
Cryptanalysis of a Hash Function Based on
Quasi-Cyclic Codes

Pierre-Alain Fouque, Gaëtan Leurent

École Normale Supérieure – Département d’Informatique,
45 rue d’Ulm, 75230 Paris Cedex 05, France

{Pierre-Alain.Fouque,Gaetan.Leurent}@ens.fr

Abstract. At the ECRYPT Hash Workshop 2007, Finiasz, Gaborit, and Sendrier pro-
posed an improved version of a previous provably secure syndrome-based hash function.
The main innovation of the new design is the use of a quasi-cyclic code in order to have a
shorter description and to lower the memory usage.
In this paper, we look at the security implications of using a quasi-cyclic code. We show
that this very rich structure can be used to build a highly efficient attack: with most
parameters, our collision attack is faster than the compression function!
Key words: hash function, provable security, cryptanalysis, quasi-cyclic code, syndrome
decoding.

1 Introduction

Following the breakthrough collision attacks by Wang et al. against the most widespread hash
functions (MD5 in [9], SHA-1 in [8]) the crypto community is trying to design new hash functions.
One interesting approach is the construction of provably secure hash functions, in which the
security of the hash function is proven to rely on some computationally hard problem.

At Mycrypt 2005, Augot, Finiasz, and Sendrier proposed a family of provably secure hash
functions based on the syndrome decoding problem called FSB [1]. An improved version of
this design (IFSB) was presented at the ECRYPT Hash Workshop 2007 by Finiasz, Gaborit and
Sendrier [5]. The new idea introduced in IFSB is to use of a quasi-cyclic code instead of a random
code. This allows to store a smaller description of the code: there is a huge speedup when it fits
into CPU cache. This modification was assumed not to lower the security of the construction.

However, this new proposal was broken by Saarinen using a simple linearization technique [6].
The attack does not take advantage of the new elements of the design (ie. the quasi-cyclic codes)
and can also be used to break the initial function; it is only based on the fact that the output
size r is relatively small (r < 2w). Therefore, it does not invalidate the approach of [5]; we can
still use a hash function based on a quasi-cyclic code, we just need to choose a larger r.

In this paper, we look at the security implications of using a quasi-cyclic code. We show that
this very rich structure can be used to build a highly efficient attack: with most parameters, our
collision attack is faster than the compression function!

Our Results. We first point out a strange property of the FSB/IFSB family in Section 3: the
mixing of the chaining value with the message is very weak. This has two main consequences: a
collision attack is essentially the same as a pseudo-collision attack, and the compression function
can’t be used as a PRF.

In section 4, we introduce our new collision attacks on IFSB based on the structure of quasi-
cyclic codes. The main result is an attack using piecewise periodic messages, and a new algorithm

to solve a system of cyclic equations. Here is a brief comparison (for pseudo-collisions) of the
previous linearization attack and our new cyclic attack (see Table 1 on page 12 for practical
figures):

Attack Conditions Complexity Remarks

Linearization r ≤ 2w r3 r is typically 1024
if r is bigger (4/3)r−2w · r3 log2(4/3) ≈ 0.415

Cyclic r ≤ 4w (n/4w)3 n/4w is typically 64
if r is bigger 2

n(r−4w)
4wr · (n/4w)3 n/4wr is typically 1/16

These attack are both very efficient when the ratio r/w is below a given threshold, and can be
extended to work above the threshold, but the complexity grows exponentially with r. The cyclic
attack has a bigger threshold, and when the threshold is exceeded it has a lower factor in the
exponent. Note that the linearization attack can break FSB as well as IFSB, whereas our cyclic
attack relies on the property of the quasi-cyclic code: it can only break IFSB and also requires r
to be a power of 2.

Since these attack rely on a low r/w ratio, they do not rule out the IFSB construction, but
only the parameter proposed in [5]. For instance, one could use the IFSB construction with
parameters based on [1], which have a higher r/w. However, the first step of our attack can also
be used together with Wagner’s attack, so as to remove the dependency in the ration r/w (there
is still a requirement that r is a multiple of n/2w):

Attack Complexity Remarks

Wagner r2a
′ · 2r/(a+1) Used as the security parameter

Cyclic + Wagner n
2w2a

′ · 2 n
2w /(a

′+1) a′ is a or a− 1

Since n/2w is typically between r/2 and r/8, the new attack will have a complexity between the
square root and the eighth root of the security parameter. These attacks basically show that the
IFSB construction with a quasi-cyclic code is not secure if r, the length of the code has many
divisors. The easy choice of a power of two is highly insecure.

