
Algorithmica
DOI 10.1007/s00453-016-0236-6

Improved Generic Attacks Against Hash-based MACs
and HAIFA

Itai Dinur · Gaëtan Leurent

Received: 1 July 2015 / Accepted: 21 October 2016
This is the author version submitted by the authors .
The published version is available at DOI 10.1007/s00453-016-0236-6.

Abstract The security of HMAC (and more general hash-based MACs) against
state-recovery and universal forgery attacks was shown to be suboptimal,
following a series of results by Leurent et al. and Peyrin et al.. These results have
shown that such powerful attacks require significantly less than 2` computations,
contradicting the common belief (where ` denotes the internal state size). In
this work, we revisit and extend these results, with a focus on concrete hash
functions that limit the message length, and apply special iteration modes.

We begin by devising the first state-recovery attack on HMAC with a HAIFA
hash function (using a block counter in every compression function call), with
complexity 24`/5. Then, we describe improved tradeoffs between the message
length and the complexity of a state-recovery attack on HMAC with a Merkle-
Damg̊ard hash function. Consequently, we obtain improved attacks on several
HMAC constructions used in practice, in which the hash functions limits the
maximal message length (e.g., SHA-1 and SHA-2). Finally, we present the first
universal forgery attacks, which can be applied with short message queries to
the MAC oracle. In particular, we devise the first universal forgery attacks
applicable to SHA-1 and SHA-2.

Despite their theoretical interest, our attacks do not seem to threaten the
practical security of the analyzed concrete HMAC constructions.

Keywords Hash functions · MAC · HMAC · Merkle-Damg̊ard · HAIFA ·
state-recovery attack · universal forgery attack · GOST · Streebog · SHA family

This paper in an extended version of [6], presented at CRYPTO 2014.

Itai Dinur
Department of Computer Science, Ben-Gurion University, Beer-Sheva, Israel
E-mail: dinuri@cs.bgu.ac.il

Gaëtan Leurent
Inria, EPI SECRET, France
E-mail: Gaetan.Leurent@inria.fr

https://dx.doi.org/10.1007/s00453-016-0236-6

2 Itai Dinur, Gaëtan Leurent

1 Introduction

MAC algorithms are an important symmetric cryptography primitive, used
to verify the integrity and authenticity of messages. The sender of a message
uses a MAC function to compute a tag from the message and a shared secret
key. The tag is appended to the message and the receiver can recompute the
tag using the key, and reject the message when it does not match the received
one. The main security requirement of a MAC is the resistance to existential
forgery. Namely, after querying the MAC oracle to obtain the tags of some
carefully chosen messages, it should be hard for an adversary to forge a valid
tag for a different message.

One of the most widely used MAC algorithms in practice is HMAC, a MAC
construction using a hash function designed by Bellare, Canetti and Krawczyk
in 1996 [4]. The algorithm has been standardized by ANSI, IETF, ISO and
NIST, and is widely deployed to secure internet communications (e.g. SSL/TLS,
SSH, IPSec). As these protocols are widely used, the security of HMAC has been
extensively studied, and several security proofs [3,4] show that it gives a secure
MAC and a secure PRF up to the birthday bound (assuming good properties
of the underlying compression function). At the same time, there is a simple
existential forgery attack on any iterative MAC with an `-bit state, with
complexity 2`/2, matching the security proof. Nevertheless, security beyond
the birthday bound for stronger attacks (such as state-recovery and universal
forgery) is still an important topic.

Surprisingly, the security of HMAC beyond the birthday bound has not been
thoroughly studied until 2012, when Peyrin and Sasaki described an attack on
HMAC in the related-key setting [23]. Later work focused on single-key security,
and included a paper by Naito, Sasaki, Wang and Yasuda [21], which described
state-recovery attacks with complexity 2`/`. At Asiacrypt 2013, Leurent, Peyrin
and Wang [19] gave state-recovery attacks with complexity 2`/2, closing the
gap with the security proof. Later, at Eurocrypt 2014, Peyrin and Wang [24]
described a universal forgery attack with complexity as low as 25`/6, a result
that was further improved to 23`/4 at CRYPTO 2014 [11], showing that even
this very strong attack is possible with significantly less than 2` work.

Some of the generic attacks have also been used as a first step to build
specific attacks against HMAC with the concrete hash function Whirlpool [12,
13].

These results show that more work is needed to better understand the exact
security provided by HMAC and hash-based MACs in general.

1.1 Our results

In this paper, we provide several important contributions to the security
analysis of HMAC and similar hash-based MAC constructions. In particular, we
devise improved attacks when HMAC is used with many popular concrete hash
functions, and in several cases our attacks are the first to be applicable to HMAC

Improved Generic Attacks Against Hash-based MACs and HAIFA 3

1 2`/4 2`/2
2`/2

23`/4

2`

Length of the messages

C
o
m

p
le

x
it

y

Merkle-Damg̊ard mode

Prev. [19]

New:

Attack 4

Attack 2

Attack 3

1 2`/4 2`/2
2`/2

23`/4

2`

Length of the messages

HAIFA mode

New results:

Attack 1

Attack 5

Fig. 1 Tradeoffs between the message length and the complexity for state-recovery attacks

with the given hash function. Some results with concrete instantiations are
summarized in Table 1.1

As a first contribution, we focus on the HAIFA [5] mode of operation, used in
many hash function designs such as BLAKE [1,2], Skein [8], or Streebog [7]. The
HAIFA construction uses a block counter to tweak the compression functions,
such that they resemble independent random functions, in order to thwart
some narrow-pipe attacks (e.g. the second-preimage attack of Kelsey and
Schneier [16]). Indeed, the previous attacks against HMAC [19,24] use in a very
strong way the assumption that the same compression function is applied to all
the message blocks, and thus they cannot be applied to HAIFA. In this work,
we present the first state-recovery attack on HMAC using these hash functions,
whose optimal complexity is 24`/5.

In an interesting application of our state-recovery attack on HAIFA (given
in Section 8), we show how to extend it into a key-recovery attack on the
new Russian standard Streebog, recovering the 512-bit key of HMAC-Streebog
with a complexity of 2417. This key-recovery attack is similar to the one of [19]
for Merkle-Damg̊ard, and confirms its surprising observation: adding internal
checksums in a hash function (such as Streebog) weakens the design when
used in HMAC, even for hash functions based on the HAIFA mode.

As a second contribution of this paper, we revisit the results of the full
version of [19] for Merkle-Damg̊ard hash functions (given in [18]), and we prove
the conjectures used in its short message attacks. Some of our proofs are of
independent interest, as they give insight into the behavior of classical collision
search algorithms for random functions. These proofs explain for the first time
an interesting phenomenon experimentally observed in several previous works

1 We elaborate on our complexity evaluation in the next Subsection.

4 Itai Dinur, Gaëtan Leurent

Table 1 Complexity of attacks on HMAC instantiated with some concrete hash functions.
The state size is denoted as `, and the maximum message length as 2s. For the new results,
we give a reference to the Attack number. The figures omit small constants (following the
analysis in this paper and previous works), but take into account polynomial factors in `.

State-recovery Universal forgery

Function Mode ` s [19] New [24] New

SHA-1 MD 160 255 2120 2107 (2) N/A 2132 (8)
SHA-224 MD 256 255 2201 2192 (4) N/A N/A
SHA-256 MD 256 255 2201 2192 (4) N/A 2228 (7,8)
SHA-512 MD 512 2118 2394 2384 (4) N/A 2453 (7,8)
HAVAL MD 256 254 2202 2192 (4) N/A 2229 (7,8)
Whirlpool MD 512 2247 2384 2283 (3) N/A 2419 (8)

BLAKE-256 HAIFA 256 255 N/A 2213 (5) N/A N/A
BLAKE-512 HAIFA 512 2118 N/A 2419 (5) N/A N/A
Skein-512 HAIFA 512 290 N/A 2419 (5) N/A N/A

Key-recovery

[19] New

Streebog HAIFA+σ 512 ∞ N/A 2417 (5,B) N/A 2417 (6,B)

(such as [22]), namely, that the collisions found by such algorithms are likely
to belong to a restricted set of a surprisingly small size.

Then, based on our proofs, we describe several new algorithms with var-
ious improved tradeoffs between the message length and the complexity as
shown in Figure 1. As many concrete hash functions restrict the message
size, we obtain improved attacks in many cases: for instance, we reduce the
complexity of a state-recovery attack against HMAC-SHA-1 from 2120 to 2107

and HMAC-Whirlpool from 2384 to 2283 (see Table 1).
Finally, we focus on universal forgery attacks, where the previous attacks

of [11,24] are much more efficient than exhaustive search, but require in an
inherent way to query the MAC oracle with very long messages of about 2`/2

blocks. Thus, these attacks cannot be applied to many concrete hash functions
that limit the message size. On the other hand, our techniques give rise to
attacks that can be efficiently applied with much shorter queries to the MAC
oracle, and therefore are more widely applicable to concrete hash functions. In
particular, we devise the first universal forgery attack applicable to HMAC with
SHA-1 and SHA-2 (see Table 1).

1.2 Framework of the attacks

In order to recover an internal state computed by the MAC oracle during the
processing of some message (namely, mount a state-recovery attack), we use a
framework which is similar to the one of [19]. Namely, we match states that
are computed offline with (unknown) states that are computed online (during
the processing of messages by the MAC oracle). However, as arbitrary states

Improved Generic Attacks Against Hash-based MACs and HAIFA 5

match with low probability (which does not lead to efficient attacks), we only
match special states, which have a higher probability to be equal. These special
states are the result of iterating random functions using chains, computed by
applying the compression function on a fixed message from arbitrary initial
states. In this paper, we exploit two types of special states which were also
exploited in [19]: states on which two evaluated chains collide, and states on
which a single chain collides with itself to form a cycle. We also introduce a
third type of special states, which result from the reduction of the image space
that occurs when applying a fixed sequence of random functions. This is used
in some of our new attacks, and in particular against HAIFA.

As described above, after we compute special states both online and offline,
we need to match them in order to recover an online state. However, since the
online states are unknown, the matching cannot be performed directly, and we
are forced to match the nodes indirectly using filters. A filter for a node (state)
is a property that identifies it with high probability, i.e., once the filters of two
nodes match, then the nodes themselves match with high probability. Since
the complexity of the matching steps in a state-recovery attack depends on
the complexity of building a filter for a node and testing a filter on a node, we
are interested in building filters efficiently. In this paper, we use two types of
filters: collision filters (which were also used in [19]) and diamond filters, which
exploit the diamond structure (introduced in [15]) in order to build filters for
a large set of nodes with reduced average complexity. In fact, we use a novel
online construction of the diamond structure via the MAC oracle, whereas such
a structure is typically computed offline. In particular, we show that despite
the fact that the online diamond filter increases the complexity of building the
filter, the complexity of the actual matching phase is significantly reduced, and
gives improved attacks in many cases.

