
Low-Memory Attacks against Two-Round
Even-Mansour using the 3-XOR Problem

Gaëtan Leurent and Ferdinand Sibleyras

Inria, France
{gaetan.leurent,ferdinand.sibleyras}@inria.fr

Abstract. The iterated Even-Mansour construction is an elegant con-
struction that idealizes block cipher designs such as the AES. In this
work we focus on the simplest variant, the 2-round Even-Mansour con-
struction with a single key. This is the most minimal construction that
offers security beyond the birthday bound: there is a security proof up
to 22n/3 evaluations of the underlying permutations and encryption, and
the best known attacks have a complexity of roughly 2n/n operations.
We show that attacking this scheme with block size n is related to the
3-XOR problem with element size ` = 2n, an important algorithmic
problem that has been studied since the nineties. In particular the 3-XOR
problem is known to require at least 2`/3 queries, and the best known
algorithms require around 2`/2/` operations: this roughly matches the
known bounds for the 2-round Even-Mansour scheme.
Using this link we describe new attacks against the 2-round Even-Mansour
scheme. In particular, we obtain the first algorithms where both the data
and the memory complexity are significantly lower than 2n. From a prac-
tical standpoint, previous works with a data and/or memory complexity
close to 2n are unlikely to be more efficient than a simple brute-force
search over the key. Our best algorithm requires just λn known plaintex-
t/ciphertext pairs, for some constant 0 < λ < 1, 2n/λn time, and 2λn
memory. For instance, with n = 64 and λ = 1/2, the memory requirement
is practical, and we gain a factor 32 over brute-force search. We also
describe an algorithm with asymptotic complexity O(2n ln2 n/n2), im-
proving the previous asymptotic complexity of O(2n/n), using a variant
of the 3-SUM algorithm of Baran, Demaine, and Pǎtraşcu.

Keywords: Even-Mansour, Cryptanalysis, 3-XOR

1 Introduction

The Even-Mansour construction [12] is a very simple and elegant way to design a
block cipher E from a public permutation P , defined as Ek(x) = P (x⊕ k1)⊕ k2.
In the random permutation model, this construction has been proven secure as
long as D ·Q ≤ 2n, with n the block size, D the data complexity (online queries
to the encryption function) and Q the number of evaluation of the permutation
(offline queries). In particular, the time T needed by an attacker is lower bounded
by Q, therefore attacks must satisfy D ·T ≥ 2n. We also have a number of attacks

1

matching this bound, such as [7] with chosen plaintext or [11] using just known
plaintext: when balancing online and offline queries, these attacks require only
2n/2 queries and 2n/2 computations (including all the computations required
by the attack, in addition to permutation queries). A single-key version of the
Even-Mansour construction has also been proposed with the same security [10],
defined as Ek(x) = P (x⊕ k)⊕ k.

More recently, this construction was generalized to the iterated Even-Mansour
scheme, also called key-alternating cipher [3]. The r-round construction uses r
independent permutations and r+1 keys, and can be considered as an idealization
of concrete SPN ciphers:

Ek(x) = Pr

(
· · ·P2

(
P1(x⊕ k0)⊕ k1

)
· · ·
)
⊕ kr

This construction was first proven to be secure up to 22n/3 queries for r ≥ 2 [3],
and later improved to 2nr/(r+1) queries [17,6].

As in the single-round case, the requirement to have independent keys and
independent permutations can be relaxed without reducing the security. In
particular, two single-key variants of the 2-round Even-Mansour have been
proposed [5]:

EMIP : Ek(x) = P2
(
P1(x⊕ k)⊕ k

)
⊕ k

EMSP : Ek(x) = P
(
P (x⊕ k)⊕ π(k)

)
⊕ k, with π a linear orthomorphism.

The EMIP construction uses two independent permutations, while the EMSP
construction uses a single permutation, and a fixed linear orthomorphism (a
linear operation such that both x 7→ π(x) and x 7→ x⊕ π(x) are invertible, such
as multiplication by a constant in a field).

There are simple key-recovery attacks matching the 2nr/(r+1) bound on the
number of queries given in [3], but even with r = 2 the best known attacks
require about 2n/n operations (in addition to the queries). Attacks against the
3-round Even-Mansour construction have also been given in [8], with complexity
close to 2n/n, and no attack better than 2n is known for r > 3.

In this paper we focus on the most simple instances, the 2-round variants of
EMIP and EMSP, collectively denoted as 2EM, and we look for better attacks
than what is currently known, with a focus on low memory and low data.

m P1 P2 c

K K K

Fig. 1. Single key two-round Even-Mansour scheme (2EM) EMIP variant

2

Previous works. The first non-trivial attack against an iterated Even-Mansour
construction was described by Nikolic, Wang, and Wu in [19] against the two-
round EMIP construction P2

(
P1(x ⊕ k) ⊕ k

)
⊕ k, using multi-collisions. The

main idea is to consider the function φ : u 7→ P1(u)⊕ u, and to evaluate it on a
large number of points, so as to identify a particular value v that occurs more
frequently than others (at least t times). Then, for each known plaintext pair(
x,E(x)

)
, the attacker assumes that φ(x ⊕ k) = v, i.e. P1(x ⊕ k) ⊕ k = x ⊕ v;

this gives a key candidate P2(x⊕ v)⊕ E(x). Since the assumption holds for at
least t values of x, the expected complexity is 2n/t.

According to the asymptotic analysis performed in [18], the optimal choice is
to set t = Θ(n/ lnn). A value with this number of repetitions is expected after
evaluating φ roughly 2n/n times, so that the total complexity of this attack is
2n lnn/n, asymptotically smaller than 2n.

This attack was later improved by Dinur, Dunkelman, Keller and Shamir [8]. In
particular, they describe a variant with lower online complexity using Nv different
values vi that appear t times each, with a smaller value of t. Each online pair(
x,E(x)

)
is then used to make a key guess with every vi, which reduces the data

complexity to 2n/Nvt. They didn’t evaluate this strategy asymptotically, but they
computed that Nv = 2nµte−t/t! multi-collisions should be found, when evaluating
a fraction µ of the domain. In particular, with µ = 1/n and t = o(n/ lnn), we
have an upper bound on the data complexity: 2n/Nv ≤ n2t = exp(2t lnn), which
is asymptotically smaller than 2λn for any λ > 0. The time complexity is still
2n/t. Variants of the attack that can applied to Even-Mansour schemes with a
linear key-schedule, such as EMSP are also given in [9].

Dinur et al. also proposed attacks against a more general construction with 3 in-
dependent keys, using multi-collisions to find differential properties of the random
permutation. However this attack only reaches time complexity O(2n/

√
n/ lnn).

All those attacks require a large pre-processing step to discover multi-collisions:
a t-collision is only expected after 2n(t−1)/t evaluations of φ. Moreover, the best
known algorithm to locate multi-collisions requires a memory of size 2n(t−2)/t [16].
Therefore, multi-collision based techniques intrinsically require time and memory
close to 2n (asymptotically, we need to have t approaching infinity in order to
gain a non-constant advantage over brute-force attacks).

In the journal version of their paper, Dinur et al. show an interesting side-
result on EMIP. They describe an alternative attack with low memory using
linear algebra [9, Section 4.2]. In this attack, they evaluate φ : u 7→ P1(u)⊕ u on
a small set of λn values (0 < λ < 1/3), and they look for linear relations that are
satisfied by all φ(u) in the set: L(φ(u)) = 0 with n− λn equations. Then, for a
given plaintext pair

(
x,E(x)

)
, if x⊕ k is in the set, this implies linear relations

on z = k⊕P1(x⊕k), the input of P2: L(z) = L(x). Finally, using structures for x
and z, a match can be identified using linear relations on the key (following from
the assumption that x⊕ k is in the set), using k = P2(z)⊕E(x). The full details
of the attack are given in [9]. This attack only requires a memory of size 2λn to
store the structures, but it requires 2n/λn chosen plaintext pairs. However, this

3

approach is not applicable to 3EM or 2EM with independent keys, which are the
main focus of their work.

More recently, Isobe and Shibutani [14] introduced Meet-in-the-Middle tech-
niques to attack the 2-round Even-Mansour construction. The basic variant of
their attack uses a function f depending on a bits of the key kf (with a in
the order of lnn), and a function g depending on the remaining n − a bits kg.
Furthermore, they use a starting point such that a output bits of f are actually
independent of the key kf . This allows them to do the matching over P2 using
just kg. The attack requires time and data 2n−a, with chosen plaintexts.