In [5], the authors provided some security argument when r is prime and 2 is a primitive root
of Z/2Z. Since this was not a real proof, and they were confident in the security of quasi-cyclic
codes even without this argument, some of their parameters don’t respect this constraint. Our
attacks show that IFSB should only be used with a prime r.

About Provable security. The main motivation for the design of FSB is to have a proof
of security. In [1], the authors of FSB defined the 2-RNSD problem (2-Regular Null Syndrome
Decoding) so that finding a collision in FSB given the matrix H is equivalent to solving 2-RNSD
on the matrix H. They also prove that 2-RNSD is a NP-complete problem, which is a good
evidence that there is no polynomial time algorithm to break FSB. However, this does not really
prove that finding a collision is hard...

– The fact that there is no polynomial time algorithm to break the function is an asymptotic
property, but in practice the function is used with a fixed size; there might be an algorithm
that break the function up to a given size in very little time. Usually, designers look at the
best known attack and choose the size of the function so that this attack is unpractical, but
there could be a more efficient algorithm (though superpolynomial). Indeed, the first version
of FSB did not consider Wagner’s generalized birthday attack [3], and the parameters had
to be changed.

2

– More importantly, the fact that a problem is NP-Complete means that there are some hard
instances, not that every instance is hard. For instance, SAT is an NP-Complete problem,
but if the specific formula you try to satisfy happen to be in 2-SAT there is a polynomial
time algorithm. In the case of FSB, the 2-RNSD problem is NP-Complete but the result of
[6] is that it becomes easy if the parameters are such that r < 2w, which is the case in the
proposed settings of IFSB.

– Moreover, IFSB is an improved version of FSB, but the new components (the final transfor-
mation, the change to a quasi-cyclic matrix, and the possibility to use a new constant weight
encoder) have no security proof... Indeed, our main result is an algorithm that breaks the
2-RNSD problem when the matrix is quasi-cyclic and r is a power of 2, which is the case for
most proposed settings of IFSB.

– Lastly, the security proof considers some specific attack, such as collision, or preimage, but
there might be some other undesirable property in the design. In Section 3, we show that
the FSB design does not mix properly the chaining value with the message.

2 Design of IFSB and previous cryptanalysis

The Fast Syndrome Based (FSB) and Improved Fast Syndrome Based (IFSB) follow the Merkle-
Damgård construction. The compression function is built of two steps:

– A constant weight encoder ϕ that maps an s-bit word to a n-bit word of Hamming weight
w.

– A random matrix H of size r × n. Typically, r is about one hundred, and n is about one
million.

The compression function of FSB takes s bit as input (r bits of chaining variable, and r− s bits
of message) and outputs r bits; it is defined by:

F (x) = H× ϕ(x)
H: random r × n matrix
ϕ : encodes s bits to n bits with weight w

In the case of IFSB, the matrix H is quasi-cyclic: H = H0||H1||...Hσ−1 and each Hi is a cyclic
r × r matrix. There is also a final transformation to reduce the size of the digest, but it is not
used in our collision attacks.

2.1 Choosing a Constant Weight Encoder

Three constant word encoders are proposed in [5]. The regular encoder is a very simple one, used
in most parameters. The optimal encoder and the tradeoff encoder are introduced in order to
reduce the size of the matrix: they can use more input bits with the same parameters n and w.

Notations. We will use the following notations:

– 0 and 1 are bit-strings of length one, as opposed to 0 and 1.
– if x is a bit-string, xk is the concatenation of k times x.
– x[i] is the i-th bit of x.
– [f(i)]p−1

i=0 is the matrix whose columns are the f(i)’s.

3

The regular encoder. The regular encoder was introduced in [1]; it is the only encoder defined
for the FSB family, and the main one for the IFSB family. It is designed for efficiency and is very
simple: the output word is divided into chunks of n/w bits and each chunk contains exactly one
non-zero bit, with its position defined by log(n/w) bits of the message (all the log in this paper
are base 2). For an efficient implementation, we often choose log(n/w) = 8.

Let us define ψ : {0..n/w − 1} 7→ {0, 1}n/w such that ψ(x)[i] = 1 ⇐⇒ i = x. We construct
ϕi that encode log(n/w) bits into a word a weight 1, such that the non-zero bit is in the i-th
chunk: ϕi(x) = 0in/wψ(x)0n−(in+1)/w. Then we have

ϕ(M) = ϕ(m0,m1, ...) =
w−1⊕
i=0

ϕi(mi).

