Gaëtan Leurent, Thomas Peyrin, Lei Wang

UCL Crypto Group, Belgium Nanyang Technological University, Singapore

TCCM-CACR 2013

- Alice sends a message to Bob
- Bob wants to authenticate the message
- ▶ Alice use a key *k* to compute a tag:
- ► Bob verifies the tag with the same key *k*:
- Symmetric equivalent to digital signatures

 $t = MAC_k(M)$ $t \stackrel{?}{=} MAC_k(M)$

- Alice sends a message to Bob
- Bob wants to authenticate the message.
- Alice use a key k to compute a tag:
- ▶ Bob verifies the tag with the same key *k*:
- Symmetric equivalent to digital signatures

 $t = MAC_k(M)$ $t \stackrel{?}{=} MAC_k(M)$

- Alice sends a message to Bob
- Bob wants to authenticate the message.
- Alice use a key k to compute a tag:

 $t = MAC_k(M)$

- Alice sends a message to Bob
- Bob wants to authenticate the message.
- ► Alice use a key *k* to compute a tag:
- ► Bob verifies the tag with the same key *k*:

Symmetric equivalent to digital signatures

 $t = MAC_{k}(M)$

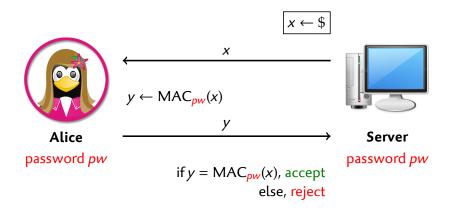
 $t \stackrel{?}{=} MAC_{k}(M)$

- Alice sends a message to Bob
- Bob wants to authenticate the message.
- Alice use a key k to compute a tag:
- ▶ Bob verifies the tag with the same key *k*:
- Symmetric equivalent to digital signatures

 $t = MAC_k(M)$

 $t \stackrel{?}{=} MAC_{\iota}(M)$

Example use: challenge-response authentication



CRAM-MD5 authentication in SASL, POP3, IMAP, SMTP, ...

MAC Constructions

- Dedicated designs
 - Pelican-MAC, SQUASH, SipHash
- From universal hash functions
 - UMAC, VMAC, Poly1305
- From block ciphers
 - CBC-MAC, OMAC, PMAC
- From hash functions
 - ► HMAC, Sandwich-MAC, Envelope-MAC

MAC Constructions

- Dedicated designs
 - Pelican-MAC, SQUASH, SipHash
- From universal hash functions
 - UMAC, VMAC, Poly1305
- From block ciphers
 - CBC-MAC, OMAC, PMAC
- From hash functions
 - ► HMAC, Sandwich-MAC, Envelope-MAC

Hash-based MACs (I)

Secret-prefix MAC:

$$MAC_k(M) = H(k || M)$$

- Insecure with MD/SHA: length-extension attack
- ► Compute $MAC_k(M \parallel P)$ from $MAC_k(M)$ without the key

$$AAC_{\mathbf{k}}(M) = H(M \parallel \mathbf{k})$$

Hash-based MACs (I)

Secret-prefix MAC:

$$MAC_{k}(M) = H(k || M)$$

- Insecure with MD/SHA: length-extension attack
- ► Compute $MAC_k(M \parallel P)$ from $MAC_k(M)$ without the key
- Secret-suffix MAC:

$$MAC_{k}(M) = H(M \parallel k)$$

- Can be broken using offline collisions

$$H(k_1 \parallel M \parallel k_2)$$

$$H(k_2 \parallel H(k_1 \parallel M))$$

Hash-based MACs (I)

Secret-prefix MAC:

$$MAC_k(M) = H(k || M)$$

- Insecure with MD/SHA: length-extension attack
- ► Compute $MAC_k(M \parallel P)$ from $MAC_k(M)$ without the key
- Secret-suffix MAC:

$$MAC_k(M) = H(M \parallel k)$$

- Can be broken using offline collisions
- Use the key at the beginning and at the end
 - Sandwich-MAC:

 $H(k_1 || M || k_2)$

NMAC:

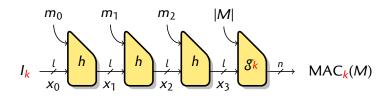
 $H(k_2 || H(k_1 || M))$

HMAC:

 $H((k \oplus \text{opad}) || H((k \oplus \text{ipad}) || M))$

Security proofs

Hash-based MACs (II)

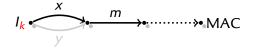


- *l*-bit chaining value
- n-bit output
- ► *k*-bit key
- ▶ Key-dependant initial value I_k
- Unkeyed compression function h
- ► Key-dependant finalization, with message length g_k