The function f is such that it is equivalent to looking for partial multi-
collisions in φ while imposing a structure on the inputs: they fix n− a bits of u
and hope that a outputs bits of φ(u) will be independent of the remaining a bits
of u. For this to work the parameter a must satisfy a · (2a− 1) ≤ n− a, and Isobe
and Shibutani only give concrete parameters for some values of n. Asymptotically,
the maximal value of a can be found by solving a · (2a− 1) = n− a; since a≪ n
and 1 ≪ 2a, we have a ≈W (n ln 2)/ ln 2 ≈ logn− log logn, using the Lambert
W function.

They also describe a low-data complexity variant of the attack, where the
starting point is dynamically chosen so that a+ d bits of the plaintext are fixed.
This reduces the data complexity to 2n−d−a, while the time complexity is still
2n−a. The parameters are more constrained and must satisfy a · 2a + d ≤ n− a.
If we want to achieve a data complexity of 2λn for a constant 0 < λ < 1, we can
set d = n− λn, and a = log λ+ logn− log logn. This gives a time complexity of
2n logn/λn.

Finally, they give a time-optimized attack where b = a + c output bits
of f are independent of kf (instead of just a). This reduces the number of
queries and memory needed for the matching to 2n−b, but the attack still
requires 2n−a memory accesses and chosen plaintext. The parameters must
satisfy b · 2a + b− a ≤ n− b, but the authors only give concrete values for some
choices of n, and no asymptotic analysis. However, we can observe that we must
have b · 2a ≤ n; in particular, if we want an attack with an advantage that is not
asymptotically bounded, we need to have a approaching infinity and therefore
b/n approaching zero (this attack cannot reduce the memory to 2λn with λ < 1).
In particular, the optimal parameters satisfy b · 2a + b− a = n− b, with b≪ n
and a≪ 2a, hence b · 2a ≈ n. Therefore we have a complexity of roughly 2n−b
in queries and memory, and b2n/n in time and data, with logn ≤ b≪ n.

All those attacks are summarized in Tables 1 and 2. We point out that the
complexity reported in [14] is lower than listed here, because the authors assume
that a memory access to a large table is significantly cheaper than the evaluation
of the public permutations Pi. Given that a public permutation can obviously be
implemented with a table lookup if memory is fast and cheap, we assume that a
memory access to a table of size roughly 2n cannot be faster than the evaluation
of the Pi permutations.

4

Table 1. Comparison of attacks against 2EM. Asymptotic complexity, up to constants.
“Data” denotes encryption queries, while “Queries” denotes calls to the public permuta-
tions Pi.
0 < λ < 1; logn ≤ β ≪ n; KP: Known plaintext; CP: Chosen plaintext.

Ref Data Queries Time Memory Comment

[19] 2n lnn/n KP 2n lnn/n 2n lnn/n 2n lnn/n Multi-collisions
[8] 2n

√
lnn/nCP 2n

√
lnn/n 2n

√
lnn/n 2n

√
lnn/n Diff. m-c (indep. keys)

[8] 2λn KP 2n lnn/n 2n lnn/n 2n lnn/n Multi-collisions
[9] 2n/λn CP 2n/λn 2n/λn 2λn Linear algebra
[14] 2n lnn/n CP 2n lnn/n 2n lnn/n 2n lnn/n MitM

2λn CP 2n lnn/n 2n lnn/n 2n lnn/n MitM
2nβ/n CP 2n/2β 2nβ/n 2n/2β MitM

S. 3.3 n KP 2n/
√
n 2n/

√
n 2n/

√
n 3XOR [15]

S. 4.1 2d KP 2n−d/2 2n/n 2n−d/2 Clamping + 3XOR [4]
S. 4.3 2d KP 2n−d/2 2n ln2 n/n2 2n−d/2 Clamping + 3XOR [1]
S. 4.4 λn KP 2n/λn 2n/λn 2λn Low Data Filter

Our results. The main results of the paper are the three key-recovery attacks
on EMIP given in Section 4 whose complexities are summarized in Tables 1 and 2.
To the best of our knowledge these are the first attacks on EMIP to significantly
reduce simultaneously the data and the memory complexities below 2n. The
first attack, Section 4.1, shows that we can achieve the best computational time
complexity known so far, that is O(2n/n), while using just as much data and
queries as the best known distinguisher which is optimal in the balanced case
(22n/3 calls to E,P1 and P2) with a memory usage not exceeding the number
of queries. The next attack in Section 4.3 works exactly the same way only it
is using another generic 3-XOR algorithm which improves the asymptotic time
complexity to O(2n ln2 n/n2) that beats the best one known so far. However this
3-XOR algorithm is believed to be impractical for realistic block sizes, notably for
n = 64. And the third attack in Section 4.4 uses very low data, λn, and possibly
low memory, 2λn, for some λ < 1 while keeping a competitive asymptotic time
complexity of O(2n/λn).

We also present some security reduction notably showing that adding a linear
key schedule does not protect against generic attacks on EMIP. This effectively
extends the scope of our attacks in particular showing they can also be applied
to the EMSP variant. We also explain the link between the 3-XOR problem and
the key-recovery attacks on EMIP showing how one can help us solve the other
which justifies our approach. Then we exhibit a symmetry in the Even-Mansour
construction that shows how, in the chosen ciphertext attack (CPA) model, an
attacker can always swap the number of queries he is making to E, P1 and P2
to optimize on the most available resources. This implicitly extends these and
previous attacks to adapt to many different data and query complexity profiles.

5

Table 2. Comparison of attacks against 2EM with n = 64. The complexity unit is
one evaluation of the cipher; we assume that computing P1 or P2 costs 1/2, and that a
memory access to a large table also costs 1/2. The time complexity also includes the
time necessary to generate the data.

Ref Data Queries Time Memory Comment

[19] 258.7 KP 260.5 260.9 260 Multi-collisions
[8] 245 KP 260.7 260.7 260 Multi-collisions
[9] 260 CP 259 260.6 216 Linear algebra
[14] 260 CP 260 261.3 260 MitM

28 CP 262 262.6 262 MitM
261 CP 257 261.7 258 MitM

Sec. 3.3 26 KP 261 262 261 3XOR
Sec. 4.1 242 KP 243 258 242 Clamping + 3XOR [4], bal. case

214 KP 257 258.6 257 optim. data
Sec. 4.2 235 CP 257 258.6 235 optim. memory & swap E ↔ P1
Sec. 4.3 242 KP 243 N.A. N.A. Clamping + 3XOR [1], bal. case
Sec. 4.4 25 KP 259 260 232 Low Data Filter λ = 1/2

24 KP 260 261 216 λ = 1/4

Lastly we generalize our approach to show that a single key r rounds Even-
Mansour scheme can be rewritten as a structured (r + 1)-XOR problem with
words of size rn. Interestingly both the single key r rounds Even-Mansour and the
(r + 1)-XOR problem with words of size rn have a simple information theoretic
solver using 2

r·n
r+1 queries though solving these uses more computations than a

brute-force solution for r ≥ 4.

Practical considerations. In a practical setting, the data complexity and the
memory complexity are important considerations. In particular, an attack with
complexity 2n/n is unlikely to be more efficient than a brute-force attack if it
requires almost 2n data, or almost 2n memory. As mentioned above, some of the
previous attacks can reduce the data complexity to 2λn for an arbitrary λ > 0,
and the attack from [9, Section 4.2] can reduce the memory to 2λn, but so far
none of them can simultaneously reduce the data and memory complexity below
2λn for λ < 1.

Besides, multi-collision based attacks can use a sequential memory (such as
a hard drive) and sort values to locate collisions while the Meet-in-the-Middle
attacks require random access memory, with Θ(2n lnn/n) accesses to a table of
size Θ(2n lnn/n).

On the other hand the linear algebra techniques we use in our attacks will
require algorithmic tricks very close to what was done by Bouillaguet, Delaplace
and Fouque [4] for the 3-XOR problem. In particular the values we deal with are
sufficiently random to be sorted linearly and the right matrix multiplication in
GF(2) LM for an exponentially large matrix L can be computed with a number of
operations linear in the size of L. Many constant time optimizations are therefore

6

omitted in this work which justify that right multiplications, sorting and merging
two big lists L1 and L2 take time and space O(|L1|+ |L2|). This is consistent
with previous cryptanalysis on EMIP.