FSB with the regular encoder just selects one particular column of the matrix H for each message
chunk of size log(n/w):

F (M) = H×
w−1⊕
i=0

ϕi(mi) =
w−1⊕
i=0

Hin/w+mi
.

The optimal encoder. The optimal encoder tries to have all the words of weight w in its range,
whereas the regular encoders only output regular words. There are

(
n
w

)
such words, as opposed

to (n/w)w regular words; this allows the optimal encoder to use more input bits. The optimal
encoder will actually map blog

(
n
w

)
c bits to a subspace of 2blog (n

w)c words. We do not consider the
details of the computation, we will only assume that ϕ and ϕ−1 are efficiently computable.

The tradeoff encoder The main problem of the optimal encoder is that it requires some
computations with very large integers. Therefore, the tradeoff encoder uses a combination of
the optimal encoder and the regular encoder. Here again, we do not need the details of the
construction, we only use the fact that ϕ and ϕ−1 are efficiently computable.

2.2 Wagner’s Generalized Birthday

Wagner’s generalized birthday attack [7] is a clever trick to solve the k-sum problem: given some
lists L1, L2, .., Lk of r-bit values, we want to find l1 ∈ L1, .., lk ∈ Lk such that

⊕k
i=1 lk = 0. If

each list contains at least 2r/k elements there is a good probability that a solution exists, but we
have no algorithm to find it more efficiently than using the simple birthday paradox in time and
memory 2r/2.

Indeed, Wagner’s algorithm requires more elements in the lists; for instance with k = 4 we
need lists of size 2r/3 and the algorithm will find one solution using 2r/3 time and memory.

The basic operation of the algorithm is the general join ./j : L ./j L′ consists of all elements
of L× L′ that agree on their j least significant bits:

L ./j L
′ =

{
(l, l′) ∈ L× L′

∣∣∣ (l ⊕ l′)[0..j−1] = 0j
}
.

The algorithm for k = 4 is described by Figure 1. We first build the list L12 = L1 ./r/3 L2 and
L34 = L3 ./ L4. By the birthday paradox, these lists should contain about 2r/3 elements. Next,
we build L1234 = L12 ./2r/3 L34. Since the elements of L12 and L34 already agrees on their r/3
lower bits, we are only doing a birthday paradox on the bits r/3 to 2r/3, so we still expect to

4

L1 L2 L3 L4

L12

./r/3

L34

./r/3

L1234

./2r/3

4 lists of 2r/3 elements

2 lists of 2r/3 elements
with 2r/3 zeros

1 list of 2r/3 elements
with 22r/3 zeros

Fig. 1. Wagner’s algorithm for k = 4

find 2r/3 elements. Finally, the birthday paradox on L1234 tells us that one element of this list
has a sum of zero. This can be generalized to any k that is a power of two, using a binary tree:
if k = 2a, we need k lists of 2r/(a+1) elements and the time and memory used by the algorithm
is 2a · r2r/(a+1).

Finding a collision in FSB with the regular encoder is just an instance of the k-sum problem,
so we can use Wagner’s algorithm to break it, as shown by Coron and Joux [3]. We look for M
and M ′ such that

F (M)⊕ F (M ′) =
w−1⊕
i=0

Hin/w+mi
⊕
w−1⊕
i=0

Hin/w+m′i
= 0.

This is an instance of the 2w-sum problem on r bits, with lists of n/w elements (the possible
values of each mi). If n/w < 2r/(log(w)+2), we cannot apply Wagner attack with k = 2w as it
is, but we can group the lists. For instance, we can build w/2 lists of (n/w)4 elements, and this
attack is applicable with k = w/2 if (n/w)4 ≥ 2r/ log(w). In the end, we will use the largest a
that satisfies:

2a

a+ 1
≤ 2w

r
log(n/w).

This is the main attack to break the k-sum problem, therefore it was used by the authors of
FSB to define their security levels.

2.3 Linearization attack

Wagner noted in [7] that the generalized birthday problem can be solved using linear algebra
when r ≤ k, using a result from Bellare and Micciancio [2, Appendix A]. When we apply this to
FSB, we can break it very efficiently when r ≤ 2w. However, this was overlooked by the designers
of ISFB, and almost all the parameters they proposed satisfy r ≤ 2w... Saarinen rediscovered
this attack in [6], and extended it to r > 2w with complexity (3/4)r−2w · r3. He also proposed
a preimage attack when r ≤ w based on the same idea. Here, we will only describe the basic
collision attack, using our notations.

