
Univariate polynomial real root isolation:

Continued Fractions revisited

Elias P. Tsigaridas and Ioannis Z. Emiris

Department of Informatics and Telecommunications,
National Kapodistrian University of Athens, HELLAS {et,emiris}@di.uoa.gr

Abstract. We present algorithmic, complexity and implementation re-
sults concerning real root isolation of integer univariate polynomials us-
ing the continued fraction expansion of real numbers. We improve the
previously known bound by a factor of d τ , where d is the polynomial
degree and τ bounds the coefficient bitsize, thus matching the current
record complexity for real root isolation by exact methods. Namely, the
complexity bound is eOB(d4τ 2) using a standard bound on the expected
bitsize of the integers in the continued fraction expansion. We show how
to compute the multiplicities within the same complexity and extend the
algorithm to non square-free polynomials. Finally, we present an efficient
open-source C++ implementation in the algebraic library synaps, and il-
lustrate its efficiency as compared to other available software. We use
polynomials with coefficient bitsize up to 8000 and degree up to 1000.

1 Introduction

In this paper we deal with real root isolation of univariate integer polynomials,
a fundamental problem in computer algebra as well as in many applications
ranging from computational geometry to quantifier elimination. The problem
consists in computing intervals with rational endpoints which contain exactly
one real root of the polynomial. We use the continued fraction expansion of
real algebraic numbers. Recall that such a number is a real root of an integer
polynomial.

One motivation is to explain the method’s good performance in implementa-
tions, despite the higher complexity bound which was known until now. Indeed,
we show that continued fractions lead to (expected) asymptotic bit complexity
bounds that match those recently proven for other exact methods, such as Sturm
sequences and Descartes’ subdivision.

Notation: In what follows OB means bit complexity and the ÕB-notation
means that we are ignoring logarithmic factors. For A =

∑d
i=0 aiX

i ∈ Z[X],
deg (A) denotes its degree. We consider square-free polynomials except if ex-
plicitly stated otherwise. By L (A) we denote an upper bound on the bit size
of the coefficients of A (including a bit for the sign). For a ∈ Q, L (a) ≥ 1 is
the maximum bit size of the numerator and the denominator. Let M (τ) denote
the bit complexity of multiplying two integers of bit size at most τ . Using FFT,
M (τ) = OB(τ lgc τ) for a suitable constant c. V ar(A) denotes the sign variations

in the coefficient list of A ignoring zero terms and ∆ the separation bound of A,
that is the smallest distance between two (complex) roots of A.

Previous work and our results: Real root isolation of univariate integer
polynomials is a well known problem with a huge bibliography and we only
scratch the surface of it. We encourage the reader to refer to the references.

Exact subdivision based algorithms for real root isolation are based either on
Descartes’ rule of sign or on Sturm sequences. Roughly speaking, the idea behind
both approaches is to subdivide a given interval that initially contains all the
real roots until it is certified that none or one root is contained. Quite recently it
was proven (cf [12,13] and references therein) that both approaches (Descartes

and Sturm), achieve the same bit complexity bound, namely ÕB(d4τ2), where

d is the polynomial degree and τ bounds the coefficient bitsize, or ÕB(N6),
where N = max {d, τ}. Moreover using Sturm sequences in a pre-processing and
a post-processing step [14,15] the bound holds for the non square-free case and
the multiplicities of the roots can also be computed.

The continued fraction algorithm (from now on called CF) differs from the
subdivision algorithms in that instead of bisecting a given initial interval it com-
putes the continued fraction expansions of the real roots of the polynomial. The
first formulation of CF is due to Vincent [32], see also [2] for historical references,
based on his theorem (Th. 3 without the terminating condition) where it was
stated that repeated transformations of the polynomial will eventually yield a
polynomial with zero (or one) sign variation, thus Descartes’ rule implies the
transformed polynomial has zero (resp. one) real root in (0,∞). Unfortunately
Vincent’s algorithm is exponential [9].

Uspensky [29] extended Vincent’s theorem by computing an upper bound on
the number of transformations so as to isolate the real roots, but failed to deal
with its exponential behavior. Using Vincent’s theorem, Collins and Akritas [9]
derived a polynomial subdivision-based algorithm using Descartes’ rule of sign.
Akritas [5,1] dealt with the exponential behavior of CF, by computing the partial
quotients as positive lower bounds of the positive real roots, via Cauchy’s bound
(for details, see Sec. 4), and obtained a complexity of ÕB(d5τ3) or ÕB(N8),
without using fast Taylor shifts [33]. However, it is not clear how this approach
accounts for the increased coefficient size in the transformed polynomial after
applying X 7→ b+X . Another issue is to bound the size of the partial quotients.
Refer to Eq. (1) which indicates that the magnitude of the partial quotients is un-
bounded. CF is the standard real root isolation algorithm in mathematica [3].
For some experiments against subdivision-based algorithms, in mathematica,
the reader may refer to [4].