For the cost of queries to the oracles E, P1 and P2 we mainly follow the
convention established by Dinur et al. [9] which states that an online query to
E costs 1 unit of computation implying that P1 and P2 cost 1/2. The main
advantage is that it makes it easy to compare with the brute-force solution
that would use 2n computations. The disadvantage is that it makes it hard to
combine with the computations used for simple operations: an evaluation of a
cryptographically secure permutation should cost more than a XOR operation.

We give concrete complexity values for n = 64 in Table 2 with the assumption
that a combination of some linear time operations does not exceed the cost
of computing a permutation that is 1/2 time unit. Concretely, iteratively right
multiplying, sorting and merging two lists L1, L2 costs |L1|/2+ |L2|/2. We believe
this makes an honest comparison with previous works though they may use other
assumptions.

Organization of the paper. First, in Section 2, we show some reductions that
extend our results and justify our approach. Then in Section 3 we take a close
look on previous works done on the 3-XOR Problem to show how it can help the
cryptanalysis of EMIP. Lastly, in Section 4, we devise three dedicated algorithms
for EMIP each having their own particular complexity trade-off. Also we extend
our approach in Appendix 5 to the r rounds iterated Even-Mansour construction.

Notations. We denote the block size of the Even-Mansour scheme (i.e. the
width of the public permutations) as n, and the concatenation of n-bit blocks
x and y as x ‖ y. When x and y fit together in one block, we use x|y to denote
their concatenation. We use L[i] to denote element i of list L, x[i] to denote bit i
of x, x[i:j] to denote bits i to j − 1, 0 to denote a zero GF(2) matrix and I to
denote an identity GF(2) matrix. When L is a list of ` n-bit values, we identify it
with a `× n matrix where the elements of L are the rows of the matrix. Finally,
we use a curly brace for systems of equations.

2 Security Reductions

We start with some general observations about the security of iterated Even-
Mansour schemes. In particular, we show that we can focus on the EMIP con-
struction without loss of generality, how to reduce the security of this construction
to an instance of the 3-XOR problem, and how to reorder the oracles to achieve
many different trade-offs.

Some previous works already implicitly took advantage of such reductions.
For example Isobe and Shibutani [14] realised that their recent attack on EMIP
is also applicable to EMSP and Dinur et al. [9] realised that they could reorder
the oracles for their cryptanalysis of reduced round LED. We formally show here
that these tricks are in fact real security reductions and do not depend on the
approach used.

7

2.1 Removing the Key Schedule

There are several variants of single-key multiple-round Even-Mansour studied in
the literature. The most general form uses two independent permutations, and
an arbitrary key schedule (see Figure 2):

Ek(x) = P2
(
P1(x⊕ γ0(k))⊕ γ1(k)

)
⊕ γ2(k).

According to the analysis of [5], there is a class of good key schedules where the
γi’s are public linear bijective functions. In the following, we focus on this class
of key schedules, i.e. we assume that the γi ∈ GL(Fn2). In order to simplify the
analysis, we reduce the security of this construction to the security of the EMIP
variant without a key schedule.

x P1 P2 E(x)

γ0(k) γ1(k) γ2(k)

Fig. 2. Linear key-schedule 2-round Even-Mansour.

The main trick is to rewrite the addition of the subkey γi(k) as the application
of the inverse γ−1

i , the addition of k and the application of the forward γi:

x⊕ γi(k) = γi
(
γ−1
i (x⊕ γi(k))

)
= γi

(
γ−1
i (x)⊕ k

)
which works thanks to γi being linear. Then we define E′, P ′1, P ′2 as follows:

P ′1(x) = γ−1
1
(
P1(γ0(x))

)
P ′2(x) = γ−1

2
(
P2(γ1(x))

)
E′(x) = γ−1

2
(
E(γ0(x))

)
Thanks to the previous relation, E′, P ′1, P ′2 is actually an instance of EMIP with
the same key k (see Figure 3):

E′(x) = P ′2
(
P ′1(x⊕ k)⊕ k

)
⊕ k.

Therefore, any attack against EMIP can be used on E′, P ′1, P ′2, and break the
initial construction with a key schedule. In particular, a key-recovery attack
against EMIP will recover the key of the more general scheme of 2EM.

In the following we only consider the EMIP variant without a key schedule,
but thanks to this reduction our attacks can be applied to many other 2EM
variants, including the EMSP construction of [5].

Definition 1 (EMIP key recovery). Given oracle access to three permuta-
tions E,P1, P2 and their inverses, with the promise that there exist k such that
E(x) = P2

(
P1(x⊕ k)⊕ k

)
⊕ k, recover k.

8

x γ−1
0 γ0 P1 γ−1

1 γ1 P2 γ−1
2 γ2 E(x)

k k k

P ′1 P ′2γ−1
0 (x) γ−1

2
(
E(x)

)
= E′

(
γ−1

0 (x)
)

k k k

Fig. 3. Reduction of linear key schedule 2EM to EMIP.

2.2 Reduction to 3-XOR

Instead of directly focusing on a key-recovery attack, we focus on locating a triplet
of values x, y, z such that the encryption of x is evaluated with permutation call
P1(y) and P2(z). Formally, we say that x, y, z is a right triplet when y = x⊕k and
z = P1(y)⊕ k. A right triplet corresponds to a sequence of intermediate values
in the Even-Mansour encryption, as shown in Figure 4:

(
x, y = x⊕ k, P1(y), z =

P1(y)⊕ k, P2(z), E(x) = P2(z)⊕ k
)
; we call this sequence a path.

x y P1 P1(y) z P2 P2(z) E(x)

k k k

Fig. 4. A right triplet gives a path of EMIP

Since the permutations P1 and P2 are public, it is easy to compute a path
given the key. Recovering the key from a path is also easy (we have k = x⊕ y),
but it is hard to identify a right triplet corresponding to a path without the key.
By definition a triplet is right when it follows the relation R defined as:

R(x, y, z) :=


x⊕ y = k

P1(y)⊕ z = k

P2(z)⊕ E(x) = k

(1)

⇒

{
x⊕ y = P1(y)⊕ z
x⊕ y = P2(z)⊕ E(x)

(2)

Notice that we can’t directly observe (1) since we don’t know k but we can easily
verify the implied relation (2).

9

We claim that if one takes a random triplet combination and observes that it
respects (2), then it is a right triplet with good probability. Indeed there are 2n
possible paths (one for every possible input x) implying as many right triplets
and 23n possible triplet combinations; thus a random triplet will be right with
probability 2−2n. Since (2) is a 2n-bit relation, a random but false triplet respects
(2) also with probability 2−2n. Therefore we can expect roughly as many right
triplets than false triplets that respect (2), thus the first one we find is right with
probability Ω(1). So from now on and for simplicity we will focus on filtering
and recovering a triplet that simply respects (2). This means that our algorithms
fails to recover the key on some instances, but they have a constant (non-zero)
probability of success. In order to improve the success probability arbitrarily
close to one, it is easy to test the triplets, and continue the attack until we find a
right triplet (alternatively, the whole attack can just be repeated).

In order to simplify the analysis, the condition (2) can be rewritten as:{(
x

)
⊕
(
y ⊕ P1(y)

)
⊕
(
z

)
= 0(

x⊕ E(x)
)
⊕
(
y

)
⊕
(
P2(z)

)
= 0

Therefore, finding a triplet satisfying (2) is equivalent to solving an instance of
the 3-XOR problem, defined as:

f0(x) := x ‖ x⊕ E(x) (3)
f1(y) := y ⊕ P1(y) ‖ y
f2(z) := z ‖ P2(z)

The 3-XOR Problem is a well known algorithmic problem; it is a special case
of k-XOR problem analyzed by Wagner as the generalized birhtday problem [20].

Definition 2 (3-XOR problem). Given three functions f0, f1, f2, find three
inputs (x0, x1, x2) such that f0(x0)⊕ f1(x1)⊕ f2(x2) = 0.

We usually focus on functions f0, f1, f2 that are chosen at random. Equiva-
lently, we can be given lists L0, L1, L2 (of random elements) instead of functions.
The presentation with functions makes it more clear that the adversary can
choose how many queries he makes to each of the functions.

EMIP Key Recovery from the 3-XOR Problem. From the previous discus-
sion, solving the 3-XOR instance defined by (3) gives a triplet satisfying R, which
has a high probability of being a right triplet and revealing the key. Evaluating
each of the fi functions requires a single computation of a permutation. However
evaluating f0 must be done online (using an oracle call to E) because it depends
on the key, while evaluating f1 and f2 can be done offline as the permutations are
public and computable at will by the attacker. As per our adopted convention,
an evaluation of f0 —that is a call to E —costs 1 unit of computation and an
evaluation of f1 or f2 costs 1/2.