1.2.1 Complexity evaluation

The complexity of our attacks is calculated in terms of the number of com-
pression function evaluations of the underlying hash functions. Similarly to
related papers in the field, we assume that sorting a table can be performed
in linear time, while searching a sorted table takes constant time. As the
complexities of all our attacks are exponential in the state size `, we mostly
use the big-O and soft-O (Õ) notation to estimate them (which is common
practice in analysis of exponential-time algorithms). These estimations ignore
small constants and polynomial factors in ` (which are generally linear in our
attacks). An exception to this is the more precise complexity evaluation for
the attack on HMAC-Streebog, given in Appendix B.

1.2.2 Outline

The paper is organized as follows. We begin with a description of HMAC in
Section 2. We then describe and analyze the algorithms used to compute
special states in Section 3, and the filters we use in our attacks in Section 4.

6 Itai Dinur, Gaëtan Leurent

Next, we present a simple attack against HMAC with a HAIFA hash function in
Section 5, and revisit the results of [19] in Section 6, presenting new tradeoffs
for attacks on Merkle-Damg̊ard hash functions. In Section 7, we give more
complex attacks for shorter messages. Our key-recovery attack on HMAC with
GOST R 34.11-2012 (Streebog) is described is Section 8. Finally, in Section 9,
we present our universal forgery attacks with short queries, and conclude in
Section 10.

2 HMAC and Hash-based MACs

In this paper we study MAC algorithms based on a hash function, such as
HMAC. Using a hash function H, HMAC is defined as HMAC(K,M) = H(K ⊕
opad ‖H(K ⊕ ipad ‖M)), as shown in Figure 2. More generally, we consider a
class of iterative designs based on a family of compression functions hi and a
finalization function g, represented by Figure 3. We denote the `-bit internal
state as xi and the n-bit output tag as t. The message M is divided into p
blocks mi, and the MAC is computed as:

x0 = IK xi+1 = hi(xi,mi) t = g(K,xp, |M |).

The message processing updates the internal state starting from a key-dependant
value IK , and the output is produced with a key-dependant finalization function
g. In particular, we note that the state update does not depend on the key. Our
description covers HMAC [4], Sandwich-MAC [27] and envelope-MAC [26] with
any common hash function. The hash function can use the message length in
the finalization process, which is a common practice, and the round function
can depend on a block counter, as in the HAIFA mode. If the hash function
uses the plain Merkle-Damg̊ard mode, the round functions hi are all identical
(this is the model analyzed in previous attacks [19,24]).

In this work, we assume that with very high probability, an arbitrary collision
on the tag of two messages of the same length is a result of a collision on the
final internal states xp. This greatly simplifies the description of the attacks,
and does not restrict the scope of our results. This assumption can be realized
by altering the original scheme such that the new tag length is made larger than
`. Indeed, from a function MAC1(K,M) with an output of n bits, we can build
a function MAC2(K,M) with a 2n-bit output by appending message blocks
[0] and [1] to M , as MAC2(K,M) = MAC1(K,M ‖ [0]) ‖MAC1(K,M ‖ [1]).
Our attacks applied to MAC2 can immediately be turned to attacks on MAC1

with a multiplicative penalty of 2.
In our attacks, we evaluate chains of the compression function h (or hi for

HAIFA) with a fixed message input block [b] (usually [b] = [0]), and typically
simplify our notation and define f(x) = h(x, [b]) (or fi(x) = hi(x, [b]) for
HAIFA). We assume that the function f (or each fi) is chosen from all `-bit
mappings uniformly at random. This implies that our analysis captures most
(but not all) choices of underlying hash functions.

Improved Generic Attacks Against Hash-based MACs and HAIFA 7

IV

K ⊕ ipad

h1`

M0

x0

h2`

M1

x1

h3`

M2

x2 x3

`

|M |

h0 g

IV

K ⊕ opad

h0 h1 g n

t

Fig. 2 HMAC with a HAIFA hash function. There are two hash function calls, each of them
using the key at the beginning.

h0`

m0

x0

h1`

m1

x1

h2`

m2

x2 x3

MACK(M)
` n

|M |

IK
gK

Fig. 3 Hash-based MAC with HAIFA. Only the initial value and the final transformation
are keyed.

3 Description and Analysis of Collision Search Algorithms

In this section, we describe the collision search algorithms which are used in
our state-recovery attacks in order to compute special states. We then analyze
these algorithms (assuming they are applied to random functions) and prove
the two conjectures of [19]. Lemma 1 proves the first conjecture, while Lemma 3
proves the second conjecture.

3.1 Collision search algorithms

We use standard collision search algorithms which evaluate chains starting
from arbitrary points. Namely, a chain −→x starts from x0, and is constructed
iteratively by the equation xi = fi(xi−1) up to i = 2s for a fixed value of s.
We consider two different types of collisions between two chains −→x and −→y :
free-offset collisions (xi = yj for any i, j, with all the fi’s being equal), and
same-offset collisions (xi = yi).

8 Itai Dinur, Gaëtan Leurent

3.1.1 Free-offset collision search

When searching offline for collisions in iterations of a single random function
f , we evaluate 2t chains starting from arbitrary points, and extended to length
2s.

Assuming that 2s · 2t+s ≤ 2` (i.e., 2s+ t ≤ `), then we are at (or below) the
birthday paradox threshold and therefore each of the chains is not expected
to collide with more than one other chain in the structure. This implies that
the structure contains a total of about 2t+s distinct points, and (according
to the birthday paradox) we expect it to contain a total of 2c = Θ(22(t+s)−`)

collisions. We can easily recover all of these collisions in O(2t+s) = O(2(c+`)/2)
time by storing all the evaluated points and checking for collisions in memory.

We note that we can reduce the memory requirements of the algorithm by
using the parallel collision search algorithm of van Oorschot and Wiener [22].
However, in this paper, we generally focus on time complexity and do not try
to optimize the memory complexity of our attacks.

3.1.2 Cycle search

Cycles are created when a chain collides with itself while iterating a single
random function f . In order to search offline for a cycle of length O(2s) (for
s ≤ `/2), we evaluate 2`−2s chains starting from arbitrary points, and extended
to length 2s. The probability that a chain collides with itself to form a cycle is
equal (up to a constant factor) to the probability that its first half (of length
2s−1) collides with its second half, which occurs with probability Θ(22s−`).
Thus, we expect to find a cycle within the evaluated 2`−2s chains.

3.1.3 Same-offset collision search

While free-offset collisions are the most general form of collisions, they cannot
always be efficiently detected and exploited by our attacks. In particular, they
cannot be efficiently detected in queries to the online oracle (as a collision
between messages of different lengths would lead to different values after
the finalization function). Furthermore, if the hash function uses the HAIFA
iteration mode, it is also not clear how to exploit free-offset collisions offline, as
the colliding chains do not merge after the collision (and thus we do not have
any easily detectable non-random property).

In the cases above, we are forced to only use collisions that occur at the
same offset. When computing 2t chains of length 2s, a pair of chains collides
at the same offset with probability of roughly 2s−`. As we have 22t pairs2 of
chains, we expect to find about 22t+s−` same-offset collisions.

We note that the computation above assumes that pairs of chains behave
(almost) independently, which is the case when the total number of collisions

2 More precisely, there are 22t−1 unordered pairs of chains. However, our analysis is correct
up to small constants.

Improved Generic Attacks Against Hash-based MACs and HAIFA 9

in the structure of chains is relatively small. More precisely, the computation
assumes that a constant fraction of the chains do not collide with any other
chain, so that the chain structure contains Θ(2s+t) distinct points. When the
iteration functions fi are all equal, the condition reduces to 2s + t ≤ ` (as
calculated for free-offset collision search). However, when the iteration functions
fi are distinct, we only have to consider collisions at the same offset. In order
to collect the 22t+s−` same-offset collisions, we require that a constant fraction
of the chains do not collide with any other chains, implying that 2t+ s− ` < t,
or s+ t ≤ `.

Locating collisions online. Online collisions are detected by sorting and com-
paring the tags obtained by querying the MAC oracle with chains of a fixed
length 2s. If we find two massages such that MAC(M) = MAC(M ′), we can
easily compute the message prefix that gives the (unknown) collision state, as
described in [19]. Namely, if we denote by M|i the i-block prefix of M , then
we find the smallest i such that MAC(M|i) = MAC(M ′|i) using binary search.

This algorithm queries the MAC oracle with O(s) messages of length O(2s),
and thus the time complexity of locating a collision online is s · 2s = Õ(2s).

3.2 Analysis of the collision search algorithms

In this section, we provide useful lemmas regarding the collision search al-
gorithms described above. These lemmas are used in order to estimate the
collision probability of special states that are calculated by our attacks and
thus to bound their complexity. Lemmas 1, 2 and 5 can generally be considered
as common knowledge in the field. Perhaps, the most interesting results in
this section are lemmas 3 and 4. These lemmas show that the probability of
our collision search algorithms to reach the same collision twice from differ-
ent arbitrary starting points, is perhaps higher than one would expect. This
phenomenon was already observed in previous works such as [22], but to the
best of our knowledge, this is the first time that this phenomenon is formally
proved.

Lemma 1 Let s ≤ `/2 be a non-negative integer. Let f1, f2, . . . , f2s be a
sequence of random functions over the set of 2` elements, and gi , fi◦. . .◦f2◦f1
(with the fi being either all identical, or completely independent). Then, the
images of two arbitrary inputs to g2s collide with probability of about 2s−`, i.e.
Prx,y [g2s(x) = g2s(y)] = Θ(2s−`).

Proof Let x and y be two arbitrary points, xi = gi(x) and yi = gi(y) (or
equivalently x0 = x, xi = fi(xi−1) and y0 = y, yi = fi(yi−1)). We first deal
with the case of independent functions fi. As all fi are random functions, we
have a pair of random points (xi, yi) for each offset. The probability that none
of the pairs collide is (1− 2−`)2

s

. The event g2s(x) = g2s(y) is equivalent to
having (at least) one collision between the pairs, which occurs with probability
1− (1− 2−`)2

s

= Θ(2s−`) (given s ≤ `).

10 Itai Dinur, Gaëtan Leurent

When the functions fi are identical, the analysis is similar, but one also
needs to consider dependencies between the sequences of points which are
caused by collisions xi = yj for i 6= j (and also cycles of the form xi = xj).
However, since s ≤ `/2, we are below (or at) the birthday bound and therefore
such collisions occur with at most a (small) constant probability, and their
asymptotic contribution to the value of Prx,y [g2s(x) = g2s(y)] can be neglected.
ut

Lemma 2 Let s ≤ `/2 be a non-negative integer. Let f be a random function,
then with high probability the image size of the function f i is O(2`/i).