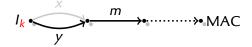
Security notions

- Key-recovery: given access to a MAC oracle, extract the key
- Forgery: given access to a MAC oracle, forge a valid pair
 - For a message chosen by the adversary: existential forgery
 - For a challenge given to the adversary: universal forgery
- Distinguishing games for hash-based MACs:
 - ▶ Distinguish $MAC_k^{\mathcal{H}}$ from a PRF: distinguishing-R e.g. distinguish HMAC from a PRF
 - ▶ Distinguish $MAC_k^{\mathcal{H}}$ from MAC_k^{PRF} : distinguishing-H e.g. distinguish HMAC-SHA1 from HMAC-PRF

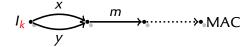
- Find internal collisions
 - ► Query 2^{l/2} 1-block messages
 - ▶ 1 internal collision expected, detected in the output
- 2 Query t = MAC(x || m)
- $(y \parallel m, t)$ is a forgery



- Find internal collisions
 - ► Query 2^{l/2} 1-block messages
 - ▶ 1 internal collision expected, detected in the output
- 2 Query $t = MAC(x \parallel m)$
- $(y \parallel m, t)$ is a forgery

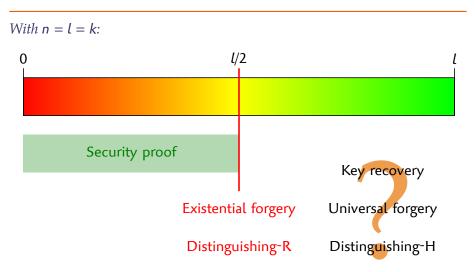


- Find internal collisions
 - Query 2^{l/2} 1-block messages
 - ▶ 1 internal collision expected, detected in the output
- 2 Query $t = MAC(x \parallel m)$
- $(y \parallel m, t)$ is a forgery



- Find internal collisions
 - Query 2^{l/2} 1-block messages
 - 1 internal collision expected, detected in the output
- 2 Query $t = MAC(x \parallel m)$ and $t' = MAC(y \parallel m)$
- If t = t' the oracle is a hash-based MAC: distinguishing-R

Security of hash-based MACS



Outline

Introduction

MACs Generic Attacks

New attacks

Cycle detection Distinguishing-H attack State recovery attack

Key-recovery Attack on HMAC-GOST

GOST **HMAC-GOST**

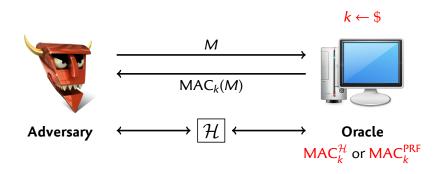
Outline

MACs

New attacks

Cycle detection Distinguishing-H attack State recovery attack

Distinguishing-H attack



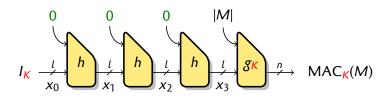
- Security notion from PRF
- Distinguish HMAC-SHA-1 from HMAC with a PRF

Distinguishing-H attack

- Collision-based attack does not work:
 - Any compression function has collisions
 - Secret key prevents pre-computed collision
- ► Common assumption: distinguishing-H attack should require 2^l

"If we can recognize the hash function inside HMAC, it's a bad hash function"

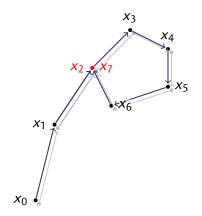
Main Idea



- Using a fixed message block, we iterate a fixed function
- Starting point and ending point unknown because of the key
- ► Can we still detect properties of the function $h_0 : x \mapsto h(x, 0)$?
 - Study the cycle structure of random mappings
 - Used to attack HMAC in related-key setting

[Peyrin, Sasaki & Wang, Asiacrypt 12]

Random Mappings



- Functional graph of a random mapping $x \to f(x)$
- $Iterate f: x_i = f(x_{i-1})$
- Collision after ≈ 2^{n/2} iterations
 Cycles
- Trees rooted in the cycle
- Several components

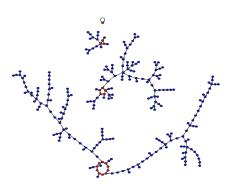
Random Mappings

- Functional graph of a random mapping $x \to f(x)$
- ▶ Iterate f: $x_i = f(x_{i-1})$
- ► Collision after $\approx 2^{n/2}$ iterations
 - Cycles
- ► Trees rooted in the cycle
- Several components