We denote the list of values of fi evaluated by an attacker as Li. Therefore,
the data complexity of an attack is equal to D = |L0|. The time complexity is the

10

amount of computation required to break the scheme. In the computational model,
it will depend on the algorithm used and be denoted as T . In the information
theoretic model we only look at the number of calls to the permutations and
denote it Q, with Q = (|L1|+ |L2|)/2. We will discuss both models.

As seen from the description in (3), we can choose some parts of the values
in Li. However, if we only use random values of x, y, z to build the lists, we
obtain a random 3-XOR instance with words of size w = 2n. It is known that to
find a solution of a 3-XOR problem with good probability, the lists size should
respect |L0| × |L1| × |L2| ≥ 2w. In the information theoretic setting this gives
a key recovery attack with D × Q2 = 22n. This is the exact same complexity
trade-off as the information theoretic distinguisher described by Gaži [13]. In
particular it is known that this trade-off is proven optimal in the balanced case
D = Q = 22n/3 [5].

2.3 Symmetry between E, P1 and P2

In the 3-XOR problem the 3 functions behave essentially in the same way; if one
has a solver using a few evaluations f0 and lots of evaluations of f1 and f2, then
the same solver could decide to use lots of queries to f0 and f1 and use fewer
f2 queries (just by permuting the functions). In our case, a natural choice is to
minimize the number of evaluations of f0, because they correspond to online
queries. This ensures that we have D ≤ Q. While this is easy to do with a 3-XOR
approach, it is not obvious whether this can be done in general for an Iterated
Even-Mansour key recovery. We now show that in the chosen ciphertext setting
an attacker can actually permute the functions E, P1 and P2, and minimize the
amount of online queries.

We assume that we are given an instance E, P1, P2 of EMIP, i.e. we have
oracle access to E, P1, P2 denoting forward computations of the permutations,
and E−1, P−1

1 , P−1
2 denoting backward computations. We use a black-box solver

S(E,E−1, P1, P
−1
1 , P2, P

−1
2) that uses α calls to E/E−1 (online queries), β calls

to P1/P−1
1 and γ calls to P2/P−1

2 and outputs the key k.
The trick is that we can rewrite the EMIP instance E, P1, P2, by permuting

the oracles. For instance we have P1(x) = k ⊕ P−1
2 (k ⊕ E(k ⊕ x)) (directly from

the definition of E), which gives the following EMIP instance with the same
secret key k:

E′ = P1 P ′1 = E P ′2 = P−1
2 .

Therefore, we can use the solver as S(P1, P
−1
1 , E,E−1, P−1

2 , P2) to recover k
using β online queries. Similarly, we can write P2(x) = k ⊕ E(k ⊕ P−1

1 (k ⊕ x));
therefore, we can use the solver as S(P2, P

−1
2 , P−1

1 , P1, E,E
−1) to recover k using

γ online queries.
We could further use E−1 to rewrite P−1

1 and P−1
2 in the same fashion and

obtain all the possible trade-off between α, β and γ. The point is that, given any
solver S, it is always up to the attacker to choose what is the most accessible data.

11

From here onward all of our discussed trade-off will have |L0| ≤ min(|L1|, |L2|)
to lower the query complexity but one can remember it is an arbitrary choice.

In particular, this trick can be applied to the attack of [9, Section 4.2]. Indeed,
this attack uses λn queries to P1, with 0 < λ < 1/3 and 2n/λn queries to E and
P2. Using this trick we can reduce the data complexity from 2n/λn to λn, without
affecting the other parameters. Actually, the attack presented in Section 4.4 can
be seen as an improved variant of this modified attack (using known plaintext
rather than chosen plaintext).

3 2EM Attacks from 3-XOR Algorithms

In this section we explore the link between 2EM key recovery and the 3-XOR
problem. First, we review existing approaches to solve the 3-XOR problem, and
we show that previous 2EM attacks can be reinterpreted in a 3-XOR framework.
Then we describe new attacks against 2EM based on the reduction of the previous
Section. In this section, we focus on a generic 3-XOR instance given by three
w-bit function f0, f1 and f2, or three lists L0, L1, L2.

3.1 3-XOR Algorithms

The Birthday Problem, that is the problem of finding collisions among two lists,
has been well studied and proven useful in a number of cryptanalysis. In 2002,
Wagner proposed a natural extension of this problem, the Generalized Birthday
Problem [20], that is the problem of finding collisions among k lists. Here we
refer to this problem as the k-XOR problem. In particular Wagner left the hard
case of k = 3 as an open problem. His best algorithm would just take one value
of the first function and solve the classical Birthday Problem among the two
others, with complexity 2w/2.

Subsequent works tried to address this open problem. Two main approaches
managed to improve the time complexity of the 3-XOR: an approach based on
partial multi-collisions by Nikolic and Sasaki [18] and an approach using linear
algebra by Joux [15]. Unfortunately, those two solutions seem hard to combine.

Multi-collisions Algorithms. Nikolic and Sasaki [18] introduced a multi-
collision algorithm for the 3-XOR problem as follows. First, compute many
outputs of f0 and look for the most frequent w/2-bit prefix α appearing. Store
all the values with this fixed prefix in a list L0 (a partial multi-collision for f0).
Then evaluate f1 and f2, 2w/2/

√
|L0| times each, and store the results in lists L1

and L2. Sort the lists, and look for pairs with a difference α in the first w/2 bits.
An average, there should be 2w/2/|L0| such pairs, and there is a high probability
that one of them sums to a value in L0. According to their analysis, the optimal
attack uses around 2w/2/w evaluations of f0, resulting in a multi-collision of size
Θ(w/ ln(w)); therefore this algorithm solves the 3-XOR problem with complexity
O
(
2w/2/

√
w/ ln(w)

)
.

12

Linear algebra. The second approach, introduced by Joux [15], uses linear
algebra and reaches a slightly better complexity of O(2w/2/

√
w). This attack

uses just w/2 evaluations of f0 stored in a list L0, and 2w/2/
√
w/2 evaluations

of f1 (resp. f2) stored in a list L1 (resp. L2). Instead of collecting values in L0
with a common prefix, we use Gaussian reduction to find a non-singular matrix
M such that the elements of L0 ·M start with w/2 zeroes.1 Then we focus on a
modified 3-XOR instance:

L′0 = L0 ·M L′1 = L1 ·M L′2 = L2 ·M.

The new instance has the same solutions (L′0[h]⊕ L′1[i]⊕ L′2[j] = 0⇔ L0[h]⊕
L1[i]⊕L2[j] = 0), but the elements of L0 start with w/2 zeroes. Therefore, as in
the previous attack, we can efficiently find the solution after sorting the lists L1
and L2.

This approach was later generalized by Bouillaguet, Delaplace and Fouque [4],
in order to deal with instances of the 3-XOR problem where the size of the lists
is limited: given three lists with |L0| · |L1| · |L2| = 2w, they solve the 3-XOR
problem with complexity O(|L0| · (|L1|+ |L2|)/w). In particular, with three lists
of size 2w/3 this gives a time complexity of O(22w/3/w).

In addition, this algorithm can be combined with the clamping trick of
Bernstein to reduce the memory: the attacker first filters the lists Li to keep only
values that start with w/4 zero bits, and solves a shorter 3-XOR instance on
3w/4 bits. If the initial lists have 2w/2 elements, the filtered lists still have 2w/4

elements, which is sufficient to expect a solution. This gives an algorithm with
time O(2w/2) and memory only O(2w/3). Arguably, this is more practical that
algorithms using O(2w/2/w) memory.

BDP Algorithm. Even before these two approaches, Baran, Demaine and
Pǎtraşcu [1] proposed an algorithm for the 3-SUM problem (using modular addi-
tions instead of XORs) with the asymptotical complexity of O(2w/2 · ln2(w)/w2).
This algorithm has been adapted to the 3-XOR problem by Bouillaguet et al. [4]
with the same complexity. This is best known asymptotic complexity for the
3-XOR problem, even though the algorithm is highly impracticable for real-
istic values of w. We nevertheless use this algorithm to cryptanalyse 2EM in
Section 4.3.

3.2 Revisiting Previous Cryptanalysis

Interestingly all attacks so far on 2EM use the same techniques as devel-
oped against the 3-XOR problem. Most of the attack are based on multi-
collisions [19,8,9], and the MitM attack by Isobe and Shibutani [14] can also be
interpreted as looking for a structured partial multi-collision, as seen in Section 1.
On the other hand, the attack from [9, Section 4.2] uses linear algebra.
1 For instance, we write L0 as a block matrix

[
A B

]
with two w/2×w/2 sub-matrices.