Proof We will show that the expected image size of f i is upper bounded by
2 · 2`/i. Since the image size is positive, this upper bound proves the lemma,
as for some α > 1 the probability that the image size is more than 2α · 2`/i is
at most 1/α.

We calculate this expectation based on Theorem 2 of [9], which asserts that
the expected image size of f i is (1− τi)2`, where τ0 = 0 and τi+1 = e−1+τi . We
show by induction on i ≥ 1 that τi > 1− (2/i), which implies that the expected
image size of f i is less than 2 · 2`/i, as required. The base is i = 1, for which
indeed τ1 = e−1 > −1. Next, we need to prove that τi+1 > 1 − (2/(i + 1)),
or e−1+τi > 1 − (2/(i + 1)). According to the assumption, it is sufficient to
show that e−2/i > 1− (2/(i+ 1)), or equivalently −2/i > ln(1− (2/(i+ 1))).
This inequality can be deduced from the inequality ln(1 + x) < x/(x/2 + 1) for
−1 < x < 0 (see inequality (2) in [20]), by plugging in x = −2/(i+ 1). ut

Lemma 3 Let x̂ and ŷ be two random collisions (same-offset or free-offset)
found by a collision search algorithm using 2t chains of length 2s, with a fixed
`-bit random function f such that 2s+ t ≤ `. Then Pr [x̂ = ŷ] = Θ(22s−`).

Proof First, we note that we generally have 4 cases to analyze, according to
whether x̂ and ŷ were found using a free-offset, or a same-offset collision search
algorithm. However, the number of cases can be reduced to 3, as we have 2
symmetric cases, where one collision is free-offset, and the other is same-offset.
In this proof, we assume that x̂ is a same-offset collision and ŷ is a free-offset
collision (this is the configuration used in our attacks). However, the proof can
easily be adapted to the 2 other settings.

As previously noted, when 2s+ t ≤ ` each evaluated chain is not expected
to collide with more than one different chain, and the pairs of chains can
essentially be analyzed independently. Given a collision x̂, We denote by A the
event that 2 new chains of length 2s, starting from arbitrary points (y0, y

′
0),

also collide on x̂. Below, we show that Pr[A] = Θ(22(2s−`)). Denote by B
the event that the chains starting from (y0, y

′
0) collide (on x̂ or any other

point), then Pr[B] = Θ(22s−`). We are interested in calculating the conditional
probability Pr[A|B] = Pr [x̂ = ŷ], and we have Pr[A|B] = Pr[A ∩B]/Pr[B] =
Pr[A]/Pr[B] = Θ(22(2s−`)−(2s−`)) = Θ(22s−`), as required.

We are left to show that Pr[A] = Θ(22(2s−`)). Denote the starting points
of the chains which collide on x̂ by (x0, x

′
0), and the actual corresponding

Improved Generic Attacks Against Hash-based MACs and HAIFA 11

colliding points of the chains by (xi, x
′
i), so that f(xi) = f(x′i) = x̂, with

xi 6= x′i. Fixing (x0, x
′
0), we now calculate Pr[A], namely the probability that 2

new chains of length 2s, starting from arbitrary points (y0, y
′
0), also collide on x̂.

This occurs if y0, y1, . . . , y2s−i collides with x0, x1, . . . , xi, and y′0, y
′
1, . . . , y

′
2s−i

collides with x′0, x
′
1, . . . , x

′
i (or vise-versa). Clearly, Pr[A] = O(22(2s−`)), as all

4 chains are of length O(2s). Hence, to conclude the proof, we need to show
that Pr[A] = Ω(22(2s−`)).

In order to simplify the proof, we assume in the following that 0.25 · 2s ≤
i ≤ 0.75 · 2s and denote this event by I. We have Pr[I] ≈ 1/2 since the offset of
the collision x̂ is roughly uniformly distributed in the interval [0, 2s]. This can
be shown using Lemma 1, as increasing the length of the chains increases the
collision probability (at a common offset) by the same multiplicative factor.

We have Pr[A|I] = Θ(22(2s−`)), since when 0.25 · 2s ≤ i ≤ 0.75 · 2s, all
4 chains (y0, y1, . . . , y2s−i, x0, x1, . . . , xi, y

′
0, y
′
1, . . . , y

′
2s−i, x

′
0, x
′
1, . . . , x

′
i) are

of length Θ(2s). Therefore, Pr[A] = Pr[A|I] · Pr[I] + Pr[A|¬I] · Pr[¬I] ≥
Pr[A|I] · Pr[I] = Ω(22(2s−`)) as required. ut

Lemma 4 Let x̂ and ŷ be two arbitrary same-offset collisions found, respec-
tively, at offsets i and j by a collision search algorithm using 2t chains of
fixed length 2s, with independent `-bit random functions fi, such that
s + t < `. Then Pr [(x̂, i) = (ŷ, j)] = Θ(2s−`). Furthermore, when i = j, we
have Pr [x̂ = ŷ] = Θ(22s−`).

Proof The proof follows essentially the same line of arguments as the proof
of Lemma 3. We fix the collision x̂ and denote by A the event that chains
starting from arbitrary points (y0, y

′
0) collide on x̂ at offset i, and by B the

event that the chains starting from (y0, y
′
0) collide at an arbitrary offset j.

We have Pr[B] = Θ(2s−`) (see Lemma 1) and Pr[A] = Θ(22(s−`)).3 Thus,
Pr[A|B] = Pr[A ∩B]/Pr[B] = Pr[A]/Pr[B] = Θ(2s−`) as claimed.

When assuming that i = j, we need to change the definition of event B such
that the chains starting from (y0, y

′
0) collide at the fixed offset i. This gives

Pr[B] = Θ(2−`) and Pr[A|B] = Pr[A ∩ B]/Pr[B] = Pr[A]/Pr[B] = Θ(22s−`).
ut

Lemma 5 Let x̂ be the entry point of an arbitrary cycle found by the cycle
search algorithm for a fixed `-bit function f , using chains of fixed length 2s such
that s ≤ `/2. Let y0 be an arbitrary point, and define the chain yi+1 = f(yi) for
i ∈ {0, 1, . . . , 2s−1}. Then the probability that the chain yi finds the same cycle
and entry point x̂ is Θ(22s−`), i.e. Pr [∃i′, j′ | yi′ 6= yj′ and yi′+1 = yj′+1 = x̂] =
Θ(22s−`).

Proof We denote the starting point of the chain found by the cycle search
algorithm which collides (cycles) on x̂ by x0, and the corresponding collision
by (xi, xj), with i < j, xi 6= xj and f(xi) = f(xj) = x̂. In the follow-
ing, we assume that 0.25 · 2s ≤ i, j ≤ 0.75 · 2s, which occurs with constant

3 Once again, a lower bound on Pr[A] is easy to calculate assuming that 0.25 · 2s ≤ i ≤
0.75 · 2s (which occurs with probability of about 1/2).

12 Itai Dinur, Gaëtan Leurent

probability. The chain −→y will cycle with entry point x̂ if y0, y1, . . . , y2s−j col-
lides with x0, x1, . . . , xi. This occurs with probability of about 22s−` (when
0.25 ·2s ≤ i, j ≤ 0.75 ·2s, the two chains are of length Θ(2s)), which proves that
Pr [∃i′, j′ | yi′ 6= yj′ and yi′+1 = yj′+1 = x̂] = Ω(22s−`). On the other hand,
the probability that two chains of length at most 2s collide is at most (roughly)
22s−`, and therefore Pr [∃i′, j′ | yi′ 6= yj′ and yi′+1 = yj′+1 = x̂] = Θ(22s−`).
ut

4 Filters

We describe the two types of filters that we use in our attacks in order to
match (known) states computed offline with unknown states computed online
by the MAC oracle.

4.1 Collision filters

A simple collision filter was introduced in [19], and is also used in our work.
A collision filter for an offline state x is a pair of message blocks (b, b′), with
b 6= b′, such that we obtain the same state after processing these blocks from x
(i.e. h(x, b) = h(x, b′)). In order to build the filter, we find a collision in the
underlying hash function by evaluating its compression function with state x,
and about 2`/2 different messages blocks b. We apply the filter online on an
unknown node x′ — obtained after processing a message m′ — by checking
whether the tags of m′ ‖ b and m′ ‖ b′ collide. If the state obtained after
processing m′ is not x, the tags of m′ ‖ b and m′ ‖ b′ collide with probability
only 2−n < 2−`; therefore the collision filter identifies the state x with high
probability.

The complexity of building a collision filter offline is O(2`/2). Testing the
filter online requires querying the MAC oracle with m′ ‖ b and m′ ‖ b′; assuming
that the length of m′ is 2s

′
, this requires O(2s

′
) time.

4.2 Diamond filters

In order to build filters for 2t nodes, we can build a collision filter for each one of
them separately, requiring a total of O(2t+`/2) time. However, this process can
be optimized using the diamond structure, introduced by Kelsey and Kohno in
the herding attack [15]. We now recall the details of this construction.

The diamond structure is built from a set of 2t states xi, constructing a set
of messages mi of length O(t), such that iterating the compression function
from any state xi using message mi leads to a fixed final state y. The structure
is built in O(t) iterations, where each iteration processes a layer of nodes and
outputs a smaller layer to be processed by the next iteration. This process
terminates once the layer contains only one node, which is denoted by y.

Improved Generic Attacks Against Hash-based MACs and HAIFA 13

Starting from the first layer with 2t points, we evaluate the compression
function from each point xi with about 2(`−t)/2 random message blocks. This
gives a total of about 2(`+t)/2 random values, and we expect them to contain
about 2t collisions. Each collision allows matching two different values xi, xj
and to send them to a common value in the next layer, such that its size is
reduced by a factor about 2. The message mi for a state xi is constructed by
concatenating the O(t) message blocks on its path leading to y. According to
the detailed analysis of [17], the time complexity of building the structure is
Θ(2(`+t)/2). Note that for a HAIFA hash function, the nodes of each layer in
the structure must be built using the same function and therefore they must
have the same offset.

x0
x1
x2
x3
x4
x5
x6
x7

Once we finish building the diamond structure, we construct a standard
collision filter for the final node y, using message blocks ([b], [b′]). Thus, building
a diamond filter offline for 2t states requires O(2(`+t)/2) time, which is faster
than the O(2t+`/2) time required to build a collision filter for each node
separately.

In order to test the filter for a state xi (in the first layer of the diamond
structure) on the unknown node x′ obtained after processing a message m′

online, we simply check whether the tags of m′ ‖ mi ‖ [b] and m′ ‖ mi ‖ [b′]
collide. Assuming that the length of m′ is 2s

′
, then the online test requires

O(t+ 2s
′
) time. Note that for a HAIFA hash function, the online and offline

nodes tested for equality must have the same offset.