5

Let us choose four distinct elements a, b, c, d ∈ {0..n/w − 1}, and build a vector u and a
matrix ∆:

u = (H× ϕ(aw))⊕ (H× ϕ(cw))
∆1 = [H× (ϕi(a)⊕ ϕi(b))]wi=0

∆2 = [H× (ϕi(c)⊕ ϕi(d))]wi=0

∆ = ∆1||∆2

We solve the equation ∆× x = u by linear algebra and we write x = x1||x2 such that ∆1 × x1 ⊕
∆2 × x2 = ∆× x = u. Since the matrix ∆ has size r × 2w, there is a good probability to find a
solution when r ≤ 2w (see Appendix A). Then we build the messages M and M ′ (note that the
messages are distinct because a, b, c and d are all distinct):

mi =

{
a if x[i]

1 = 0
b if x[i]

1 = 1
m′i =

{
c if x[i]

2 = 0
d if x[i]

2 = 1

Proof. This will give a collision because

H× ϕ(M) = H×
⊕

ϕi(mi)

= H× (
⊕
x
[i]
1 =0

ϕi(a)⊕
⊕
x
[i]
1 =1

ϕi(b))

= (H× ϕ(aw))⊕ (H×
⊕
x
[i]
1 =1

(ϕi(a)⊕ ϕi(b)))

= (H× ϕ(aw))⊕ (∆1 × x1)
H× ϕ(M ′) = (H× ϕ(cw))⊕ (∆2 × x2)

(H× ϕ(M))⊕ (H× ϕ(M ′)) = u⊕∆× x = 0

3 An IV Weakness

When the constant weight encoder chosen is the regular encoder or the tradeoff encoder, the
message and the chaining variable are treated independently by the compression function: we
can write F (M, c) = H×ϕ(M ||c) = HM ×ϕM (M)⊕Hc×ϕc(c), with H = HM ||Hc. This means
that a collision attack is just the same as a pseudo-collision attack, we only have to work with
the smaller matrix HM . Since we have less degree of freedom, the complexity of the attack might
be higher, but it works exactly in the same way.

More importantly, a collision in the compression function is a collision for any chaining
variable. This is quite unexpected for a hash function, and we believe this should be avoided.
In particular, it means that if we replace the IV by a key, we do not have a pseudo-random
function family. There exists an adversary that knows two messages M1 and M2 such that
HM × ϕ(M1) = HM × ϕ(M2), and we have F (M1, k) = F (M2, k) for any key, which gives a
distinguisher against a random function. For instance, if FSB is used in the HMAC construction,
we can run an existential forgery attack with only one chosen-message MAC, as long as we know
one fixed collision. Even if no collisions are known, the security against a PRF-distinguisher
is only 2n/2, instead of the expected 2n. This also allows to forge signatures for virtually any
hash-based signature scheme, to build cheap multi-collisions, ...

6

4 The Cyclic Attack

Our new attack on IFSB relies on the structure of quasi-cyclic codes and uses two new ideas. The
first idea is to use a message M such that ϕ(M) is piecewise periodic. This reduces the message
space, but when the code is quasi-cyclic, we will see that the hash will become periodic, and we
can now work on only one period, instead of the whole hash. This step can be used as a kind of
preprecessing for Wagner’s attack or for the linearization attack. The second part of the attack
is an algorithm to solve the remaining system of cyclic equations, which is more efficient than
Wagner’s attack or the linearization technique.

4.1 Quasi-Cyclic Codes and Rotations

We use x ≪ s to denote x rotated by s bits, and we say that x is s-periodic if x = x ≪ s.
Similarly, if x is broken into pieces of k bits x = x0||x1||x2..., we define the k-piecewise rotation:

x
k

≪ s = (x0 ≪ s)||(x1 ≪ s)||(x2 ≪ s)...

If x
k

≪ s = x, we say that x is piecewise periodic. In this paper we will always use k = r.
Let us introduce a few definitions and properties of cyclic and quasi-cyclic matrices.

Definition 1. The matrix H is cyclic if each row vector is rotated one element to the right
relative to the previous row vector:

H =



h0 h1 . . . hn−2 hn−1

hn−1 h0 h1 hn−2

... hn−1 h0
. . .

...

h2
. h1

h1 h2 . . . hn−1 h0


Property 1. If H is cyclic, we have:

H× (x ≪ s) = (H× x) ≪ s

Definition 2. H is quasi-cyclic if H = (H0,H1, ...Hσ−1), and each Hi is cyclic.