If B is non-singular, we can use M =
[

I 0
B−1A B−1

]
13

Using the Reduction to 3-XOR. As explained in Section 2.2, we can use
an attack against 3-XOR to build a key-recovery against 2EM in a generic way.
In particular, this reduction gives attacks similar to the known attacks on 2EM
if we start from multi-collision algorithms to solve 3-XOR. More precisely, the
reduction leads to a 3-XOR instance with w = 2n, defined as:

f0(x) := x ‖ x⊕ E(x) (3)
f1(y) := y ⊕ P1(y) ‖ y
f2(z) := z ‖ P2(z)

If we directly apply the previous algorithm the time complexity will be
O
(
2n/
√
n/ ln(n)

)
. Concretely the most natural way would be to search for

prefix multi-collisions offline in f1 as it is computationally intensive. Because
of the definition of f1, the second half y won’t repeat but (y ⊕ P1(y)) should
repeat roughly as often as a random function (assuming that P1 is a random
permutation). Indeed previous works [19,8] also use repetitions in the values of
(y ⊕ P1(y)) in their attacks.

Improved Attack fromMulti-collisions. We can actually improve this attack
and obtain an attack equivalent to the previous works from [19,8], by using the
special structure of the 3-XOR instance (3). After building a partial multi-
collision L1 with Θ(n/ ln(n)) values of f1 starting with α, we look for pairs with(
f0(x)⊕ f2(z)

)
[0:n] = α. Because of the structure of f0 and f2, we can just use

z = x⊕α for each known plaintext x. Therefore we have |L0| = |L2| pairs partially
colliding to a predefined value. Each couple gives a full collision if the second
n-bit part corresponds to one of the elements in L1; this happens with probability
n/ ln(n) · 2−n. Thus this attack requires lists of size D = Q = O

(
2n/(n/ ln(n))

)
in order to succeed with high probability in the KPA model.

We see that because we can choose parts of the inputs our problem may be
easier than the purely random 3-XOR case. However generic algorithms are a
good start to find dedicated cryptanalysis of 2EM. Moreover, the best known
attacks against 2EM [19,8] can actually be reinterpreted in this way.

In this paper, we will give new attacks against 2EM starting from this 3-XOR
presentation, and using algorithms based on the linear algebra approach.

3.3 A Key Recovery Algorithm

Now we describe a key recovery algorithm simply using the linear algebra 3-
XOR algorithm by Joux [15] on the 3-XOR instance obtained by the reduction
from 2EM. Using this algorithms as a black box, we have a time complexity
of O(2n/

√
n) (since w = 2n). This is not as good as the best known 2EM key

recovery, but this will lay the ground for the more efficient algorithms in Section 4.
The full attack can be written as Algorithm GA:

GA1. Compute f1(y) = (y ⊕ P1(y)) ‖ y for Q different values y and store them
in L1.

14

GA2. Compute f2(z) = z ‖P2(z) for Q different values z and store them in L2.

GA3. Observe and find a set of n pairs of plaintext/ciphertext (x,E(x)) such
that all {f0(x) = x ‖ (x ⊕ E(x))} are linearly independent and store
x ‖ (x⊕ E(x)) in L0.

GA4. See L0 as a n × 2n matrix. Use column reduction to find a 2n × 2n
transformation matrix M s.t. L0M = [0n×n ‖ In].2

GA5. Right-multiply the lists with the transformation matrix:
L′0 ← L0M ; L′1 ← L1M ; L′2 ← L2M .

GA6. Sort and find partial collisions in L′1 and L′2 on the first n−bit half. For
each partial collisions L′1[i]⊕ L′2[j] check whether the second n-bit half
differs only on the hth bit for some h. If yes go to GA7. If no solution
found, algorithm fails.

GA7. A solution to the 3-XOR problem (L0[h], L1[i], L2[j]) has been found.
Output k = x⊕ y with x the first half of L0[h] and y the second half of
L1[i].

The main idea is that, since the transformation matrix M is linear, solving
the 3-XOR problem for L′0, L′1, L′2 yields the same solutions as L0, L1, L2. Using
the transformed lists is easier as we exploit the fact that L′0 = [0n×n ‖ In×n]
which is always possible to ensure after step GA3.

Step GA3 will cost only n queries as n random words of size 2n will be
linearly independent with very high probability. Note that because we just need
to observe these, this attack works in the KPA setting.

Analysis. The query complexity Q is also the size of the lists L1 and L2. There
are Q2 pairs each XORing to one of the n elements of L0 with probability n/22n

as they are taken randomly. Thus the probability of step GA6 succeeding is
(n ·Q2)/22n.

Therefore for a constant success probability we fix (n · Q2)/22n = Θ(1).
This leads to the following complexities: Q = O(2n/

√
n), T = O(2n/

√
n) and

D = O(n).
We recall here that sorting random values and performing a right matrix

multiplication L1M (resp. L2M) on an exponentially large Li are both computed
in time linear with the size of Li [4]. As for the computation of M , it is of
polynomial time in n and therefore negligible.

Q is the query complexity and we find the relation DQ2 = 22n as expected.
Memory-wise we need to store the full lists L1 and L2 so the memory complexity
will also be Q = O(2n/

√
n).

Steps GA1 and GA2 concentrate all the permutation’s evaluations but can
be done as a pre-processing step.

2 We write L0 =
[
A B

]
. If B is non-singular, we can use M =

[
I 0

B−1A B−1

]
15

4 Improved Attacks from the 3-XOR Problem

In the previous section we saw how tools to solve the 3-XOR problem could
prove very useful for the 2EM key recovery attacks. But the cryptanalysis allows
us to do some tweaks and have better results than simply applying the generic
solutions.

In this section we will first show how to add a simple filter to Algorithm GA
to mount an attack following the trade-off curve DQ2 = 22n while improving
the time complexity of T = 2n/n (matching the best known 2EM attacks) and
memory not exceeding Q. We also show how using the same filter but with
the BDP algorithm adapted for the 3-XOR can give the best asymptotic time
complexity so far, T = O(2n·ln2(n)

n2), though that largely remains theoretical.
Then we describe a very low-data and low-memory key recovery attack that

essentially tweaks the previous Algorithm GA to a version that uses, for some
parameter 0 < λ < 1, few queries, D = λn, time Q = T = 2n/λn and memory
2λn. This actually beats the best information theoretic distinguisher known so
far in this range of very low data (DQ2 < 22n).

4.1 Clamping to a Smaller 3-XOR Instance

We first describe an efficient algorithm with a large trade-off space with parameter
D = |L0| = 2d and Q = |L1| = |L2| = 2n−d/2 and time complexity O(2n/n)
(independently of D and Q). This algorithm is built from the 3-XOR algorithm
of [4], but we take advantage of the structure of the 3-XOR problem to reduce
the time complexity below O(2n/

√
n) (reached by Algorithm GA). Indeed, our

3-XOR instance is given as:

f0(x) := x ‖ x⊕ E(x) (3)
f1(y) := y ⊕ P1(y) ‖ y
f2(z) := z ‖ P2(z)

We can use a variant of the clamping trick of Bernstein [2] to simplify this
instance. For a parameter d, we consider the 2n−d/2 values y with y[0:d/2] = 0
and we evaluate f1 on those values. This gives a list L1 with |L1| = 2n−d/2 such
that all values have d/2 zero bits (L1[i][n:n+d/2] = 0). Similarly, we consider all
values z′ with z′[0:d/2] = 0, and we evaluate f2 on z = P−1

2 (z′) to build a list L2

with L2[j][n:n+d/2] = 0. Finally, we consider 2d known plaintexts x, and we keep
the values with

(
x⊕ E(x)

)
[0:d/2] = 0 in a list L0. We expect to have |L0| = 2d/2.

We now have three lists with Li[u][n:n+d/2] = 0, so we can consider this as a
3-XOR problem on w = 2n− d/2 bits. We have |L0| · |L1| · |L2| = 22n−d/2 = 2w;
therefore there is on average one solution, and the algorithm of Bouillaguet et
al. [4] finds it with complexity O

(
|L0| · (|L1|+ |L2|)/w

)
= O(2n/n).

When writing the full details, we have Algorithm CL:
CL1. Compute f1(y) = (y ⊕ P1(y)) ‖ y for all y such that y[0:d/2] = 0. Remove

bits [n : n+ d/2] (fixed to 0) and store the (2n− d/2)-bit values in L1.