4.2.1 Online diamond filter

A novel observation that we use in this paper, is that in some attacks it is
more efficient to build the diamond structure online by calling the MAC oracle.
Namely, we construct a diamond structure for the set of 2t states xi, where (the
unknown) xi is a result of querying the MAC oracle with a message Mi. Note
that the online construction is indeed possible, as the construction algorithm
does not explicitly require the value of xi, but rather builds the corresponding
mi by testing for collisions between the states (which can be detected according
to collisions in the corresponding tags). However, testing for collisions online
requires that all the messages Mi for which we build the online diamond filter
are of the same length (both for HAIFA and Merkle-Damg̊ard hash functions).
Assuming that the messages Mi are of length 2s, building this construction
requires O(2s+(t+`)/2) calls to the compression function.

In order to test the filter for an unknown online state xi on a known state
x′, we simply evaluate the compression function from x′ on mi ‖ [b] and mi ‖ [b′],

14 Itai Dinur, Gaëtan Leurent

and check whether the resulting two states are equal. Thus, the offline test
requires O(t) time.

Ik
2s

Mi xi mi

5 Internal State-recovery for HMAC with HAIFA

In this section, we describe the first internal state-recovery attack applicable
to HAIFA. Our attack has a complexity of Õ(2`−s) using messages of length
2s, but this only applies with s ≤ `/5; the lowest complexity we can reach is
roughly 24`/5. We note that attacks against HAIFA can also be used to attack
a Merkle-Damg̊ard hash function, giving more freedom in the queried messages
by removing the requirement for long sequences of identical blocks as in [19].

In this attack, we fix a long sequence of “random” functions in order to
reduce the entropy of the image states, based on Lemma 1. We then use an
online diamond structure to match the states computed online with states that
are compute offline. The detailed attack is as follows:

Attack 1: State-recovery attack against HMAC with HAIFA

Complexity Õ(2`−s), with s ≤ `/5 (min: 24`/5)

1. (online) Fix a message C of length 2s. Query the oracle with 2u

messages Mi = [i] ‖ C. Build an online diamond filter for the set of
unknown states X, obtained after Mi.

2. (offline) Starting from 2t arbitrary starting points, iterate the com-
pression function with the fixed message C.

3. (offline) Test each image point x′ obtained in Step 2 against each of the
unknown states of X. If a match is found, then with high probability
the state reached after the corresponding Mi is x′.

Ik
1 2s

2u

[i] C

Online structure

2s

2t $

C

Offline structure

We detect a match between the grey points () using the diamond test built online.

Complexity analysis. In Step 3, we match the set X of size 2u (implicitly
computed during Step 1), and a set of size 2t (computed during Step 2). We
compare 2t+u pairs of points, and each pair collides with probability 2s−`

Improved Generic Attacks Against Hash-based MACs and HAIFA 15

according to Lemma 1. Therefore, the attack is successful with high probability
if t+u ≥ `− s. We now assume that t = `− s−u, and evaluate the complexity
of each step of the attack:

Step 1: 2s+u/2+`/2 Step 2: 2s+t = 2`−u Step 3: 2t+u · u = 2`−s · u

The lowest complexity is reached when all the steps of the attack have the
same complexity with s = u = `/5. More generally, we assume that s ≤ `/5
and set u = s to balance steps 2 and 3. This gives an attack with complexity
Õ(2`−s) since s+ u/2 + `/2 = 3s/2 + `/2 ≤ 4`/5 ≤ `− s.

6 New Tradeoffs for Merkle-Damg̊ard

In this section, we revisit the results of [19], and give more flexible tradeoffs
for various message lengths.

6.1 Tradeoff based on iteration chains

In this attack, we match special states obtained using collision based on
Lemma 3. This attack extends the original tradeoff of [19] by using two
improved techniques. First, while [19] used a same-offset offline collision search,
we use a more general free-offset offline collision search which enables us to
find collisions more efficiently. Secondly, while [19] used collision filters, we use
a more efficient diamond filter.

Attack 2: Chain-based tradeoff for HMAC with Merkle-Damg̊ard

Complexity O(2`−s), with s ≤ `/3 (min: 22`/3)

1. (offline) Use free-offset collision search from 2`−2s starting points with
chains of length 2s, and find 2c collisions (denoted by the set X̂).

2. (offline) Build a diamond filter for the points in X̂.
3. (online) Query the oracle with 2t messages Mi = [i] ‖ [0]2

s

. Sort the
tags, and locate 1 collision among the tags.

4. (online) Use a binary search to find the message prefix giving the
unknown online collision state ŷ.

5. (online) Match the unknown online state ŷ with each offline state in
X̂ using the diamond filter. If a match with x̂ ∈ X̂ is found, then with
very high probability ŷ = x̂.

16 Itai Dinur, Gaëtan Leurent

2s

2`−2s

{2c collisions}

$

[0]∗

Offline structure

Ik
2s1

2t

[i] {1 collision}[0]∗

Online structure

We generate collisions offline using free-offset collision search, build a diamond filter
for the collision points (), and recover the state of an online collision.

Complexity analysis. In Step 1, we use free-offset collision search with 2`−2s

starting points and chains of length 2s, and thus according to Section 3.1, we
find 2`−2s collisions (i.e. c = ` − 2s). Furthermore, according to Lemma 3,
ŷ ∈ X̂ with high probability, in which case the attack succeeds.

In Step 3, we use same-offset collision search with 2t starting points and
chains of length 2s, and thus according to Section 3.1, we find 22t+s−` collisions.
As we require one collision, we have t = (` − s)/2. We now compute the
complexity of each step of the attack:

Step 1: 2`−s Step 2: 2`/2+c/2 = 2`−s

Step 3: 2t+s = 2(`+s)/2 Step 4: s · 2s

Step 5: 2c+s = 2`−s

With s ≤ `/3, we have (`+ s)/2 ≤ 2/3 · ` ≤ `− s, and the complexity of the
attack is O(2`−s).

6.2 Tradeoff based on cycles

We now generalize the cycle-based state-recovery attack of [19] which exploits
the main cycle of approximate length 2`/2 in the graph of the random mapping
in order to construct two colliding messages of the same length (thus having
equal tags, which can be detected at the output). The attack of [19] uses
messages of length 2`/2 and has a complexity of 2`/2.

Our attack uses the same idea of [19], but searches for (potentially) shorter
cycles using (potentially) shorter messages of length 2s for s ≤ `/2. The
complexity of the attack 22`−3s.

Attack 3: Cycle-based tradeoff for HMAC with Merkle-Damg̊ard

Complexity O(22`−3s), with s ≤ `/2 (min: 2`/2)

1. (offline) Search for a cycle in the functional graph of f = h[0], using the
algorithm of Section 3.1 with chains of length 2s. Denote the length of
the cycle by L, and its entry point by x̂. Build a collision filter for x̂.

2. (online) For different values of the message block [b], query the MAC
oracle with two messages M = [b] ‖ [0]2

s ‖ [1] ‖ [0]2
s+L and M ′ =

Improved Generic Attacks Against Hash-based MACs and HAIFA 17

[b]‖ [0]2
s+L‖ [1]‖ [0]2

s

(both of length 1+2s+1+2s+L = 2+2s+1+L),
until MAC(M) = MAC(M ′).

3. (online) Define Mi = [b]‖[0]i‖[1]‖[0]2
s+L and M ′i = [b]‖[0]i+L‖[1]‖[0]2

s

,
and use a binary search to find the minimum value of i such that Mi

and M ′i have the same MAC. Use the collision filter to test whether
the state reached after [b] ‖ [0]i is equal to x̂.

Complexity analysis. The intuition behind this attack is the same as the
cycle-based attack from [19]. Step 2 will be successful if the message M0 =
[b] ‖ [0]2

s ‖ [1] ‖ [0]2
s

reaches the cycle of length L twice: once after processing
[b] ‖ [0]2

s

and again after processing the full message M ′. Indeed, if this is the
case, then adding L zero blocks in the first cycle (in message M ′) or in the
second cycle (in message M) does not change the state reached before the
finalization function. In addition, M and M ′ have the same length 2 + 2s+1 +L
which allows the collision to be propagated to the output (a simple attack that
enters the cycle only once would not work because of the different lengths).

More formally, we need the two following conditions to be satisfied. First,
the states obtained after evaluating the prefixes [b] ‖ [0]2

s

and [b] ‖ [0]2
s+L must

collide. This occurs if one of the states computed during the evaluation of
[b] ‖ [0]2

s

collides with x̂ (and thus enters the cycle of length L), which has
probability Θ(22s−`) according to Lemma 5. Secondly, the states obtained after
evaluating the suffixes [1] ‖ [0]2

s+L and [1] ‖ [0]2
s

must also collide. Similarly to
the previous case, this occurs if one of the states computed during the evaluation
of [1] ‖ [0]2

s

collides with x̂. Again, this event occurs with probability Θ(22s−`)
according to Lemma 5. Thus, the success probability of Step 2 is Ω(22(2s−`))
(if fact, it is Θ(22(2s−`))), and we need to repeat it for O(22(`−2s)) different
values of [b] for the attack to succeed with high probability. Consequently, the
time complexity of Step 2 is O(22(`−2s)+s) = O(22`−3s).

Step 3 will detect the minimum i such that Mi reaches the cycle, therefore
the i-th state is the entry point of the cycle. Step 3 is expected to be run once
for the correct pair, but each block value b can lead to an internal collision
(at a common offset) without reaching the cycle with probability about 2s−`,
according to Lemma 1. Thus, Step 3 is run 22(`−2s)+s−` = 2`−3s times with
false positives.

The time complexity of all the steps is summarized below.

Step 1: 2`−2s+s = 2`−s Step 2: 22·(`−2s)+s = 22`−3s

Step 3: 2s · s · (1 + 2`−3s) = (2s + 2`−2s) · s

Since s ≤ `/2, the complexity of the attack is O(22`−3s).

7 Shorter Message Attacks

In this section, we describe more complex attacks that can reach a tradeoff of
2`−2s for relatively small values of s. These attacks are useful in cases where the

18 Itai Dinur, Gaëtan Leurent

message length of the underlying hash function is very restricted (e.g. the SHA-2
family), and moreover they play an important role in the key-recovery attack
on HMAC with the GOST R 34.11-2012 hash function (described in Section 8). In
order to reach a complexity of 2`−2s, we combine the idea of building filters in
the online phase with the use of collisions as special states (using the results of
Lemma 3 for Merkle-Damg̊ard and Lemma 4 for HAIFA).