Random Mappings

- Functional graph of a random mapping $x \to f(x)$
- Iterate $f: x_i = f(x_{i-1})$
- ► Collision after $\approx 2^{n/2}$ iterations
 - Cycles
- Trees rooted in the cycle
- Several components

Cycle structure



Expected properties of a random mapping over *N* points:

• # Components: $\frac{1}{2} \log N$

• # Cyclic nodes: $\sqrt{\pi N/2}$

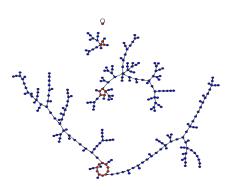
► Tail length: $\sqrt{\pi N/8}$

• Rho length: $\sqrt{\pi N/2}$

► Largest tree: 0.48*N*

► Largest component: 0.76N

Cycle structure



Expected properties of a random mapping over N points:

• # Components: $\frac{1}{2} \log N$

• # Cyclic nodes: $\sqrt{\pi N/2}$

► Tail length: $\sqrt{\pi N/8}$

• Rho length: $\sqrt{\pi N/2}$

► Largest tree: 0.48N

Largest component: 0.76N

Using the cycle length

- Offline: find the cycle length L of the main component of h_0
- 2 Online: query $t = MAC(r || [0]^{2^{l/2}})$ and $t' = MAC(r || [0]^{2^{l/2} + L})$

Success if

The starting point is in the main component

p = 0.76

• The cycle is reached with less than $2^{l/2}$ iterations

 $p \ge 0.5$

Using the cycle length

- Offline: find the cycle length L of the main component of h_0
- 2 Online: query $t = MAC(r || [0]^{2^{l/2}})$ and $t' = MAC(r || [0]^{2^{l/2}+L})$

Success if

The starting point is in the main component

p = 0.76

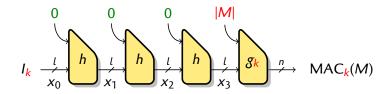
• The cycle is reached with less than $2^{l/2}$ iterations

 $p \ge 0.5$

Randomize starting point

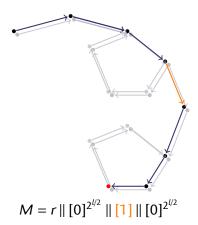
Dealing with the message length

Problem: most MACs use the message length.



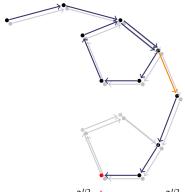
Dealing with the message length

Solution: reach the cycle twice

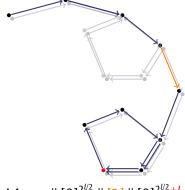


Dealing with the message length

Solution: reach the cycle twice



$$M_1 = r \| [0]^{2^{l/2} + L} \| [1] \| [0]^{2^{l/2}}$$



$$M_2 = r || [0]^{2^{l/2}} || [1] || [0]^{2^{l/2} + L}$$

Distinguishing-H attack

Offline: find the cycle length L of the main component of h_0

2 Online: query
$$t = \mathsf{MAC}(r || [0]^{2^{l/2}} || [1] || [0]^{2^{l/2} + l})$$
$$t' = \mathsf{MAC}(r || [0]^{2^{l/2} + l} || [1] || [0]^{2^{l/2}})$$

If t = t', then h is the compression function in the oracle

Analysis

- ► Complexity: $2^{l/2+3}$ compression function calls
- ► Success probability: $p \simeq 0.14$
 - ► Both starting point are in the main component
 - ▶ Both cycles are reached with less than $2^{l/2}$ iterations

 $p = 0.76^2$

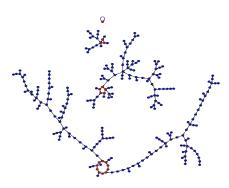
 $p \ge 0.5^2$

State recovery attack



- With high pr., first cyclic point is the root of the giant tree
- Binary search for first cyclic point
- Query with several x: $t = MAC(r || [0]^{\alpha} || [1] || [0]^{2^{l/2} + L})$ $t' = MAC(r || [0]^{\alpha + L} || [1] || [0]^{2^{l/2}})$
- 2 If t = t' the cycle is reached with less than α steps
 - Collision detection probabilistic: repeat with $\beta \log(l)$ messages

Cycle structure



Expected properties of a random mapping over N points:

• # Components: $\frac{1}{2} \log N$

• # Cyclic nodes: $\sqrt{\pi N/2}$

► Tail length: $\sqrt{\pi N/8}$

• Rho length: $\sqrt{\pi N/2}$

► Largest tree: 0.48N

Largest component: 0.76N

State recovery attack

- With high pr., first cyclic point is the root of the giant tree
- Binary search for first cyclic point
- 1 Query with several x: $t = MAC(r || [0]^{\alpha} || [1] || [0]^{2^{l/2} + L})$ $t' = MAC(r || [0]^{\alpha + L} || [1] || [0]^{2^{l/2}})$
- 2 If t = t' the cycle is reached with less than α steps
 - Collision detection probabilistic: repeat with β log(l) messages

State recovery attack

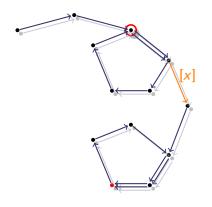
- With high pr., first cyclic point is the root of the giant tree
- Binary search for first cyclic point
- 1 Query with several x:

$$t = MAC(r || [0]^{\alpha} || [1] || [0]^{2^{l/2} + L})$$

$$t' = MAC(r || [0]^{\alpha + L} || [1] || [0]^{2^{l/2}})$$

- 2 If t = t' the cycle is reached with less than α steps
- Collision detection probabilistic: repeat with β log(l) messages

State recovery attack



- With high pr., first cyclic point is the root of the giant tree
- Binary search for first cyclic point
- Query with several x:

$$t = MAC(r || [0]^{\alpha} || [x] || [0]^{2^{l/2} + L})$$

$$t' = MAC(r || [0]^{\alpha + L} || [x] || [0]^{2^{l/2}})$$

- 2 If t = t' the cycle is reached with less than α steps
 - Collision detection probabilistic: repeat with $\beta \log(l)$ messages

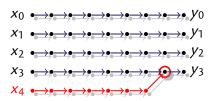
Variant with small messages

- ► Messages of length $2^{l/2}$ are not very practical...
 - SHA-1 and HAVAL limit the message length to 2⁶⁴ bits
- Cycle detection impossible with messages shorter than $L \approx 2^{l/2}$

Compare with collision finding algorithms

- Pollard's rho algorithm use cycle detection
- Parallel collision search for van Oorschot and Wiener uses shorter chains

Collision finding with small chains



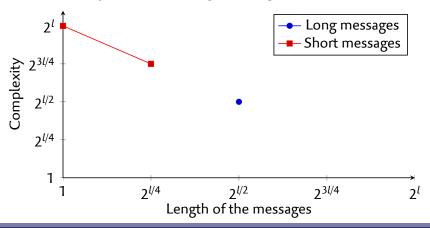
- 1 Compute chains $x \sim y$ Stop when y distinguished
- If $y \in \{y_i\}$, collision found

Using collisions for state recovery

- Collision points are not random
- Longer chains give more biased distribution
- Precompute collisions offline, and test online

Generic attacks on hash-based MACs

- Distinguishing-H and state recovery attacks
- Complexity 2^{l-s} with messages of length 2^s



Outline

Introduction

 MACs

Generic Attacks

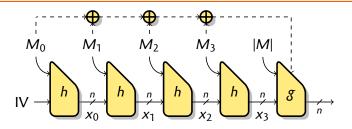
New attacks

Cycle detection
Distinguishing-H attack
State recovery attack

Key-recovery Attack on HMAC-GOST

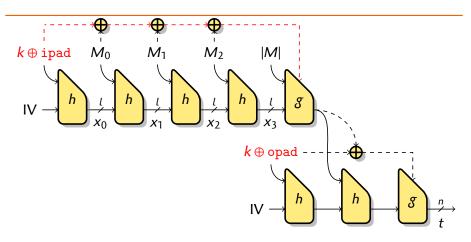
GOST HMAC-GOST

GOST

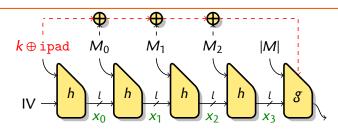


- Russian standard from 1994
- GOST and HMAC-GOST standardized by IETF
- n = l = m = 256
- Checksum (dashed lines)
 - Larger state should increase the security

HMAC-GOST



- ► In HMAC, key-dependant value used after the message
 - ▶ Related-key attacks on the last block

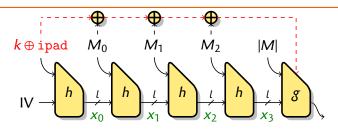


Recover the state

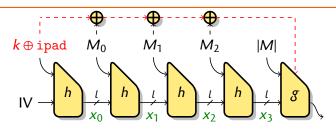
- Build a multicollision: $2^{3l/4}$ messages with the same x_3
- Query messages, detect collisions $g(x_3, k \oplus M) = g(x_3, k \oplus M')$ Store $(M \oplus M', M)$ for $2^{l/2}$ collision
- Find collisions $g(x_3, x) = g(x_3, x')$ offline