16

CL2. Compute f2(P−1
2 (z′)) = P−1

2 (z′) ‖ z′ for all z′ such that z′[0:d/2] = 0.
Remove bits [n : n+ d/2] (fixed to 0) and store the (2n− d/2)-bit values
in L2.

CL3. Until a solution is found do:
CL3.1. Capture and filter a set of n pairs of plaintext/ciphertext (x,E(x))

such that (x ⊕ E(x))[0:d/2] = 0 and all {f0(x) = x ‖ (x ⊕ E(x))} are
linearly independent. Remove bits [n : n+ d/2] (fixed to 0) and store
the (2n− d/2)-bit values in L0.

CL3.2. See L0 as an n × (2n − d/2) matrix. Use column reduction to find
the (2n − d/2) × (2n − d/2) transformation matrix M such that
L0M = [0n×(n−d/2) ‖ In].

CL3.3. Right-multiply the lists with the transformation matrix:
L′0 ← L0M ; L′1 ← L1M ; L′2 ← L2M .

CL3.4. Sort and find partial collisions in L′1 and L′2 on the first (n− d/2)-bit
prefix. For each partial collisions L′1[i]⊕L′2[j] check whether the second
n-bit part differs only on the hth bit for some h. If yes go to CL4. If
no solution found, loop on CL3.

CL4. A solution to the 3-XOR problem (L0[h], L1[i], L2[j]) has been found.
Output k = x⊕ y with x the first n-bit of L0[h] and y made of d/2 zeros
followed with the last n− d/2 bits of L1[i].

In steps CL1 and CL2 we only fixed the d/2 first bits so that we have lists
of size 2n−d/2. Step CL2 still constructs the usual L2 as a collection of z ‖ P2(z)
only we need to fix the values of P2(z) = z′ and compute the value z = P−1

2 (z′)
using the inverse.

Then all of this works very much like Algorithm GA the main difference begin
at step CL3.1 where we filter the observed pairs. Indeed we look for a triplet
such that x⊕ y = z′ ⊕ E(x) so fixing bits of y and z′ fixes bits of (x⊕ E(x)).

4.2 Complexity Analysis

Data Complexity. The data complexity depends on the number of plaintex-
t/ciphertext pairs we will expect to observe before we find a solution. One way
to see it is to count the number of observable right triplets. Initially there are
2n right triplets but we restrict ourselves to triplets such that y[0:d/2] = 0 and
P2(z)[0:d/2] = 0, a d-bit filter, so on average will remain 2n−d right triplets. There-
fore the moment we observe an x belonging to one of these right triplets it will
necessarily pass the filter, give a solution and finish the algorithm. This happens
with probability 2n−d/2n = 2−d therefore we expect solution after D = 2d pairs
(x,E(x)).

Memory Complexity. The largest lists in memory are L1 and L2 that require,
in the balanced case, O(2n−d/2) blocks of memory.

17

Query Complexity. The offline query complexity is also the size of L1 and
L2, that is 2n−d/2 = Q. In particular, we use as much data as the best known
distinguisher with D ·Q2 = 2n. Notice that for the balanced case D = Q = 22n/3

this attack is optimal in the information theoretic model as Chen et al. [5] proved
that O(22n/3) is a lower bound.

Time Complexity. First we need to compute both lists L1 and L2 requiring to
compute 2n−d/2 permutations each (this can be a precomputation). We expect
the algorithm to succeed after 2d pairs (x,E(x)) with good probability. Thanks
to the d/2-bit filter in step CL3.1 only 2d/2 pairs are expected to be processed by
batches of n values. Therefore we expect to do 2d/2/n loops CL3 before we finish.
Each loop consists of computing a small transformation matrix, applying it to
the big lists L1 and L2, sorting them and looking for prefix collisions. All of these
costs are linear in the lists size, 2n−d/2, or in the number of expected (n−d/2)-bit
prefix collisions in CL3.4 that is |L1| · |L2|/2n−d/2 = 2n−d/2. Therefore each
loop costs O(2n−d/2) and is expected to be performed 2d/2/n times for a total
computational time complexity of T = O(2n/n). This computational time is
independent of d.

Discussion. Algorithm CL achieves a computational time complexity of T =
2n/n while using as much information as the best known information theoretic
attack with D ·Q2 = 22n. In particular this is information theoretically optimal
in the balanced case D = Q = 22n/3 that is for d = 2n/3. This attack works
with known plaintexts, and there is no obvious way to improve it using chosen
plaintext.

For most of the choices of d, evaluations of the cipher and the permutations is
not the dominant cost of the algorithm. In this analysis we assume that operations
on n-bit words and memory access to lists L1 and L2 cost θ(1) evaluations of the
cipher, but if we assume instead that they cost much less than one evaluation
(as done in [14]) the attack is even more interesting.

To optimize the memory complexity that is 2n−d/2, we need to choose a fairly
high value d. In that case the data complexity D = 2d becomes problematic
but we can swap the number of online call to E with the number of offline
calls to P1, effectively swapping f0 and f1, thanks to the symmetry highlighted
in Section 2.3. This gives a data and memory complexity of 2n−d/2, a query
complexity of Q = 2n−d/2−1 + 2d−1 and the time remains T = O(2n/n). This
becomes a Chosen Plaintext attack because step CL1 requires to choose part
of inputs. Concrete values for n = 64 for such trade-off are given in Table 2 as
"optim. memory & swap E ↔ P1".

4.3 Using Baran-Demaine-Pǎtraşcu’s 3-SUM Algorithm

Since the previous algorithm just uses a 3-XOR algorithm as a black box after
clamping, we can also use it with the BDP algorithm adapted to 3-XOR [4]. In
fact, any 3-XOR algorithm could be used after clamping which implies that an
improved random 3-XOR algorithm would lead to an improved 2EM cryptanalysis.

18

This adapted BDP algorithm has a better asymptotic complexity, with a speed-up
of w2

ln2(w) compared to the quadratic algorithm.
This results in a key-recovery attack against 2EM with asymptotic time

complexity O(2n · ln2(n)/n2). This is asymptotically better than the best known
2EM key recoveries. However, as shown in [4], it is not practical for realistic word
sizes w. Indeed the dominant term in the complexity of the BDP algorithm is
O(|L0|.|L1|/m2) with m = Θ(n/ ln(n)). Following the analysis of Bouillaguet
et al., we have more concretely m ' n/(112 ln(n)). Therefore, in order to have
m2 > n, we would need n > 2.75× 106.

4.4 Very Low Data Algorithm

The previous Algorithm CL can reach a low-data complexity (with a small
parameter d) that would be a multiple of n, or a relatively low-memory complexity
(close to 2n/2 with a large d), and having both close to 2n/2 requires chosen
plaintexts. We now describe a new algorithm that combines a very low-data
complexity and a low memory. This algorithm uses only D = λn known plaintexts
for 0 < λ < 1, and has a time complexity T = O(2n/λn) while using only a
memory of size 2λn. Moreover, we have D · Q = 2n and D · Q2 = O(22n/λn),
that is the best information theoretical trade-off so far between online and offline
queries.

This will be algorithm LD with parameter 0 < λ < 1 (typically, we have
λ = 1/2):
LD1. Observe and find a set of λn pairs of plaintext/ciphertext (x,E(x)) such

that all {(x⊕ E(x))[n−λn:n]} are linearly independent and store f0(x) =
x ‖ (x⊕ E(x)) in L0.

LD2. See L0 as a three concatenated λn-line matrices:

L0 = [A︸︷︷︸
n

‖ B︸︷︷︸
n−λn

‖ C︸︷︷︸
λn

]

Define the n× n small transformation matrix Ms:

Ms =
[

I 0
C−1B C−1

]
M−1
s =

[
I 0
B C

]
and the 2n× 2n big transformation matrix M :

M =

 I 0(
Ms

[
0
A

])
Ms

 =

 I 0 0
0 I 0

C−1A C−1B C−1


LD3. Right-multiply the list L0 with the big transformation matrix:

L′0 ← L0M = [0︸︷︷︸
n

‖ 0︸︷︷︸
n−λn

‖ I︸︷︷︸
λn

]

LD4. Until a solution is found pick a new (n− λn)-bit value α and do:

19

LD4.1. For all λn-bit value u compute f1
(
[α|u]·M−1

s

)
= [α|u]·M−1

s ⊕P1
(
[α|u]·

M−1
s

)
‖ [α|u] ·M−1

s . Store them in L1.