In the case of Merkle-Damg̊ard with identical compression functions, we
reach a complexity of 2`−2s for s ≤ `/8, i.e. the optimal complexity of this
attack is 23/4·`. With the HAIFA mode of operation, we reach a complexity of
2`−2s for s ≤ `/10 i.e. the optimal complexity of 24/5·`, matching the optimal
complexity of the attack of Section 5.

7.1 Merkle-Damg̊ard

Attack 4: Short message attack for HMAC with Merkle-Damg̊ard

Complexity Õ(2`−2s), with s ≤ `/8 (min: 23`/4)

1. (online) Query the oracle with 2u messages Mi = [i] ‖ [0]2
s

, and locate
2c1 collisions.

2. (online) For each collision (i, j), use a binary search to find the distance
(offset) dij from the starting point to the collision, and denote the
(unknown) state reached after Mi (or Mj) by yij .
Denote the set of all yij (containing about 2c1 states) by Y . Build an
online diamond filter for all the states in Y .

3. (offline) Run a free-offset collision search algorithm from 2t starting
points with chains of length 2s, and locate 2c2 collisions.

4. (offline) For each offline collision x̂, match its iterates with all points
yij ∈ Y : iterate the compression function with a zero message starting
from x̂ (up to 2s times), and match iterate 2s − dij (i.e., f2

s−dij (x̂))
with yij using the diamond filter. If a match is found, then with high
probability yij = f2

s−dij (x̂).

Ik
2s1

2u

[i]
{2c1 collisions}[0]∗

Online structure

2t

2s

{2c2 collisions}

$

[0]∗

Offline structure

We generate collisions, build an online diamond filter for their endpoints, and match
them with iterates of collisions found offline.

Improved Generic Attacks Against Hash-based MACs and HAIFA 19

2c2

2s

2c1 tests/chain[0]∗

Matching (offline)

Complexity analysis. Using similar analysis to Section 6.1, we have c1 =
2u+ s− ` (as a pair of chains collides at the same offset with probability 2s−`,
and we have 22u such pairs) and c2 = 2t+ 2s− `. The attack succeeds if the
sets of collisions found online and offline intersect. According to Lemma 3, this
occurs with high probability if c1 + c2 ≥ `− 2s. In the following, we assume
c1 + c2 = `− 2s.

Step 1: 2u+s = 2s/2+c1/2+`/2 Step 2: 2s+c1/2+`/2 = 2`−c2/2

Step 3: 2t+s = 2`/2+c2/2 Step 4: 2c2+s + 2c1+c2 · c1 = 2c2+s + 2`−2s · c1

The best tradeoffs are achieved by balancing steps 2 and 3, i.e. with c2 = `/2,
implying that c1 = `/2− 2s. This reduces the complexity to:

Step 1: 23`/4−s/2 Step 2: 23`/4

Step 3: 23`/4 Step 4: 2`/2+s + 2`−2s · `/2

With s ≤ `/8, we have `/2 + s ≤ 5`/8 and 3`/4 ≤ ` − 2s; therefore the
complexity of the attack is Õ(2`−2s).

We note that the complexity can be reduced to a minimum of O(23`/4)
(without logarithmic factors) by using messages which are slightly longer than
2`/8. In particular, this gives optimal attacks for functions of the SHA-2 family.

7.2 HAIFA

The general structure of the attack on HAIFA is similar to one of the previous
attack on Merkle-Damg̊ard. The main difference between the attacks is that
we are forced to use same-offset collision search offline, rather than free-offset
collision search as in the previous attack.

Attack 5: Short message attack for HMAC with HAIFA

Complexity Õ(2`−2s), with s ≤ `/10 (min: 24`/5)

1. (online) Fix an arbitrary message suffix C of length 2s, query the
oracle with 2u messages Mi = [i] ‖ C, and locate 2c1 collisions.

2. (online) For each collision (i, j), use a binary search to find the distance
(offset) dij from the starting point to the collision, and denote the
(unknown) state reached after Mi (or Mj) by yij .

20 Itai Dinur, Gaëtan Leurent

Denote the set of all yij (containing about 2c1 states) by Y . Build an
online diamond filter for all the states in Y .

3. (offline) Run a same-offset collision search algorithm by computing the
compression function with the message C from 2t arbitrary starting
points, and locate 2c2 collisions.

4. (offline) For each offline collision x̂, match the endpoint of its chain
with all online collisions yij ∈ Y that occur at the same offset as x̂.
More precisely, for each x̂ with offset d, use the diamond filter to test
only the endpoint of its chain (at offset 2s) with the corresponding
collisions in Y that occur at offset dij = d. If a match with some yij is
found, then with high probability the state reached after Mi and Mj

is the endpoint of the offline collision x̂.

Ik
2s1

2u

[i]
{2c1 collisions}C

2t

2s

{2c2 collisions}

$

C

Offline structureOnline structure

We generate collisions and build an online diamond filter, and match the endpoints
with offline collisions endpoints using the collision offset as a first filter.

Analysis. The attack succeeds in case there is a match between the set of
collisions detected online and offline that occur at the same offset. According
to Lemma 4, this match occurs with high probability when c1 + c2 ≥ ` − s,
and thus we assume that c1 + c2 = `− s.

Complexity analysis. Similarly to the analysis of the previous attack on Merkle-
Damg̊ard, we have c1 = 2u+ s− `, but as we use same-offset collision search
offline, we can detect a smaller number of c2 = 2t+ s− ` collisions. We note
that the online collision offsets dij are essentially uniform (see Lemma 1), and
therefore in Step 4, each offline collision x̂ at offset d is matched with about
2c1 · 2−s states in Y .

Step 1: 2u+s = 2s/2+c1/2+`/2 Step 2: 2s+c1/2+`/2 = 2`−c2/2+s/2

Step 3: 2s+t = 2s/2+c2/2+`/2 Step 4: 2c1+c2−s · c1 = 2`−2s · c1

The optimal tradeoffs are achieved by balancing steps 2 and 3, i.e. with c2 = `/2,
implying that c1 = `/2− s. This reduces the complexity to:

Step 1: 23`/4 Step 2: 23`/4+s/2

Step 3: 23`/4+s/2 Step 4: 2`−2s · `/2

With s ≤ `/10, we have 3`/4 + s/2 ≤ 4`/5 ≤ `− 2s; therefore the complexity
of the attack is Õ(2`−2s).

Improved Generic Attacks Against Hash-based MACs and HAIFA 21

8 Key-Recovery Attack on HMAC with GOST R 34.11-2012 (Streebog)

In this section we are interested in hash functions that use an internal checksum,
as shown in Figure 4. In [19], the state-recovery attack on HMAC with a Merkle-
Damg̊ard hash function was extended into a key-recovery attack, in case the
hash function uses an internal checksum like the GOST R 34.11-94 hash function.
Here, we show that a similar attack can be applied to a hash function based
on HAIFA with an internal checksum. Namely, the state-recovery attack (with
complexity 24`/5) can be extended into a key-recovery attack (with complexity
24`/5).

In particular, this attack is applicable to the standard GOST R 34.11-2012
(aka Streebog), and gives a key-recovery attack with complexity 2417 for its
512-bit version. This result shows that HMAC-GOST R 34.11-2012 is weaker than
HMAC-SHA-512 (for which no key-recovery attack better than exhaustive search
is known).

8.1 Description of the attack

The attack uses the same framework as [19], exploiting the structure of hash
functions with a checksum. We target the finalization function in the first hash
function call. The input state value x? can be recovered using the previous
state-recovery attacks, and we exploit the fact that the checksum value is
key dependant, but can be controlled by injecting differences in the message:
σ = K ⊕ ipad⊕ Sum⊕(M). This allows for attacks which are somewhat similar
to related-key attacks.

More precisely, we first generate a large set of messages of length L, leading
to the same state x?, but with different checksums σ. Then, we consider
collisions in the function σ 7→ g(x?, L, σ), which can be detected using online
calls to the MAC oracle. At the same time, we can also generate such collisions
offline since x? and L are known. Moreover, if we find two collisions with the
same difference in the σ input, there is a high probability that the actual σ
values are the same, because the other inputs to g (x? and L) are fixed (on
average, we expect a single collision with a fixed difference). Once we find an
online collision and an offline collision with the same difference, we can therefore
recover the value of K by exploiting the equation σ = K ⊕ ipad⊕ Sum⊕(M).

8.2 Detailed attack process

The first step of the attack uses the state-recovery attack of Section 7.2.
However, unlike hash functions without checksums, equal tags of arbitrary
messages of the same length (but with different checksums) do not imply
equality (with high probability) of the states reached after the messages are
processed. Therefore, we execute Attack 5 with the modifications below that
ensure we only compare tags of messages with a fixed checksum.

22 Itai Dinur, Gaëtan Leurent

IV

K ⊕ ipad

h1`

M0

x0

h2`

M1

x1

h3`

M2

x2 x?

`

|M |

h0 g

IV

K ⊕ opad

h0 h1 g2 n

t

Fig. 4 HMAC based on a hash function with a block counter and a checksum (dashed lines).

• In step 1, we use Mi = [i] ‖ [i] ‖ C
• In step 2, when building the diamond structure, we extend the messages by
m ‖m. We do the same when building a collision pair for the endpoint of
the diamond.

• For the offline steps, we ignore the checksum, and only look for collisions in
the iterated state.

Attack 6: Key-recovery attack against HMAC with a GOST-like hash
function
Complexity Õ(24`/5)

0. Execute Attack 5 to recover a state x1 obtained after processing some
message M1, with |M1| = s = `/10.

1. (offline) Starting from state x1, use Joux’s multicollision attack [14] to
generate a set of 27`/10 messages that all collide on an internal state
before the checksum block, but with different checksums. Denote the
final state as x?, and the length of the messages as L.

2. (online) Query the MAC oracle with the set of messages from Step
1 and collect collisions (22·7`/10−` = 22`/5 collisions are expected).
For each collision (M,M ′), compute the checksum difference ∆M =
Sum⊕(M)⊕ Sum⊕(M ′), and store (∆M, Sum⊕(M)).

3. (offline) Choose a set of 24`/5 one-block random checksums σ, compute
g(x?, L, σ) and collect collisions (23`/5 collisions are expected). For
each collision (σ, σ′), compute the difference σ ⊕ σ′ and compare
it with the stored ∆M from Step 2. If a match is found, consider
Sum⊕(M) ⊕ σ ⊕ ipad and Sum⊕(M) ⊕ σ′ ⊕ ipad as potential key
candidates, and test them using a known tag.

Improved Generic Attacks Against Hash-based MACs and HAIFA 23

Analysis. Since we have 22`/5 collisions in Step 2 and 23`/5 collisions in Step 3,
there is a high probability to find a match which is likely to reveal the key.