H =



f0 f1 . . . fn−2 fn−1

fn−1 f0 f1 fn−2

... fn−1 f0
. . .

...

f2
. f1

f1 f2 . . . fn−1 f0





g0 g1 . . . gn−2 gn−1

gn−1 g0 g1 gn−2

... gn−1 g0
. . .

...

g2
. g1

g1 g2 . . . gn−1 g0





h0 h1 . . . hn−2 hn−1

hn−1 h0 h1 hn−2

... hn−1 h0
. . .

...

h2
. h1

h1 h2 . . . hn−1 h0

 · · ·

Property 2. If H is quasi-cyclic, we have:

H× (x
r

≪ s) =
σ−1∑
i=0

Hi × (xi ≪ s)

= (H× x) ≪ s

Corollary 1. If H is quasi-cyclic and x is piecewise periodic, then H× x is periodic:

(H× x) ≪ s = H× (x
r

≪ s) = H× x.

This simple remark will be the basis of our cyclic attack.

7

4.2 The Main Attack

The basic idea of our attack is very simple: let us choose M and M ′ such that ϕ(M) and ϕ(M ′)
are piecewise periodic. Then we know that the output H × ϕ(M) and H × ϕ(M ′) are periodic,
and we only have to collide on one period.

In fact we can even take further advantage of the two messages: let us choose M such that
ϕ(M) is piecewise s-periodic, and M ′ = ϕ−1(ϕ(M)

r
≪ s/2). ϕ(M) ⊕ ϕ(M ′) is piecewise s/2-

periodic, and so is (H × ϕ(M)) ⊕ (H × ϕ(M ′)) = H × (ϕ(M) ⊕ ϕ(M ′)). Our collision search is
now a search for M such that the first s/2 bits of H× (ϕ(M)⊕ ϕ(M ′)) are zero.

In practice, the smallest period we can achieve with the regular encoder is n/w, so we will
require that n/2w is a divisor of r. We divide the encoded word into block of size r, and we
choose the same mi for all the chunk of the message that are used in the same block. The choice
of a message M so that ϕ(M) is piecewise n/w-periodic is equivalent to choice of n/r values
µi ∈ {0..n/w − 1} such that mi = µbi/ rw

n c. Then:

F (M) = F (µ0, µ1, ..µn/w−1) =
n/r−1⊕
i=0

H× θi(µi)

θi(µi) = ϕi rw
n

(µi)⊕ ϕi rw
n +1(µi)⊕ · · ·ϕ(i+1) rw

n −1(µi)

M ′ can be constructed easily: due to the definition of the regular encoder, we just have to set
µ′i = µi+n/2w (mod n/w). We have now reduced the collision search to the search of µ0, ...µn/r−1

such that:

F (M)⊕ F (M ′) =
n/r−1⊕
i=0

(
H× θi(µi)⊕H× θi(µi + n/2w)

)
= 0.

but we know that F (M)⊕ F (M ′) is n/2w periodic, so we only need to cancel n/2w bits.
This is an instance of the n/r-sum problem on n/2w bit with lists of n/2w elements, which

can be solved with the same methods as the original one (which was an instance of the 2w-sum
problem on r bits, with lists of n/w elements):

– The linearization attack can be used if n/r ≥ n/2w, which is equivalent to the condition on
the original system: r ≤ 2w. The complexity will drop from r3 to (n/2w)3.

– For Wagner’s attack, let a1 be the best a for the original problem and a2 the best a for the
new system. They have to satisfy:

2a

a+ 1
≤ 2w

r
log(n/w)

2a
′

a′ + 1
≤ 2w

r
(log(n/w)− 1)

In most cases, we will be able the use the same a on the new system, and the complexity of the
attack drops from r2a · 2r/(a+1) (which was used as a security parameter) to r2a · 2 n

2w /(a+1).
Since n/2w is usually much smaller than r, this can already break all proposed parameters
of FSB, many of them in practical time!

If the we are looking for collision with the same chaining value, instead of pseudo-collision, we
will only have n/r − n/s lists instead of n/r.

The next section will introduce a new way to solve this system, which is even more efficient.

4.3 A system of cyclic equations

The collision attack on IFSB has now been reduced to a collision attack on much smaller bit-
strings. But the small bit-strings still have a strong structure: we have ϕi(x + 1) = ϕi(x) ≪ 1

8

because H is quasi-cyclic and similarly θi(x + 1) = θi(x) ≪ 1. Therefore, each list actually
contains every rotations of a single vector. We can write this as a system of equations: we are
given p bit-strings of length 2l x0, x1, ...xp−1, and we look for r0, r1, ...rp−1 ∈ {0..2l − 1} such
that

p−1⊕
i=0

xi ≪ ri = 0.

