of predicted bits divided by the total number
of bits on the bus, over which the Hamming weight is computed). This allows
to compare the quality of key guesses of different lengths: if more key bits are
guessed, we can predict more bits, and we expect a better correlation coefficient.
The score of a node is computed when its parent is explored, and we select the
node with the higher score among all nodes whose score has been computed. In
practice, we use a priority queue to store the nodes and to extract the best one
efficiently.

If we have 2t traces, we begin by guessing the t − 1 most significant bits,
and one least significant bit of the key; this allows to predict one bit of the
accumulator at after t cycles. Next, we guess the second-least significant bit of
the key, so that we can predict two bits of at.

Figure 5 in Appendix A shows the success rate of this DPA-like attack, with
various parameters. The attack becomes less efficient with a large datapath,
because the Hamming weight over a larger bus size introduces more algorithmic
noise to the predicted value.

Those experiments clearly show the effect of the algorithmic noise from the
unknown bits in the Hamming weight (with variance k/4 for a k-bit datapath),
and of the physical noise (with variance σ2). When the physical noise is dom-
inant, i.e. σ2 > k/4, we see the data complexity increasing linearly with the
variance of the noise, as expected [11]. For instance, our experiment show a data
complexity of about 27.σ2 to reach a high success rate with k = 8. When k
increases, this increases the algorithmic noise, and we have a similar increase of
the data complexity if the algorithmic noise is dominant, i.e. when σ2 < k/4.
We note that this increase is somewhat faster than k/4 because there are more
nodes to explore to locate the correct key when k is larger, but we stop after a
fixed number of nodes are explored.
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4.2 Collision-like attack.

We now describe an attack based on the structure of the operations in Lapin.
The main advantage of this attack is that we can eliminate the algorithmic noise
due to the Hamming weight with a large datapath by comparing the leakage
with two different inputs. This is similar to side-channel collision attacks [17]
where two traces are compared to detect specific events.

More precisely, we use the fact that the operation α 7→ α·X has a predictable
effect on the Hamming weight of α. We have:

α ·X mod f =

{
(α� 1) if MSB(α) = 0

(α� 1)⊕ f if MSB(α) = 1,

where � to denotes a left shift. Alternatively, we can write it using a rotation
≪ over deg(f) bits:

α ·X mod f =

{
(α≪ 1) if MSB(α) = 0

(α≪ 1)⊕ f̄ if MSB(α) = 1,

where f̄ = f ⊕Xdeg(f)⊕ 1 is f without the highest and lowest coefficients. Since
the polynomials f used in Lapin are pentanomials, we have HW(f̄) = 3, and we
can relate the Hamming weight of α and the Hamming weight of α ·X mod f :

HW(α ·X mod f) =



HW(α) if MSB(α) = 0

HW(α) + 3 if MSB(α) = 1 and HW(α≪ 1 ∧ f̄) = 0

HW(α) + 1 if MSB(α) = 1 and HW(α≪ 1 ∧ f̄) = 1

HW(α)− 1 if MSB(α) = 1 and HW(α≪ 1 ∧ f̄) = 2

HW(α)− 3 if MSB(α) = 1 and HW(α≪ 1 ∧ f̄) = 3.

Therefore, the distribution of HW(α·X)−HW(α) for a random α is the following:

if MSB(α) = 0: HW(α ·X)−HW(α) = 0,

if MSB(α) = 1: HW(α ·X)−HW(α) =


+3 with probability 1/8

+1 with probability 3/8

−1 with probability 3/8

−3 with probability 1/8.

To exploit this property, we will use two measures such that mi(c) = m and
mi′(c

′) = m·X. Then, we can recover the value MSB(m·s) (i.e. a linear equation
in s) by comparing HW(m ·s) and HW(m ·X ·s) (we use the analysis above with
α = m · s). If there is no noise, we will recover a key bit with only two measures,
with probability one.

As opposed to the attack of Section 4.1, this analysis uses the full state of
the multiplier, and avoids algorithmic noise due to the Hamming weight. This
makes the attack quite efficient. However, there is also an important limitation:
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because the challenge used in Lapin is only 80-bit long, the multiplication m · c
only takes 80 cycles, and we can only recover 80 bits from each CRT component
of the key with this technique.