Complexity.

Step 0: Õ(24`/5) Step 1: ` · 2`/2

Step 2: 2s+7`/10 = 24`/5 Step 3: 24`/5

The total complexity is Õ(24`/5). In Appendix B, we give a more precise
complexity evaluation of this attack and show that it requires less than 2417

operations on average when applied to Streebog (with ` = 512).

Significance of short message attacks. The efficient state-recovery attack for
short messages is an important factor here, as the message length directly
influences the time complexity of the attack in Step 2. In fact, state-recovery
attacks with complexity 2`−s as in Section 5 (or in [19], for the Merkle-Damg̊ard
construction) can only reach complexity 25`/6 for key-recovery, while the attacks
with complexity 2`−2s (described in Section 7) allow to reach complexity 24`/5.

We note that in GOST R 34.11-94 (which is based on Merkle-Damg̊ard as
opposed to HAIFA) the message length is processed with the same function
as the other blocks. This (in addition to some padding properties) allowed
the attack of [19] to deduce the state of a short message from the state
of a long message. Therefore, unlike our key-recovery attack on HMAC with
GOST R 34.11-2012, efficient state-recovery attacks for short messages did not
play an important role in the key-recovery attack on HMAC with GOST R 34.11-
94 [19].

9 Universal Forgery Attacks with Short Queries

In the setting of universal forgery attacks the adversary receives a challenge
message C at the beginning of the game. The goal of the adversary is to predict
the tag of the challenge by interacting with the MAC oracle, but without
querying for the actual challenge C.

We now revisit the universal forgery attack of Peyrin and Wang [24]. This
attack has two phases, where in the first phase the adversary recovers one of the
internal states computed by the MAC oracle on the challenge C. In the second
phase, the adversary uses a second-preimage attack on long messages in order
to generate a different message C ′ known to have the same tag as the challenge.
Thus, by querying the MAC oracle for C ′, the adversary can forge the tag of C.
The first phase of the attack is the most expensive; the attack of [24] requires
Õ(25`/6) computations, which has been improved to Õ(23`/4) in [11] using a
heuristic assumption on the functional graph of random functions.

The main drawback of those attacks is that its first phase uses very long
queries to the MAC oracle, regardless of the length of the challenge.4 Therefore,

4 The first phase of the attacks of [11,24] uses queries of length 2`/2. Their algorithms
are related to the cycle-based attack of [19] that is generalized is Section 6.2.

24 Itai Dinur, Gaëtan Leurent

the attack is inapplicable to many concrete HMAC instantiations where the hash
function limits the message length (such as HMAC-SHA-1 and HMAC-SHA-2).

In this section, we use the tools developed in this paper to devise two
universal forgery attacks using shorter queries to the MAC oracle. For a
challenge of length 2s, our first universal forgery attack has a complexity of
Õ(2`−s) with s ≤ `/7, using queries to the MAC oracle of length of at most 22s

(which is significantly smaller than 2`/2 for any s ≤ `/7). Thus, the optimal
complexity of this attack is Õ(26`/7), obtained with a challenge of length at
least 2`/7 and queries of length 22`/7. Our second universal forgery attack has a
complexity of only Õ(2`−s/2). However, it is applicable for any s ≤ 2`/5, using
queries to the MAC oracle of length of at most 2s. Thus, this attack has an
improved optimal complexity of Õ(24`/5), which is obtained with a challenge
of length at least 22`/5 and queries of length 22`/5.

In order to devise our attacks, we construct new state-recovery algorithms,
but reuse the second phase from [24] (i.e., the second-preimage attack) in both
of the attacks. Thus, in the following, we concentrate on the state-recovery
algorithms. For the sake of completeness, we describe the second phase of the
attack in Appendix A. Since its complexity is about 2`−s for any s ≤ `/2, it
does not add a significant factor to the total time complexity.

9.1 A universal forgery attack based on the reduction of the image-set size

Directly matching the 2s states computed by the MAC oracle on the challenge
message with some states evaluated offline is too expensive. Therefore, we first
compute and match the images of the states under iterations of a fixed function
(as images match with higher probability than arbitrary states). Then, we use
the initial matching of the images to efficiently match and recover an actual
state that is computed by the MAC oracle on the challenge message. The
2-phase matching used in the attack resembles the approach used in [11,24],
but the main difference is that the first phase of the matching does not exploit
cycles in the functional graph. Moreover, the second phase of the matching is
performed using an efficient binary search matching algorithm (Algorithm 1,
whose pseudo-code is give in Appendix C). This algorithm can be simplified
using a heuristic assumption on the number of nodes that need to be matched
in the second phase (such an assumption was made explicitly in [11], and more
implicitly in [6]). However, the analysis of Algorithm 1 is more rigorous and
does not require any conjecture.

We denote the challenge message by C, and the first κ blocks of C by C|κ.
The details of the (first phase of the) universal forgery attack are as follows.

Attack 7: Universal forgery attack using chains (first phase)

Complexity Õ(2`−s), with s ≤ `/7 (min: 26`/7)
Query length: O(22s)

Improved Generic Attacks Against Hash-based MACs and HAIFA 25

1. (online) Query the oracle with 2s messages Mi = C|i ‖ [0]2
2s−i. Denote

the set of (unknown) final states of the chains by Y . Build an online
diamond filter for all states in Y .

2. (offline) Compute a structure of chains containing a total of 2`−s points.
Each chain is extended until it cycles or collides with a previous chain.
Consider the set X of the 22s-iterates of f (namely images of f2

2s

in the structure). According to Lemma 2, this set contains (no more
than) about 2`−2s distinct points. Build an online diamond filter for
X.

3. (offline) Match all the points x ∈ X with the 2s points in Y .
4. (offline) For each match between x ∈ X and an online state in Y

(obtained using Mi), use an additional matching algorithm to test
the actual message C|i: call the binary search matching algorithm
(Algorithm 1) with:

• input message Mi = C|i ‖ [0]2
2s−i;

• the tree rooted at x (obtained by disconnecting the edge between x
and f(x) from the graph and considering all the points that merge
into x);

• and distance 22s − i.
If the algorithm returns a match y′, then with high probability the
state obtained after processing C|i is equal to y′.

Ik
2s 22s−2s

2s
C

Online structure Offline structure

22s22s

{2`−s points}
{2`−2simages ()}

We efficiently detect a match between the challenge points () and the offline structure,
by first matching X () and Y ().

Algorithm 1: Binary search matching
Inputs: distance d, message M of length d′ > d whose last d blocks are
zero, tree of chains computed with the zero block that merge into the
root x
Output: node y in the tree with distance d to x that is equal to the state
reached after evaluating M|d′−d (NULL if y does not exist)

1. Denote by Size(u) the number of nodes in the tree whose root is u.
Traverse the tree rooted at x (backwards) for at most d steps until a
leaf or a collision is encountered:

26 Itai Dinur, Gaëtan Leurent

• If a total of d steps were traversed, denote the node at distance d
from x by z. Build a collision filter for z and test it on M|d′−d. If
they match, return y = z, otherwise go to Step 2.

• If a leaf is encountered (before d steps were traversed), denote the
current node by z and go to Step 2.

• If colliding states z1, z2 such that f(z1) = f(z2) = z are en-
countered, then if Size(z1) ≥ Size(x)/2 continue traversing z1
in Step 1. Otherwise, if Size(z2) ≥ Size(x)/2 continue traversing
z2 in Step 1.a

Otherwise (sizes of trees rooted at z1 and z2 are small), let d(z)
denote the distance of z from x. Build collision filters for z1 and z2
and test them on M|d′−d(z1) (note that d(z1) = d(z2) = d(z) + 1).
If there is no match, go to Step 2. Otherwise, assume without
loss of generality that the match is with z1. Call the algorithm
recursively with input message M|d′−d(z1), tree rooted at z1, and
distance d′ − d(z1) (note that Size(z1) < Size(x)/2).

2. Backtrack (by cutting off half of the tree): Denote by z the current
node in the traversal. Let z′ be the first ancestor of z (in the direction
of the root x) for which there is a collision f(z′) = f(z′′) for some
z′′. If there is no such z′, return NULL. Otherwise, call the algorithm
recursively with input message M , tree rooted at x with z′ cut off,
and distance d (note that Size(z′) ≥ Size(x)/2).

a The algorithm can be easily generalized to deal with collisions between t ≥ 2 states
by analyzing all t nodes in the t-way collision (looking for a child whose subtree size is
at least half of the total tree size, and building filters for all the children if required).
As the maximal value of t in an `-bit random mapping is not expected to exceed `,
such collisions only add (up to) a logarithmic factor to the total complexity of the
algorithm.

Analysis. The offline structure of Step 2 contains 2`−s distinct points, and
thus according to the birthday paradox, it covers one of the 2s points of the
challenge with high probability. In this case, the attack will successfully recover
the state of the covered point with high probability, since the 22s-iterate of the
covered point is also covered by the offline structure and will be matched in
Step 3.5

The analysis of Algorithm 1 used in Step 4 is based on the following property:
the size of the tree parameter is cut by at least half in every recursive call, where
in each such recursive call we traverse at most d ≤ 22s nodes and compute and
test a small constant number of collision filters. Since the initial tree has at

5 The only case in which the 22s-iterate (denoted by x) of a covered point y is not covered
by the offline structure, is when this iterate goes through the disconnected edge from x to
f(x) (namely, f(x) is on a path from y to x whose length is at most 22s). This can only
occur if x is on a cycle with less than 22s elements. Such (small) cycles are expected to
belong to (small) connected components whose total size is O(22·2s) = O(24s) (see [9]). On
the other hand, we evaluate a total of 2`−s nodes offline, and since 24s � 2`−s for s ≤ `/7,
it is unexpected that the covered point y will belong to such a small component.

Improved Generic Attacks Against Hash-based MACs and HAIFA 27

most 2` nodes, there are at most ` recursive calls in Algorithm 1 (for a single
call in Step 4). The complexity of each recursive call is dominated by building
a few offline collision filters, and therefore the complexity of Algorithm 1 is
about ` · 2`/2 (note that testing the filter online has complexity 22s < 2`/2, and
traversing nodes in each recursive call has complexity at most d ≤ 22s < 2`/2).

Since we have 2s points in Y and all the points in X are distinct, there are
at most 2s matches in Step 3, and the time complexity of Step 4 is at most
` · 2`/2 · 2s = ` · 2`/2+s.

Complexity.

Step 1: 22s+s/2+`/2 = 2`/2+5s/2 Step 2: 2`−s

Step 3: s · 2`−2s+s = s · 2`−s Step 4: ` · 2`/2+s

With s ≤ `/7, we have `/2 + 5s/2 ≤ 6`/7 ≤ `− s; the complexity of the first
phase of the universal forgery attack is Õ(2`−s). Since the second phase has a
similar complexity, this is also the complexity of the full attack.