First of all, if the sum of all bits of the xi is non-zero (ie.
⊕

k,i x
[i]
k = 1), there is no solution;

in this case we will drop one of the xi with an odd bit-sum, and set µ′i = µi for this particular i.
We now assume that

⊕
k,i x

[i]
k = 0.

We can use Wagner’s algorithm to solve this system, but we will present a more efficient
solution when n/2w is a power of two (wich is always the case to ease the implementation).
To describe our algorithm, we will use a set of function πi which folds 2l-bit strings into 2i-bit
strings: πi(x) cuts x into chunks of 2i bits, and xors them together (πl is the identity function).
We also use πLi (x) which is the left part of πi(x), and πRi (x) is the right part (therefore πi−1(x) =
πLi (x) ⊕ πRi (x)). The algorithm is described by Algorithm 1; it uses linear algebra in a similar
way as the attack of section 2.3.

Algorithm 1 Cyclic system solver
1: for all rk do
2: rk ← 0

3: for 1 ≤ i < l do
4: ∆← [πi(xk ≪ rk)]p−1

k=0

5: Set u as the solution to ∆× u = πL
i+1(⊕xk ≪ rk)

6: for all rk do
7: rk ← rk + u[k]2i

Proof. The proof of Algorithm 1 uses the fact that after iteration i we have πi+1(
⊕
xk ≪ rk) =

0. If rk are the values at the beginning of iteration i, we have πi(
⊕
xk ≪ rk) = 0 and:

L = πLi+1

(⊕
xk ≪ (rk + u[k]2i)

)
= πLi+1

(⊕
xk ≪ rk ⊕

⊕
u[k]=1

(
xk ≪ rk ⊕ xk ≪ (rk + 2i)

))
= πLi+1

(⊕
xk ≪ rk

)
⊕
⊕
u[k]=1

πLi+1(xk ≪ rk)⊕ πRi+1(xk ≪ rk)

= πLi+1

(⊕
xk ≪ rk

)
⊕
⊕
u[k]=1

πi(xk ≪ rk)

= πLi+1

(⊕
xk ≪ rk

)
⊕∆× u = 0 (By construction of u)

9

R = πRi+1

(⊕
xk ≪ (rk + u[k]2i)

)
= πLi+1

(⊕
xk ≪ (rk + u[k]2i)

)
⊕ πi

(⊕
xk ≪ (rk + u[k]2i)

)
= 0⊕ πi

(⊕
xk ≪ rk

)
(Because πi(x ≪ 2i) = πi(x))

= 0

Therefore πi+1(
⊕
xk ≪ rk) = L||R = 0 at the end of the iteration (with the new rk). After

the last iteration, this reads
⊕
xk ≪ rk = 0.

Complexity Analysis. The complexity of the attack is very low: the only computational
intensive step is the linear algebra. Using a simple Gaussian elimination, we can solve the equation
∆ × u = c where ∆ has 2i rows and p columns in time p22i. The time of the full algorithm is
therefore

∑l−1
i=1 p2

2i = 4l−4
3 p.

The success probability of the algorithm is related to the probability C(n, p) that a random
system ∆ × u = c is consistent, when ∆ has n rows and p columns. See Appendix A for an
analysis of C. If all the systems are independent, identically distributed, the success probability
can be expressed as:

P (n, p) =
log(n)−1∏
i=1

C(2i, p).

Actually, the systems are not independent and identically distributed because the random
bits the xk’s are aligned in a particular manned by the rk of the previous step; in particular we
have an obvious relation at each step:

∑
∆i = 0. We will assume that this is the only difference

between the algorithm and the resolution of independent systems, which means the probability
of success is P (2l, p − 1). However, to solve a cyclic system, we first have to make sure that⊕

k,i x
[i]
k = 0; this means that for one system out of two we have to run the algorithm with p− 1

bit-strings. In the end, the expected success probability is

Π(2l, p) =
P (2l, p− 1) + P (2l, p− 2)

2

and the expected running time is:

Π(2l, p)−1 · 4
l − 4
3

p.

To check the hypothesis of independence, we ran the cyclic solver on random systems, and
compared the success rate to the theoretical value. Figure 2 show that we are very close to the
actual success probability.