LD4.2. For all λn-bit value u compute f2
(
P−1

2 ([α|u] ·M−1
s)
)

= P−1
2 ([α|u] ·

M−1
s) ‖ [α|u] ·M−1

s . Store them in L2

LD4.3. Modify the lists with the big transformation matrix:
L′1 ← L1M ; L′2 ← L2M .
Note that all elements of L′1 and L′2 have bits [n : n+ λn] set to α.

LD4.4. Sort and find partial collisions in L′1 and L′2 on the first n-bit half.
For each partial collisions L′1[i]⊕ L′2[j] check whether the second half
differs on a single bit h with n− λn < h ≤ n. If yes go to LD5. If no
solution found, continue to loop on LD4.

LD5. A solution to the 3-XOR problem (L0[h− (n− λn)], L1[i], L2[j]) has been
found. Output k = x⊕ y with x the first half of L0[h− (n− λn)] and y
the second half of L1[i].

We again use the property that finding a solution for the 3-XOR in the
modified lists yield the same solution in the original lists.

With the way we defined the big transformation matrixM in LD2 and the fact
that we applied M−1

s to the inputs in steps LD4.1 and LD4.2, when we perform
step LD4.3 we get the values f1

(
[α|u]·M−1

s

)
·M = [α|u]·M−1

s ⊕P1
(
[α|u]·M−1

s

)
⊕

(0|(u·A))‖[α|u] and f2
(
P−1

2 ([α|u]·M−1
s)
)
·M = P−1

2 ([α|u]·M−1
s)⊕(0|(u·A))‖[α|u]

stored in L′1 and L′2 respectively. Thus the right-hand side of both lists reverts
to the form {α|u} with fixed α and for all u. Therefore we get an (n− λn)-bit
collision for free on α matching with zeroes in L′0.

4.5 Complexity Analysis

For this attack, in each loop we pick a value α and build L1, L2 of size 2λn. Then
we have a solution among the 22λn pairs if one of them XORs to one of the λn
values of L0. Since we have a collision on (n−λn)-bit value α for free, one couple
gives a solution with probability λn · 2−(n+λn). Thus each loop gives a solution
with probability 22λn · λn · 2−(n+λn) = λn · 2λn−n. For a constant probability of
success we will need to perform around 2n−λn

λn iterations.

Data Complexity. Step LD1 completely determines the data complexity of
the algorithm. We capture λn plaintext/ciphertext pairs and we get a linearly
independent set of values with good probability. Therefore D = λn is the data
complexity.

Memory Complexity. The list L0 and the matrices take a space polynomial in
n and therefore negligible. The lists L1 and L2 are always of size 2λn. Therefore
the memory complexity is O(2λn).

20

Query Complexity. The computation of the public permutations are all done
in steps LD4.1 and LD4.2 to build lists of size 2λn. We pass through this step
at each loop meaning that the total offline query complexity is:

Q = 2λn · 2n−λn

λn
= 2n

λn

Time Complexity. Again, computations of the matrices in step LD2 are essen-
tially polynomial in n so negligible. Step LD4.3 performs right-multiplications
on large matrices and step LD4.4 is about sorting and merging which makes
those steps linear given that the merged list is of reasonable size. Here we have
a partial collision on n bits with probability 2−n therefore there will be around
22λn · 2−n = 22λn−n partial collisions that is less than the size of the lists (2λn)
therefore step LD4.4 has also a linear cost. The computational time complexity
is therefore also led by the query complexity that is T = 2n

λn .

Acceptable Range. Notice that the previous reasoning to derive the time
complexity is only applicable when we do need more than one loop to finish the
algorithm as it makes no sense to multiply by half-a-round. So all those trade-off
depending on λ are constraints by:

2n−λn

λn
≥ 1⇔ λ ≤ W (2n ln 2)

n ln 2 = 1− ln(n ln 2)
n ln 2 + o(1)

(using the Lambert W function)

Discussion. This attack works in the KPA setting as we only need to observe
pairs of plaintext/ciphertext, and we need to observe surprisingly few of them,
λn pairs are sufficient.

The memory requirement, O(2λn), can also go quite low as we choose the
parameter λ but this comes at the cost of no pre-computation possible as we need
the transformation matrix to get the right inputs to the public permutations.

The computational time complexity T = 2n/λn compares well with previous
cryptanalysis done on this subject. So far there were no key recovery attack on
2EM with a better asymptotic complexity than O(2n/n).

In the information theoretic model, trade-off between D and Q is important as
a designer can always arbitrarily limit the maximum value of D by, for example,
rekeying in order to achieve a certain security goal. In this regard, this algorithm
has a better trade-off between the data and query complexity than the best
known generic distinguisher by Gaži [13] that has the trade-off DQ2 = 22n.
Here DQ2 = 22n/λn thus being the best known key recovery, and also the best
distinguisher, for the acceptable range of λn.

In fact the proof by Chen et al. [5] says nothing for low-data range D ≤ 2n/4

and the best proof is therefore inherited from the original one round Even-
Mansour scheme that lower-bounds the trade-off with DQ ≥ 2n. Gap between
the best known distinguisher and the proof in this range is still an open problem
but Algorithm LD, which has the trade-off DQ = 2n —and also DT = 2n —for
any λ, proves for the first time the optimality of the original proof of the trade-off
between D and Q for the acceptable range of λ that is for 1 ≤ D ≤ W (2n ln 2)

ln 2 .

21

Previous Work. We can see this cryptanalysis as an advanced version of the
attack by Dinur et al. using linear algebra [9, Section 4.2]. We can list three main
differences that make this attack an improvement over the previous one. First,
as already mentioned in Section 2.3, we use the symmetry between E,P1, P2
to reduce the data complexity from 2n/λn to λn. Then the use of the big
transformation matrix M , that essentially performs a Gaussian elimination over
the whole 2n-bit words, makes the attack works with known plaintexts while
Dinur et al. required chosen plaintexts (even after applying the symmetry trick).
Finally, the resulting n-bit filter of step LD4.4 allows for a larger acceptable
range of λ than the previous attack that needed λ < 1/3 to limit the number of
partial collisions.

5 Extension to r rounds.

The approach can be generalized to attack multiple rounds. In fact the crypt-
analysis of a single key r-round EM scheme can be written as a (r + 1)-XOR
problem with words of size rn. Even though for r ≥ 4 generic algorithms won’t
directly provide interesting attacks with competitive computational complexity,
this elegantly rewrites the known generic distinguisher on rEM and may be a
good start to look for dedicated cryptanalysis.

x0 x1 P1 P1(x1) x2 P2 P2(x2) ... xr Pr Pr(xr) E(x0)

k k k

Fig. 5. A right tuple gives a path of rEM

Definition 3 (k-XOR problem). Given k functions f0, f1, f2, ..., fk, find k
inputs (x0, x1, x2, ..., xk) such that f0(x0)⊕ f1(x1)⊕ f2(x2)⊕ ...⊕ fk(xk) = 0.

Extended Relation. To see that we follow the same reasoning as in Section 2.2
but for the r-round EM, Figure 5, and look for an (r + 1)-tuple (x0, x1, ..., xr)
satisfying the generalized relation R:

R(x0, x1, x2, ..., xr) :=


x0 ⊕ x1 = k

Pi(xi)⊕ xi+1 = k, 1 ≤ i ≤ r − 1
Pr(xr)⊕ E(x0) = k

(4)

⇒


x0 ⊕ x1 = P1(x1)⊕ x2

Pi(xi)⊕ xi+1 = Pi+1(xi+1)⊕ xi+2, 1 ≤ i ≤ r − 2
Pr−1(xr−1)⊕ xr = Pr(xr)⊕ E(x0)

(5)

22

Again we cannot directly observe R but we can observe the implied relation 5
which is an rn-bit filter and is enough so that a random (r + 1)-tuple satisfying
Filter 5 is a right tuple with good probability.

Define Lists. Now we can define r + 1 lists of r n-bit entries such that solving
the (r + 1)-XOR problem on those lists over all entries trivially gives a solution
to 5:

L0[h] :=


x0 , h = 1
0 , 2 ≤ h ≤ r − 1
E(x0) , h = r

L1[h] :=


x1 ⊕ P1(x1) , h = 1
P1(x1) , h = 2
0 , h ≥ 3

Li[h]
2≤i≤r−1

:=



0 , h ≤ i− 2
xi , h = i− 1
xi ⊕ Pi(xi) , h = i

Pi(xi) , h = i+ 1
0 , h ≥ i+ 2

Lr[h] :=


0 , h ≤ r − 2
xr , h = r − 1
xr ⊕ Pr(xr) , h = r

see example for r = 5 in Table 3. Thus this indeed defines an (r + 1)-XOR
problem with rn-bit words even though it is more structured than the purely
random k-XOR problem. Upon its resolution we have a successful key recovery
with good probability when guessing k = x0 ⊕ x1.