Store $(x \oplus x', x)$ for $2^{l/2}$ collisions

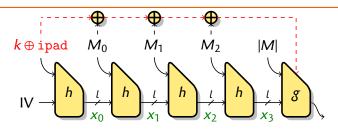
5 Detect match $M \oplus M' = x \oplus x'$. With high probability $M \oplus k = x$



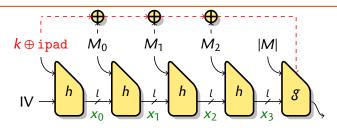
- Recover the state
- 2 Build a multicollision: $2^{3l/4}$ messages with the same x_3
- Query messages, detect collisions $g(x_3, k \oplus M) = g(x_3, k \oplus M')$ Store $(M \oplus M', M)$ for $2^{l/2}$ collision
- Find collisions $g(x_3, x) = g(x_3, x')$ offline Store $(x \oplus x', x)$ for $2^{l/2}$ collisions
- 5 Detect match $M \oplus M' = x \oplus x'$. With high probability $M \oplus k = x$



- Recover the state
- 2 Build a multicollision: $2^{3l/4}$ messages with the same x_3
- Query messages, detect collisions $g(x_3, k \oplus M) = g(x_3, k \oplus M')$ Store $(M \oplus M', M)$ for $2^{l/2}$ collisions
- Find collisions $g(x_3, x) = g(x_3, x')$ offline Store $(x \oplus x', x)$ for $2^{l/2}$ collisions
- 5 Detect match $M \oplus M' = x \oplus x'$. With high probability $M \oplus k = x$

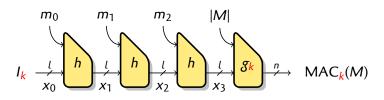


- Recover the state
- 2 Build a multicollision: $2^{3l/4}$ messages with the same x_3
- Query messages, detect collisions $g(x_3, k \oplus M) = g(x_3, k \oplus M')$ Store $(M \oplus M', M)$ for $2^{l/2}$ collisions
- Find collisions $g(x_3,x) = g(x_3,x')$ offline Store $(x \oplus x',x)$ for $2^{l/2}$ collisions
- 5 Detect match $M \oplus M' = x \oplus x'$. With high probability $M \oplus k = x$



- Recover the state
- Build a multicollision: $2^{3l/4}$ messages with the same x_3
- Query messages, detect collisions $g(x_3, k \oplus M) = g(x_3, k \oplus M')$ Store $(M \oplus M', M)$ for $2^{l/2}$ collisions
- Find collisions $g(x_3, x) = g(x_3, x')$ offline Store $(x \oplus x', x)$ for $2^{l/2}$ collisions
- Detect match $M \oplus M' = x \oplus x'$. With high probability $M \oplus k = x$

Conclusion



New generic attacks against hash-based MACs (single-key):

- 1 Distinguishing-H attack in $2^{l/2}$
 - State-recovery attack in $2^{l/2} \times l$
 - Not harder than distinguishing-R.
- 2 Key-recovery attack on HMAC-GOST in 2^{3l/4}
 - Generic attack against hash functions with a checksum
 - ► The checksum weakens the design!

Thanks

With the support of ERC project CRASH

European Research Council

Established by the European Commission

Supporting top researchers from **anywhere** in the **world**

Comparison

Function	Attack	Complexity	M. len	Notes
HMAC-MD5	dist-H, st. rec.	2 ⁹⁷	2	
HMAC-SHA-O	dist-H	2^{100}	2	
HMAC-HAVAL (3-pass)	dist-H	2 ²²⁸	2	
HMAC-SHA-1 62 mid. steps	dist-H	2 ¹⁵⁷	2	
Generic	dist-H, st. rec.	$\tilde{O}(2^{l/2})$	2 ^{l/2}	
	dist-H, st. rec.	$O(2^{l-s})$	2^s	$s \leq l/4$
Generic: checksum	key recovery	$O(2^{3l/4})$	$2^{l/4}$	
HMAC-MD5*	dist-H, st. rec.	2 ⁶⁶ , 2 ⁷⁸	2 ⁶⁴	
		$O(2^{96})$	2^{32}	
HMAC-HAVAL [§] (any)	dist-H, st. rec.	$O(2^{202})$	2^{54}	
HMAC-SHA-1 [§]	dist-H, st. rec.	$O(2^{120})$	2^{40}	
HMAC-GOST*	key-recovery	2 ²⁰⁰	2 ⁶⁴	

^{*} MD5, GOST: arbitrary-length; § SHA-1, HAVAL: limited message length.