When we use the cyclic solver to break IFSB, we will have l = log(n/2w) and p = n/r for
pseudo-collision, p = n/r − n/s for collisions. We will analyse the pseudo-collision case in more
detail:

1. If p ≥ 2l−1, ie r ≤ 4w: we will use p a little larger than 2l−1 so that Π(2l, p) is almost 1.
In this case, the running time of the full algorithm of the algorithm is essentially:

T = 4l−4
3 p < 2(n/4w)3.

2. If p < 2l−1, ie r > 4w, we cannot have a good probability of success and we have to repeat
the cyclic solver with a randomized system. When we want to find collisions in a given hash
function, we have only one particular system, but we can still apply a random rotation to

10

48 52 56 60 64 68 72 76 80
0

0.2

0.4

0.6

0.8

1

0

0.002

0.004

p

Π(128, p)

Π − eΠ(128, p)

Fig. 2. Theoretical success probability Π versus experimental success probability Π̃. Since the
two curves would be on top of each over, we draw the difference between them on a different
scale. Π̃ is measured by running the algorithm 220 times with randon systems of the given size.

each word. This will not give an independent system, but since our algorithm only find
some special solutions to the cyclic system (the lower bits of the rk’s are mostly zeros) this
randomization could sufficient. Experimentally, with l = 6 and p = 53 (used for a collision
attack against line 4 of Table 1) it works very well.
In this case the running time of the full algorithm of the algorithm is essentially:

T = 2p−2l−1 4l−4
3 p < 2

n(r−4w)
4wr · 2(n/4w)3.

Example. To illustrate the attack, let us consider the most interesting setting of the table 1
of [5], designed for 128-bit security. We have:

r = 1024 w = 1024 s = 8192 n/w = 256

For a collision attack, we can build a cyclic to build a system with l = n/2w = 128 and
p = n/r−n/s = 224. The main operation to solve this system will be linear algebra on a matrix
of size 64... this only costs 218 elementary operations (xors on one bit). Since the compression
function requires rw = 220 elementary operations, our attack costs less than one call to the
compression function!

Example 2. An other interesting set of parameter that we can break are the recommended pa-
rameters for memory constrained environments. This function was believed to provide a security
of 280, but we can break it by hand ! Since we have n/4w = 2 the resolution of the cyclic system
is almost trivial and the most expensive step of the attack is the construction of the system...

Table 1 gives an overview of the various parameters of IFSB and the complexity of the
linearization attack and the cyclic attack (for pseudo-collisions and collisions). The first part of
the table presents the parameters used for performance evaluation in [5]. These parameters use
r and n/w are powers of two, which allow our new attack to be used. We can see that it has a

11

lower complexity than the linear attack, especially for the 80 bit security parameters, which have
r > 2w. The next parts of the table show the parameters recommended by [5]. The recommended
parameter set for standard applications has a prime r, which make our attack unusable, but the
parameter set for memory constrained environments use a power of two. In the last part of the
table, we show the parameters of FSB. They have not been proposed for use with IFSB, but we
feel that it would be a natural move to prevent the attacks which need a low r/w ratio.

Table 1. Comparison of the linearization attack and the cyclic attack on the various parameter
sets proposed in [5]. The complexity is given in elementary operations; one compression function
costs rw elementary operations (typically 220).

Linear Cyclic
r w n s n/w secu. psd. coll psd. coll n/4w n/r n/s

512 512 131072 4096 256
64

227 227 219 219 64 256 32
512 450 230400 4050 512 227 227 222 222 128 450 32.2
1024 217 225 220 256 230 230 219 219 64 215 32
512 170 43520 1360 256 80 2100 - 219 230 64 85 32
512 144 73728 1296 512 - - 222 263 128 144 56.9
1024 1024 262144 8192 256

128
230 230 219 219 64 256 32

1024 904 462848 8136 512 230 230 222 222 128 452 56.5
1024 816 835584 8160 1024 230 230 225 225 256 816 102.4
Recommended parameters for standard applications:
1061 1024 262144 8192 256 128 230 230 - -
Recommended parameters for memory constrained environments:
512 320 2560 1280 8 80 227 261 211 211 2 5 2
Parameters of FSB [1]. Not proposed for IFSB, but could be a way to repair it:
480 170 43520 1360 256

80
285 - 219 225 64 90.7 32

400 85 21760 680 256 - - 229 261 64 54.4 32
320 42 10752 336 256 - - 250 - 64 33.6 32