Table 3. Cryptanalysis of 5EM.

Lists’ construction for a cryptanalysis using the 6-XOR problem.

L0 3 { x0 . . . E(x0)}

L1 3 { x1 ⊕ P1(x1) P1(x1) . . . }

L2 3 { x2 x2 ⊕ P2(x2) P2(x2) . . }

L3 3 { . x3 x3 ⊕ P3(x3) P3(x3) . }

L4 3 { . . x4 x4 ⊕ P4(x4) P4(x4)}

L5 3 { . . . x5 x5 ⊕ P5(x5)}

Generic Cryptanalysis. Even though the problem is structured this allows us
to use generic algorithms for the k-XOR problem to perform a cryptanalysis. With
purely random functions it is known that the lower bounds of queries for the the
rn-bit words (r+1)-XOR problem is O(2

rn
r+1). Interestingly this exactly coincides

with the lower bound queries for the single key r-round Even-Mansour scheme [3].
Using generic algorithms allows a cryptanalysis using D = Q = O(2

rn
r+1) therefore

23

being optimal in query complexity. In fact the approach can be thought as similar
to the simple known distinguisher but instead of looking for contradictory paths
we directly look for a correct path (that implies a right tuple) and guess the key.

Limitation. The computational time complexity of generic algorithms by Wag-
ner for this problem is T = O

(
r · 2

rn
blog(r+1)c+1

)
[20]. For r = 2 and 3 rounds this

is just O(2n) and we could improve from there in the 2EM case. For the 3EM
case Dinur et al. [9] showed that we can have a complexity below O(2n) using
multicollisions and while it is fairly straightforward to rewrite the same attack in
the 4-XOR context it is also non-trivial to improve this.

On the other hand the complexity is way over 2n for r ≥ 4 rounds. Therefore
this is mainly an information theoretic attack. However the lists here have a
strong structure, see Table 3, with many bits to 0 which opens the question of a
dedicated algorithm with competitive computational time/memory trade-off.

6 Conclusion

In this paper we presented a 3-XOR approach to key-recovery attacks on single-
key two-round Even-Mansour. That allows us to gain a better understanding of
previous works and devise competitive algorithms using linear algebra techniques
that have been initially developed for the random 3-XOR problem.

These attacks have a particularly interesting data and memory complexities. In
particular, we give the first attacks where both the data and memory complexity
are below O(2n−ε) for ε > 0, while achieving the best known time complexity
of O(2n/n). Previous attacks with a similar time complexity required either a
very large memory or very large data, making them unlikely to be useful in
practice. We also give an attack that improves the asymptotic time complexity
to O(2n · ln2(n)/n2), although it is not applicable for practical values of n. As
another interesting result, we show a very low-data attack that beats the best
known distinguisher, and actually matches the proven lower bound for single
round Even-Mansour construction, with DT = 2n.

All those attacks are shown on the 2EM construction with no key schedule
and independent permutations, but we prove that an attack on this variant of
2EM leads to an attack on the more general 2EM with a linear key schedule.
Additionally we show that the 2EM construction has an implicit symmetry that
allows to blindly swap the number of calls one makes to each oracle during an
attack; this automatically allows new trade-offs between the parameters.

Iterated Even-Mansour schemes are idealized SPN networks and understand-
ing their security is important because many block ciphers, including the AES,
are based on this design. In this work we focused on the two-round construction
linking it to the 3-XOR problem such that a future improvement of the random
3-XOR algorithms will improve our cryptanalysis. But we can also extend this
approach to r-round constructions and the (r+1)-XOR problem with a particular
structure. We detail this link in Section 5 but additional work is required to build
competitive key-recovery attacks from that.

24

Acknowledgement

Part of this work was supported by the French DGA.

References

1. Baran, I., Demaine, E.D., Pǎtraşcu, M.: Subquadratic algorithms for 3sum. Algorith-
mica 50(4), 584–596 (Apr 2008), https://doi.org/10.1007/s00453-007-9036-3

2. Bernstein, D.J.: Better price-performance ratios for generalized birthday attacks.
In: Workshop Record of SHARCS. vol. 7, p. 160 (2007)

3. Bogdanov, A., Knudsen, L.R., Leander, G., Standaert, F.X., Steinberger, J.P.,
Tischhauser, E.: Key-alternating ciphers in a provable setting: Encryption using
a small number of public permutations - (extended abstract). In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 45–62. Springer,
Heidelberg (Apr 2012)

4. Bouillaguet, C., Delaplace, C., Fouque, P.A.: Revisiting and improving algorithms
for the 3xor problem. IACR Trans. Symm. Cryptol. 2018(1), 254–276 (2018)

5. Chen, S., Lampe, R., Lee, J., Seurin, Y., Steinberger, J.P.: Minimizing the two-
round Even-Mansour cipher. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 39–56. Springer, Heidelberg (Aug 2014)

6. Chen, S., Steinberger, J.P.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–350.
Springer, Heidelberg (May 2014)

7. Daemen, J.: Limitations of the Even-Mansour construction (rump session). In:
Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT’91. LNCS, vol. 739, pp.
495–498. Springer, Heidelberg (Nov 1993)

8. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Key recovery attacks on 3-round
Even-Mansour, 8-step LED-128, and full AES2. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 337–356. Springer, Heidelberg
(Dec 2013)

9. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Key recovery attacks on iterated
Even-Mansour encryption schemes. Journal of Cryptology 29(4), 697–728 (Oct
2016)

10. Dunkelman, O., Keller, N., Shamir, A.: Minimalism in cryptography: The Even-
Mansour scheme revisited. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 336–354. Springer, Heidelberg (Apr 2012)

11. Dunkelman, O., Keller, N., Shamir, A.: Slidex attacks on the Even-Mansour en-
cryption scheme. Journal of Cryptology 28(1), 1–28 (Jan 2015)

12. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT’91.
LNCS, vol. 739, pp. 210–224. Springer, Heidelberg (Nov 1993)

13. Gaži, P.: Plain versus randomized cascading-based key-length extension for block
ciphers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 551–570. Springer, Heidelberg (Aug 2013)

14. Isobe, T., Shibutani, K.: New key recovery attacks on minimal two-round Even-
Mansour ciphers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part I. LNCS,
vol. 10624, pp. 244–263. Springer, Heidelberg (Dec 2017)

15. Joux, A.: Algorithmic Cryptanalysis. Chapman & Hall/CRC, 1st edn. (2009)

25

https://doi.org/10.1007/s00453-007-9036-3

16. Joux, A., Lucks, S.: Improved generic algorithms for 3-collisions. In: Matsui, M.
(ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 347–363. Springer, Heidelberg (Dec
2009)

17. Lampe, R., Patarin, J., Seurin, Y.: An asymptotically tight security analysis of the
iterated Even-Mansour cipher. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 278–295. Springer, Heidelberg (Dec 2012)

18. Nikolic, I., Sasaki, Y.: Refinements of the k-tree algorithm for the generalized
birthday problem. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part II.
LNCS, vol. 9453, pp. 683–703. Springer, Heidelberg (Nov / Dec 2015)

19. Nikolic, I., Wang, L., Wu, S.: Cryptanalysis of round-reduced LED. In: Moriai, S.
(ed.) FSE 2013. LNCS, vol. 8424, pp. 112–129. Springer, Heidelberg (Mar 2014)

20. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (Aug 2002)

26

	Low-Memory Attacks against Two-Round Even-Mansour using the 3-XOR Problem
	Introduction
	Security Reductions
	Removing the Key Schedule
	Reduction to 3-XOR
	Symmetry between E, P1 and P2

	2EM Attacks from 3-XOR Algorithms
	3-XOR Algorithms
	Revisiting Previous Cryptanalysis
	A Key Recovery Algorithm

	Improved Attacks from the 3-XOR Problem
	Clamping to a Smaller 3-XOR Instance
	Complexity Analysis
	Using Baran-Demaine-Patrascu's 3-SUM Algorithm
	Very Low Data Algorithm
	Complexity Analysis

	Extension to r rounds.
	Conclusion