If there is some measurement noise, we can remove it either by repeating the
measures of HW(m · s) and HW(m ·X · s) and averaging them, or by using all
the measures in a template attack [6]. We performed simulations with various
levels of noise using a template attack, and the rank estimation code from [19]
to compute the rank of the full key from the estimated key bits probability. We
report our results in Appendix A, Figure 6. Those experiments show that with a
128-bit datapath we can recover 80 key bits with very few candidates using only
26 traces with a noise variance of 1. Again, the data complexity grows linearly
with the noise variance σ2, and we need about 26 · σ2 traces to reduce the key
space to a few candidates.

If the datawidth k is smaller than 128, we have to combine 128/k measures
to build the full Hamming weight HW(a) in order to perform the attack. If the
noise variance is σ2 this becomes equivalent to a noise variance of 128/k · σ2 for
an attack with a 128-bit datapath, and the number of traces required is about
26 · σ2 · 128/k. As expected, this behavior is opposite to what happens in the
attack of Section 4.1 where a larger datapath implies a higher attack complexity
because of the extra algorithmic noise.

For the acquisition of the data, one can either extract the two leakages from
a single trace at two different points of interest, or use two traces with chosen
challenges and extract the leakage from each trace at the same point in time. In
order to minimize the number of traces required for the attack, we use all the
clock cycles of the multiplier. More precisely, we send the challenge c = 279, so
that mi(c) = Xi−1 and mi+1(c) = Xi = mi(c) ·X.

Order of the attack. This attack exploits information from two different mea-
sures, and combines them using the difference operation. Since we use a single
pair of challenges for each key bit, we can average the measures and the infor-
mation can be extracted from the average leakage values by testing whether it
is zero or in {−3,−1,+1,+3}. Therefore, this attack can be seen as a first-order
bivariate attack.

4.3 Attack on masked Lapin

We now study how this attack can be applied against a masked implementation
of Lapin such as the implementation described in Algorithm 1. In a masked
implementation the multiplication π(c) · s is split in d computations π(c) · sj ,
with s =

⊕d
j=1 sj . Therefore we have to combine leakages from each of the d

computations to recover information about the secret s.

First, we can see that if there is no noise, it is still easy to recover the
key using the attack of Section 4.2. If we send the challenge c = 279, we have
mi(c) = Xi−1 and mi+1(c) = Xi = mi(c) ·X. By comparing HW(Xi−1 · sj) and
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σ(x, y) = 0

4.1. MSB(α)=1

σ(x, y) = 6

4.2. MSB(α)=0

HW(α≪1∧f̄)=0

σ(x, y) = 2.25

4.3. MSB(α)=0

HW(α≪1∧f̄)=1

σ(x, y) = −2.25

4.4. MSB(α)=0

HW(α≪1∧f̄)=2

σ(x, y) = −6

4.5. MSB(α)=0

HW(α≪1∧f̄)=3

Fig. 4. Possible distributions for
(

HW(α1 ·X)−HW(α1),HW(α2 ·X)−HW(α2)
)
.

The probabilities are represented as: : 1/16, : 2/16, : 3/16, : 8/16

HW(Xi · sj), we can recover MSB(Xi−1 · sj), and we can rebuild a bit of s using
MSB(Xi−1 · s) =

⊕
j MSB(Xi−1 · sj).

More generally, we study the 2d-dimensional distribution of:(
HW(αj),HW(αj ·X)

)d
j=1

, with α =
⊕d

j=1 αj .

Following the analysis of Section 4.2, we combine the measures using a difference
operation, and reduce them to d dimensions:(

HW(αj ·X)−HW(αj)
)d
j=1

, with α =
⊕d

j=1 αj .

We will later use this analysis with α = m · s and αj = m · sj .
We now study the case d = 2 in more details. Following the analysis of

Section 4.2, we expect different distributions depending on the most significant
bit of α.

MSB(α) = 1: If MSB(α) = 1, then we have either MSB(α1) = 0 and
MSB(α2) = 1, or MSB(α1) = 1 and MSB(α2) = 0. This results in the dis-
tribution of Figure 4.1: either HW(α1 · X) − HW(α1) = 0 and HW(α2 · X) −
HW(α2) ∈ {−3,−1,+1,+3}, or HW(α1 ·X)−HW(α1) ∈ {−3,−1,+1,+3} and
HW(α2 ·X)−HW(α2) = 0.