4.4 About the optimal encoder

The optimal encoder allows to create messages such that ϕ(M) is concentrated on one cyclic
block of H. Since (almost) any word of weight w is in the range of ϕ, if w ≥ r we can even choose
a piecewise 1-periodic ϕ(M)! In this case, we have a very easy pseudo-collision attack:

1. Consider the messages Mk = ϕ−1
(
0kr1r0n−(k+1)r1w−r

)
2. We have F (Mk) = H× ϕ(Mk) = sk ⊕ t, where:
sk = Hk × 1r is 1-periodic
t = H× 0n−w+r1w−r

3. Since sk is 1-periodic, it can only take two values: 0r and 1r: we have at least one collision
between M0, M1 and M2.

If the optimal encoder is combined with a quasi-cyclic matrix of non prime length, it is easy
to build periodic messages with a very small period. Because of this, we strongly discourage the
use of the optimal encoder with quasi-cyclic codes.

12

Acknowledgement

Part of this work is supported by the Commission of the European Communities through the
IST program under contract IST-2002-507932 ECRYPT, and by the French government through
the Saphir RNRT project.

References

1. Augot, D., Finiasz, M., Sendrier, N.: A family of fast syndrome based cryptographic hash functions.
In Dawson, E., Vaudenay, S., eds.: Mycrypt. Volume 3715 of Lecture Notes in Computer Science.,
Springer (2005) 64–83

2. Bellare, M., Micciancio, D.: A new paradigm for collision-free hashing: Incrementality at reduced
cost. In: EUROCRYPT. (1997) 163–192

3. Coron, J.S., Joux, A.: Cryptanalysis of a provably secure cryptographic hash function. Cryptology
ePrint Archive, Report 2004/013 (2004) http://eprint.iacr.org/.

4. Finch, S.R. In: Mathematical Constants. Cambridge University Press (2003) 354–361
5. Finiasz, M., Gaborit, P., Sendrier, N.: Improved fast syndrome based cryptographic hash functions.

In Rijmen, V., ed.: ECRYPT Hash Workshop 2007. (2007)
6. Saarinen, M.J.O.: Linearization attacks against syndrome based hashes. Cryptology ePrint Archive,

Report 2007/295 (2007) http://eprint.iacr.org/.
7. Wagner, D.: A generalized birthday problem. In Yung, M., ed.: CRYPTO. Volume 2442 of Lecture

Notes in Computer Science., Springer (2002) 288–303
8. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In Shoup, V., ed.: CRYPTO.

Volume 3621 of Lecture Notes in Computer Science., Springer (2005) 17–36
9. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In Cramer, R., ed.: EUROCRYPT.

Volume 3494 of Lecture Notes in Computer Science., Springer (2005) 19–35

13

http://eprint.iacr.org/
http://eprint.iacr.org/

A Probability of Solving a Random Linear System

In this appendix we study the probability that the equation ∆× x = c has at least one solution
in x, given a random n × p binary matrix ∆, and a random vector c. We call this probability
C(n, p).

C(n, p) = Pr
∆,c

[
∃x : ∆× x = c

]
= Pr
∆,c

[
c ∈ Im∆

]
=

n∑
r=0

Pr
c

[
c ∈ Im∆| rank(∆) = r

]
· Pr
∆

[
rank(∆) = r

]
=

n∑
r=0

2r−n · Pr
∆

[
rank(∆) = r

]
= 2−np

n∑
r=0

2r−n ·
p−r−1∏
i=0

2p − 2i

2p−r − 2i

r−1∏
i=0

2n − 2i

The case p > n. The following lower bound is true for all p, but is mostly useful in the case
p > n, and very tight when p� n:

C(n, p) ≥ Pr
∆

[
rank(∆) = n

]
= 1− Pr

∆

[
rank(∆) < n

]
≥ 1−

∑
Hhyperplan

Pr
∆

[
Im∆ ⊂ H

]
≥ 1− 2n

2(n−1)p

2np
= 1− 2n−p

It shows that we just have to choose p a little bigger than n to get a very high probability of
success.

The case p < n. When p < n, we have

C(n, p) ≥ 2p−n · Pr
∆

[
rank(∆) = p

]
= 2p−n

p−1∏
i=0

1− 2i−n

When p � n The quantity Q(n, p) =
∏p−1
i=0 1 − 2i−n is very close to one and the bound is very

tight, but we can derive a lower bound it as long as p < n:

Q(n, p) ≥
∞∏
k=1

1− 2−k = 0.288788... (see [4])

This allows us to say that the probability of success of the algorithm when p < n is about 2p−n.

14

	Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes
	Pierre-Alain Fouque, Gaëtan Leurent