9.2 A universal forgery attack using collisions

In this attack, we devise a different algorithm which recovers one of the states
computed during the MAC computation on the challenge message. The main
idea here is to begin with a state-recovery attack in order to determine the
value of some online states. Then, we use iterates of a fixed function on the
challenge states and on the known points, and detect (online) collisions between
the two sets of iterates. This allows to determine the values of several iterates
of challenge states, and removes the need for online filters (that are required in
the first matching phase of the previous attack). Next, we evaluate some states
offline and execute the second matching phase on offline iterates that match
the online challenge iterates. This allow to recover an actual challenge state
(the second phase matching uses Algorithm 1 as the previous attack).

Attack 8: Universal forgery attack using collisions (first phase)

Complexity O(2`−s/2), with s ≤ 2`/5 (min: 24`/5)
Query length: O(2s)

1. (online) Query the oracle with 2s messages Mi = C|i ‖ [0]2
s+1−i, and

sort the tags.
2. (online) Execute state-recovery Attack 2 using messages of length

min(2s, 2`/3), and denote by W a message of length 2s whose last
computed state is recovered.a

3. (online) Query the oracle with 2v messages Wj = W ‖ [j] ‖ 02s−1,
sort the tags, and locate 2c collisions with the tags computed using
the messages Mi. For each collision of tags between Mi and Wj , the

28 Itai Dinur, Gaëtan Leurent

state reached after Mi is known, because the state reached after W is
already known. We denote the set of those states as X.

4. (offline) Compute a structure of chains containing a total of 2`−c points.
Each chain is extended until it cycles or collides with a previous chain.

5. (online) For each offline point in the structure y which matches a point
in X (corresponding to Mi), call the binary search matching algorithm
(Algorithm 1) with inputs:
• message Mi;
• the tree rooted at y (obtained by disconnecting the edge between y

and f(y) from the graph and considering all the points that merge
into y);

• and distance 2s+1 − i.
If the algorithm returns a match y′, then with high probability the
state obtained after processing C|i is equal to y′.

Ik
2s 2s

2s
C

[0]∗

Ik

2v

2s 1 2s−1

W

[i] [0]∗

Online structure

{2c collisions}

Offline structure

2s2s

{2`−c points}
{2`−simages ()}

We match the known points in X () and Y () in order to detect a match between
the challenge points () and the offline structure.

a In case s > `/3, we first recover the last computed state of a message of size 2`/3,
and then complement it arbitrarily to a length of 2s.

Analysis. In Step 3 of the attack, we find 2c collisions between pairs of chains,
where the prefix of one chain in each pair is some challenge prefix C|i. Thus,
the 2c collisions cover 2c such challenge prefixes, and moreover, the offline
structure computed in Step 4 contains 2`−c points. Thus, according to the
birthday paradox, with high probability the offline structure covers one of the
states obtained after the computation of such a prefix C|i. Since iterate 2s+1− i
of C|i is also covered by the offline structure,6 then the state corresponding to
C|i will be recovered in Step 5.

In order to calculate the value of c, note that the online structure computed
in Step 1 contains 2s chains, each of length at least 2s, and thus another
arbitrary chain of length 2s collides with one of the chains in this structure
at the same offset with probability of about 22s−` (see Lemma 1). Since the

6 This occurs with high probability, and can be shown by analyzing the cycle structure of
the graph as in the previous attack.

Improved Generic Attacks Against Hash-based MACs and HAIFA 29

structure computed in Step 3 contains 2v such chains, the expected number of
detected collisions between the structures is 2c = 22s+v−`, i.e., c = 2s+ v − `.

In Step 5, we call Algorithm 1 at most 2c times (at most once for each
online collision), and each invocation has complexity ` · 2`/2 (the analysis of
Algorithm 1 is essentially the same as in the previous attack). In total, the
complexity of Step 5 is ` · 2c+`/2 = ` · 22s+v−`/2.

Step 1: 22s Step 2: max(2`−s, 22`/3)

Step 3: 2v+s Step 4: 2`−c = 22`−2s−v

Step 5: ` · 22s+v−`/2

We balance steps 3 and 4 by setting v + s = 2`− 2s− v, or v = `− 3s/2.
This yield c = s/2, a complexity of 2`−s/2 for steps 3 and 4, and 2`/2+s/2 for
Step 5. This gives a total complexity of O(2`−s/2) for any s ≤ 2`/5.

10 Conclusions and Open Problems

In this paper, we provided improved analysis of HMAC and similar hash-based
MAC constructions. More specifically, we devised the first state-recovery attacks
for HMAC with hash functions based on the HAIFA mode, and provided improved
tradeoffs between the message length and the complexity of state-recovery
attacks for HMAC with Merkle-Damg̊ard hash functions. Finally, we presented
the first universal forgery attacks which can be applied with short queries to the
MAC oracle. Since it is widely deployed, our attacks have many applications
to HMAC constructions used in practice, built using GOST, the SHA family, and
other concrete hash functions.

We give a more concrete application of some of these results in Section 8,
with a key-recovery attack against HMAC with the new Russian standard
GOST R 34.11-2012. In particular this attack requires a key-recovery attack
against HMAC with HAIFA hash functions, and improved tradeoffs for short
messages.

Our results raise several interesting future work items such as devising
efficient universal forgery attacks on HMAC built using hash functions based
on the HAIFA mode, or proving that this mode provides resistance against
such attacks (perhaps under certain natural assumptions). At the same time,
it would be useful to find additional applications of our algorithms to related
cryptosystems (such as various modes of operation) where some level of security
beyond the birthday bound is required.

References

1. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal BLAKE. Sub-
mission to NIST (2008/2010), http://131002.net/blake/blake.pdf

http://131002.net/blake/blake.pdf

30 Itai Dinur, Gaëtan Leurent

2. Aumasson, J.P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: BLAKE2: Simpler,
Smaller, Fast as MD5. In: Jr., M.J.J., Locasto, M.E., Mohassel, P., Safavi-Naini, R. (eds.)
ACNS. Lecture Notes in Computer Science, vol. 7954, pp. 119–135. Springer (2013)

3. Bellare, M.: New Proofs for. In: Dwork, C. (ed.) CRYPTO. Lecture Notes in Computer
Science, vol. 4117, pp. 602–619. Springer (2006)

4. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Authentica-
tion. In: Koblitz, N. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 1109, pp.
1–15. Springer (1996)

5. Biham, E., Dunkelman, O.: A Framework for Iterative Hash Functions - HAIFA. IACR
Cryptology ePrint Archive, Report 2007/278 (2007)

6. Dinur, I., Leurent, G.: Improved Generic Attacks against Hash-Based MACs and HAIFA.
In: Garay and Gennaro [10], pp. 149–168

7. Dolmatov, V., Degtyarev, A.: GOST R 34.11-2012: Hash Function. RFC 6986 (Informa-
tional) (Aug 2013), http://www.ietf.org/rfc/rfc6986.txt

8. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J.,
Walker, J.: The Skein hash function family. Submission to NIST (2008/2010), http:
//skein-hash.info

9. Flajolet, P., Odlyzko, A.M.: Random Mapping Statistics. In: Quisquater, J., Vandewalle,
J. (eds.) Advances in Cryptology - EUROCRYPT ’89, Workshop on the Theory and
Application of of Cryptographic Techniques, Houthalen, Belgium, April 10-13, 1989,
Proceedings. Lecture Notes in Computer Science, vol. 434, pp. 329–354. Springer (1989)

10. Garay, J.A., Gennaro, R. (eds.): Advances in Cryptology - CRYPTO 2014 - 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings,
Part I, Lecture Notes in Computer Science, vol. 8616. Springer (2014)

11. Guo, J., Peyrin, T., Sasaki, Y., Wang, L.: Updates on Generic Attacks against HMAC
and NMAC. In: Garay and Gennaro [10], pp. 131–148

12. Guo, J., Sasaki, Y., Wang, L., Wang, M., Wen, L.: Equivalent Key Recovery Attacks
Against HMAC and NMAC with Whirlpool Reduced to 7 Rounds. In: Cid, C., Rechberger,
C. (eds.) Fast Software Encryption - 21st International Workshop, FSE 2014, London,
UK, March 3-5, 2014. Revised Selected Papers. Lecture Notes in Computer Science, vol.
8540, pp. 571–590. Springer (2014)

13. Guo, J., Sasaki, Y., Wang, L., Wu, S.: Cryptanalysis of HMAC/NMAC-Whirlpool. In:
Sako and Sarkar [25], pp. 21–40

14. Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Construc-
tions. In: Franklin, M.K. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 3152,
pp. 306–316. Springer (2004)

15. Kelsey, J., Kohno, T.: Herding Hash Functions and the Nostradamus Attack. In: Vaude-
nay, S. (ed.) EUROCRYPT. Lecture Notes in Computer Science, vol. 4004, pp. 183–200.
Springer (2006)

16. Kelsey, J., Schneier, B.: Second Preimages on n-Bit Hash Functions for Much Less than
2n Work. In: Cramer, R. (ed.) EUROCRYPT. Lecture Notes in Computer Science, vol.
3494, pp. 474–490. Springer (2005)

17. Kortelainen, T., Kortelainen, J.: On Diamond Structures and Trojan Message Attacks.
In: Sako and Sarkar [25], pp. 524–539

18. Leurent, G., Peyrin, T., Wang, L.: New Generic Attacks Against Hash-based MACs.
IACR Cryptology ePrint Archive 2014, 406 (2014), http://eprint.iacr.org/2014/406

19. Leurent, G., Peyrin, T., Wang, L.: New Generic Attacks against Hash-Based MACs. In:
Sako and Sarkar [25], pp. 1–20

20. Love, E.R.: Some Logarithm Inequalities. The Mathematical Gazette 64(427), 55–57
(1980), http://www.jstor.org/stable/3615890

21. Naito, Y., Sasaki, Y., Wang, L., Yasuda, K.: Generic State-Recovery and Forgery Attacks
on ChopMD-MAC and on NMAC/HMAC. In: Sakiyama, K., Terada, M. (eds.) IWSEC.
Lecture Notes in Computer Science, vol. 8231, pp. 83–98. Springer (2013)

22. van Oorschot, P.C., Wiener, M.J.: Parallel Collision Search with Cryptanalytic Applica-
tions. J. Cryptology 12(1), 1–28 (1999)

23. Peyrin, T., Sasaki, Y., Wang, L.: Generic Related-Key Attacks for HMAC. In: Wang,
X., Sako, K. (eds.) ASIACRYPT. Lecture Notes in Computer Science, vol. 7658, pp.
580–597. Springer (2012)

http://www.ietf.org/rfc/rfc6986.txt
http://skein-hash.info
http://skein-hash.info
http://eprint.iacr.org/2014/406
http://www.jstor.org/stable/3615890