MSB(α) = 0: If MSB(α) = 0, then we have either MSB(α1) = 0 and
MSB(α2) = 0, or MSB(α1) = 1 and MSB(α2) = 1. The first case gives HW(α1 ·
X) − HW(α1) = 0 and HW(α2 · X) − HW(α2) = 0. In the second case, we
have HW(α1 ·X)− HW(α1) ∈ {−3,−1,+1,+3} and HW(α2 ·X)− HW(α2) ∈
{−3,−1,+1,+3}, but we need to look at HW(α ≪ 1 ∧ f̄) in order to predict
all the possibilities. The results are shown in Figure 4.

We can use those distributions to mount a template attack against a masked
implementation of Lapin. We use c = 279, in order to collect traces with HW(Xi−1·
sj) and HW(Xi · sj), and we recover MSB(Xi−1 · s) by distinguishing the distri-
butions (i.e. we have α = Xi−1 ·s). We report our simulations results in Figure 7
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in Appendix A. We can see that the data complexity increases roughly like the
squared variance σ4, which is typical of a second-order attack [5]. In our sim-
ulations, the rank of the correct key becomes smaller than 210 when the data
complexity is about 210 · σ4.

Order of the attack. This attack exploits information from four different
measures, and combines pairs of measures using the difference operation. Then
we have to distinguish the distributions of Figure 4, which can be done by
computing the covariance and testing whether it is zero or in {−6,−2.25, 2.25, 6}.
Therefore, this attack can be seen as a second-order 4-variate attack.

5 Conclusion

The previous results suggest that Lapin has interesting properties for secure and
efficient masking, because it can be implemented by manipulating shares inde-
pendently. They also exhibit that the exploitation of its leakage does not directly
derive from standard DPA such as applied in the context of block ciphers. Yet, it
is possible to mount attacks against both unprotected and masked Lapin, with
similar intuition regarding the security order as for block ciphers. Admittedly,
our side-channel experiments are only a first step, and several problems remain
open. Technically, it would certainly be worth investigating other leakage models
(e.g. distance-based) and actual measurements. Besides, it could be interesting
to further study the possible presence of more data-dependent algorithmic noise
in an implementation (i.e. capturing more than the main register activity), and
how to get rid of it taking advantage of multiple plaintexts in a collision-like
attack. Eventually, and as pointed out in introduction, the problem of on-chip
randomness generation remains an important drawback of Lapin. Analyzing its
leakage, or designing deterministic protocols based on the Learning With Round-
ing assumption are interesting scopes for further research.
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A Simulation results of the side-channel attacks
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Fig. 5. DPA attack success rate for full-key recovery, after exploring 216 tree nodes.
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Fig. 6. Security graphs for the collision-like attack, with k = 128. We assume that
all the clock cycles are used for each trace. Alternatively, the attack can be mounted
targeting a single point of interest if the data complexity is multiplied by 80.
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Fig. 7. Security graphs for the collision-like attack on a masked Lapin, with k = 128.
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Fig. 8. Correlation coefficient for the key candidates, depending on the number of
traces. We use t = 7 and p = 3, and don’t add any noise to the Hamming weights.

B Additionnal implementation results

Table 2. Number of clock cycles required for Lapin calculation.

One share (d = 1) Three shares (d = 3)

8-bit 16-bit 32-bit 64-bit 128-bit 8-bit 16-bit 32-bit 64-bit 128-bit

f1 4,048 2,024 1,012 506 257 12,144 6,072 3,036 1,518 771
f2 4,160 2,080 1,040 520 264 12,480 6,240 3,120 1,560 792
f3 4,208 2,104 1,052 526 267 12,624 6,312 3,156 1,578 801
f4 4,224 2,112 1,056 528 268 12,672 6,336 3,168 1,584 804
f5 4,336 2,168 1,084 542 275 13,008 6,504 3,252 1,626 825

Total 20,977 10,489 5,245 2,623 1,332 62,961 31,481 15,741 7,871 3,996