Improved Generic Attacks Against Hash-based MACs and HAIFA 31

24. Peyrin, T., Wang, L.: Generic Universal Forgery Attack on Iterative Hash-Based MACs.
In: Nguyen, P.Q., Oswald, E. (eds.) Advances in Cryptology - EUROCRYPT 2014 -
33rd Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings. Lecture Notes in
Computer Science, vol. 8441, pp. 147–164. Springer (2014)

25. Sako, K., Sarkar, P. (eds.): Advances in Cryptology - ASIACRYPT 2013 - 19th Inter-
national Conference on the Theory and Application of Cryptology and Information
Security, Bengaluru, India, December 1-5, 2013, Proceedings, Part II, Lecture Notes in
Computer Science, vol. 8270. Springer (2013)

26. Tsudik, G.: Message authentication with one-way hash functions. SIGCOMM Comput.
Commun. Rev. 22(5), 29–38 (Oct 1992)

27. Yasuda, K.: ”Sandwich” Is Indeed Secure: How to Authenticate a Message with Just
One Hashing. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP. Lecture Notes in
Computer Science, vol. 4586, pp. 355–369. Springer (2007)

A The Second Phase of the Universal Forgery Attacks [24]

In this section we describe the second phase of our universal forgery attacks, which is
identical to the second phase of the attack of [24]. Recall the we are given a challenge message
C = m1 ‖ m2 ‖ . . . ‖ m2s of length 2s blocks and our goal is to predict the tag of C by
querying the MAC oracle with queries that are different from C. We denote the internal
states computed by the MAC oracle on the challenge C by y0, y1, . . . , y2s . In the first phase
of the attack, we recover one of these internal states, which we denote by yp. We assume that
p ≤ 2s−1. This can be assured by running the first phase of the attack only on the first half
of the blocks of C, which results in a small constant penalty in the complexity of the attack.

In the second phase of the attack we use a second-preimage attack on long messages
in order to generate a different message C′ which has the same tag as the challenge. The
second-preimage attack is based on the one by Kelsey and Schneier [16]. The attack uses
a structure known as an (i, j)-expandable message (for integers i < j), proposed in [16].
An (i, j)-expandable message is composed of an arbitrary initial state x and a final state z
where for each integer d such that i ≤ d ≤ j, there is an efficiently computable message of d
blocks Md = m′1 ‖m′2 ‖ . . . ‖m′d that links x to z, namely, z = h(. . . h(h(x,m′1),m′2) . . . ,m′d).

Assuming that i ≤ l/2 (which is the case in our attack), an (i, 2i)-expandable message can be
constructed from any initial state x in complexity of ` · 2`/2. The details of how to construct
this structure are found in [16].

Algorithm 2: Universal Forgery Attack (second phase)

Complexity Õ(2`−s), with s ≤ `/2

1. (offline) Compute the states yp, yp+1, . . . , yp+2s−1 and store them in a sorted
table.

2. (offline) Build an (s− 1, 2s−1)-expandable message starting from yp and denote
its final state by z.

3. (offline) For about 2`−s values of the single-block [i], compute h(z, [i]) and search
the sorted table for yj such that yj = h(z, [i]) and j ≥ p+ s. Once such i and j
are found, continue to the next step.

4. (online) Let Mj−1−p be the message of j−1−p blocks that links yp to z, computed
from the expandable message. Let C′ = Cp ‖Mj−p−1 ‖ [i]‖mj+1 ‖mj+2 ‖ . . .‖m2s

be the 2s-block message computed by concatenating the p-block prefix of C with
Mj−p−1 ‖ [i] and the suffix of 2s − j blocks of C. Query the MAC oracle with C′

and denote the result by T .
5. (offline) Output T as the tag for C.

32 Itai Dinur, Gaëtan Leurent

Complexity.

Step 1: 2s−1 Step 2: ` · 2`/2

Step 3: 2`−s Step 4: 2s

Step 5: 2s

For s ≤ `/2 the total complexity is Õ(2`−s) as required.

B Concrete Complexity of HMAC-Streebog Key-Recovery

In this section we calculate with better precision (taking into account constants and logarith-
mic factors) an upper bound on the expected complexity of Attack 6 (applied to Streebog

with ` = 512). While the analysis can be refined to give slightly better complexity, our
calculations demonstrate that the constants involved in our attacks are indeed small.

Attack 6 is dominated by Step 0, which uses Attack 5, with s = `/10. Therefore, we
start with a concrete analysis of Attack 5.

Attack 5. The most expensive steps are 2 and 4, where we match two sets by building and
using a diamond filter. In order to optimize the attack, we use parameters c1 = `/2− s and
c2 = `/2 + α for a small constant α (e.g. α = 4), and run steps 1 and 3 until we have the
required number of collisions (2c1 and 2c2).

The expected value of u required to generate 2c1 collisions in Step 1 is roughly u =
(c1 + `− s+ 1)/2, accounting for the factor 1

2
in the number of message pairs. Similarly, the

expected value of t in Step 3 is t = (c2 + `− s+ 1)/2. This results in a complexity that is
still negligible compared to steps 2 and 4, in spite of the small constants added (23`/4+1/2

for Step 1 and 23`/4+(s+α+1)/2 for Step 3).
With these parameters the online diamond filter for the set of size 2c1 will have depth

dc1e, and require less than 8 e
e−1

2c1/1+`/2 evaluations of the MAC (following [17]). Since

each query has 2s blocks, the total complexity is 8 e
e−1

2s+c1/2+`/2 < 23`/4+s/2+3.7 for
Step 2.

Finally, in Step 4, we use only collisions with an offset d such that d ≥ 2s−1, to simplify
the analysis (we keep about 2c2−1 = 2`/2+3 offline collisions). Following Lemma 4, we fix an
offline collision x̂ (with preimages xd and x′d) and we evaluate the probability that a random
pair of chains y0, y′0 reaches the same collision, under the condition that y0, y′0 collide at the
same offset d. Let A denotes the event that y0, y′0 collide on x̂ and B the event that they
collide at offset d on an arbitrary point (all collisions are same-offset collisions). We first
evaluate the probability that the chains starting at y0 and y′0 reach xd or x′d, and then the
probability that y0, y′0 collide on x̂ (namely Pr[A]).

Pr[y0 6 xd] ≤ (1− 2−`)2
s−1
≤ e−2s−1−`

Pr[y0 xd] = 1− Pr[y0 6 xd] ≥ 1− e−2s−1−`
≈ 2s−1−`

Pr[A] ≥ Pr[y0 xd] · Pr[y′0 x′d] + Pr[y′0 xd] · Pr[y0 x′d] ≥ 22s−2`−1

We have Pr[B] ≤ 2−`, hence Pr[A|B] = Pr[A∩B]/Pr[B] ≥ 22s−`−1. Therefore, the matching
of Step 4 is expected to succeed after less than 2`−2s+1 attempts on average (the actual
complexity without the restriction d ≥ 2s−1 is slightly smaller). Since each match requires to
follow a path in a diamond of length c1, the total complexity is less than c1 ·2`−2s+1 ≤ `·2`−2s

on average. This results in the following complexities:

Step 1: 23`/4+1/2 Step 2: 23`/4+s/2+3.7

Step 3: 23`/4+s/2+(α+1)/2 Step 4: ` · 2`−2s

In particular, with ` = 512 and s = 54, we obtain a complexity of 2415.1.

Improved Generic Attacks Against Hash-based MACs and HAIFA 33

Attack 6. Let us now examine the full key-recovery attack, using a short message M1 of
length 2s. We run Step 2 until we gather 22`/5 collisions, which requires about 27`/10+1/2

calls to the MAC on average. Similarly, we run Step 3 until we recover the key; this should
require 23`/5 collisions on average, i.e. 24`/5+1/2 evaluations of the compression function.

Since Step 0 still dominates, we use s = 54 to minimize the complexity:

Step 0: 2415.1 Step 1: ` · 2`/2 = 2247

Step 2: 2s+7`/10+1/2 = 2412.9 Step 3: 24`/5+1/2 = 2410.1

Therefore, the expected complexity is less than 2416.
Finally, recall from Section 2 that our attacks use a modified scheme MAC2(K,M) =

MAC1(K,M ‖ [0]) ‖MAC1(K,M ‖ [1]), which results in a multiplicative penalty of at most
2. Hence, the total expected complexity is less than 2417.

34 Itai Dinur, Gaëtan Leurent

C Pseudo-code

Algorithm 1 Binary search matching
function Search(x, d) . The message is a global parameter

if |Next(x) = 0| then
return NULL

end if
z ← x
i← d
while i > 0 do

if |Next(z) = 0| then
return Cut(z)

else if |Next(z) = 1| then
z ← Next(z)

else if |Next(z) = 2| then
z1, z2 ← Next(z)
if Size(z1) > Size(x)/2 then

z ← z1
else if Size(z2) > Size(x)/2 then

z ← z2
else

if Test (z1) then . Compare z1 to a message node using a filter
return Search(z1, i) . We have Size(z1) ≤ Size(x)/2

else if Test (z2) then . Compare z2 to a message node using a filter
return Search(z2, i) . We have Size(z2) ≤ Size(x)/2

else
return Cut(z)

end if
end if

else if |Next(z) = 3| then
. . . . Handling a t > 2-collision is similar

end if
i← i− 1

end while
if Test (z) then

return z
else

return Cut(z)
end if

end function

function Cut(z)
while |Next(Prev(z))| = 1 do

z ← Next(Prev(z))
end while
Remove z subtree . We have Size(z) ≥ Size(x)/2
return Search(x, d)

end function

	Introduction
	Our results
	Framework of the attacks

	HMAC and Hash-based MACs
	Description and Analysis of Collision Search Algorithms
	Collision search algorithms
	Analysis of the collision search algorithms

	Filters
	Collision filters
	Diamond filters

	Internal State-recovery for HMAC with HAIFA
	New Tradeoffs for Merkle-Damgård
	Tradeoff based on iteration chains
	Tradeoff based on cycles

	Shorter Message Attacks
	Merkle-Damgård
	HAIFA

	Key-Recovery Attack on HMAC with GOST R 34.11-2012 (Streebog)
	Description of the attack
	Detailed attack process

	Universal Forgery Attacks with Short Queries
	A universal forgery attack based on the reduction of the image-set size
	A universal forgery attack using collisions

	Conclusions and Open Problems
	The Second Phase of the Universal Forgery Attacks HMAC-universal
	Concrete Complexity of HMAC-Streebog Key-Recovery
	Pseudo-code