Another class of univariate solvers are numerical solvers, e.g. [24,6] that com-
pute an approximation of all the roots of a polynomial up to a desired accuracy.
The complexity of these algorithms is ÕB(d3 τ) or ÕB(N4).

The contributions of this paper are the following: First, we improve the bound
of the number of steps (transformations) that the algorithm performs. Second, we
bound the bitsize of the partial quotients and thus the growth of the transformed
polynomials which appear during the algorithm. We revisit the proof of [5,1] so

as to improve the overall bit complexity bound of the algorithm to ÕB(N6), thus
matching the current record complexity for real root isolation. The extension to
the non square-free case uses the techniques from [14,15]. Third, we present our
efficient open-source C++ implementation in synaps1 [23], and illustrate it on
various data sets, including polynomials of degree up to 1000 and coefficients
of 8000 bits. We performed experiments against rs2, which seems to be one of
the fastest available software for exact real root isolation and against aberth

[6], a numerical solver available through synaps. Our implementation seems to
have the best performance in practice. We believe that our software contributes
towards reducing the gap between rational and numeric computation, the latter
being usually perceived as faster.

The rest of the paper is structured as follows. The next section sketches the
theory behind continued fractions. Sec. 3 presents the CF algorithm and Sec. 4
its analysis. We conclude with experiments using our implementation, along with
comparisons against other available software for univariate equation solving.

2 Continued fractions

We present a short introduction to continued fractions, following [30] which
although is far from complete suffices for our purposes. The reader may refer
to e.g [5,34,7,30]. In general a simple (regular) continued fraction is a (possibly
infinite) expression of the form

c0 +
1

c1 +
1

c2 + . . .

= [c0, c1, c2, . . .]

where the numbers ci are called partial quotients, ci ∈ Z and ci ≥ 1 for i > 0.
Notice that c0 may have any sign. By considering the recurrent relations

P−1 = 1, P0 = c0, Pn+1 = cn+1 Pn + Pn−1

Q−1 = 0, Q0 = 1, Qn+1 = cn+1 Qn + Qn−1

it can be shown by induction that Rn = Pn

Qn
= [c0, c1, . . . , cn], for n = 0, 1, 2, . . .

If γ = [c0, c1, . . .] then γ = c0 + 1
Q0Q1

− 1
Q1Q2

+ · · · = c0 +
∑∞

n=1
(−1)n−1

Qn−1Qn

and since this is a series of decreasing alternating terms it converges to some
real number γ. A finite section Rn = Pn

Qn
= [c0, c1, . . . , cn] is called the n−th

convergent (or approximant) of γ and the tails γn+1 = [cn+1, cn+2, . . .] are known
as its complete quotients. That is γ = [c0, c1, . . . , cn, γn+1] for n = 0, 1, 2,
There is a one to one correspondence between the real numbers and the continued
fractions, where the finite continued fractions correspond to rational numbers.
It is known that Qn ≥ Fn+1 and that Fn+1 < φn < Fn+2, where Fn is the n−th

Fibonacci number and φ = 1+
√

5
2 is the golden ratio. Continued fractions are the

1 www-sop.inria.fr/galaad/logiciels/synaps/
2 fgbrs.lip6.fr/salsa/Software/index.php

best (for a given denominator size), approximations, i.e

1

Qn(Qn+1 + Qn)
≤

˛̨
˛̨γ − Pn

Qn

˛̨
˛̨ ≤ 1

QnQn+1
≤

1

Q2
n

< φ−2n

Let γ = [c0, c1, . . .] be the continued fraction expansion of a real number. The
Gauss-Kuzmin distribution [7,25] states that for almost all real numbers γ (the
set of exceptions has Lebesgue measure zero) the probability for a positive integer
δ to appear as an element in the continued fraction expansion of γ is

Prob[ci = δ] = lg
(δ + 1)2

δ(δ + 2)
, i > 0 (1)

The Gauss-Kuzmin law induces that we can not bound the mean value of the
partial quotients, i.e E[ci] =

∑∞
δ=1 δ Prob[ci = δ] = ∞, i > 0. However the

geometric (and the harmonic) mean is not only asymptotically bounded, but is
bounded by a constant. For the geometric mean this is the famous Khintchine’s
constant [17], i.e. limn→∞

n
√∏n

i=1 ci = K = 2.685452001... which is not known
if it is an irrational number, let alone transcendental. The expected value of the
bitsize of the partial quotients is a constant for almost all real numbers, when
n → ∞ or n sufficiently big [17,25]. Following closely [25], we have: E[ln ci] =
1
n

∑n
i=1 ln ci = lnK = 0.98785..., as n → ∞, ∀i > 0. Let L (ci) , bi, then

E[bi] = O(1) (2)

A real number has an (eventually) periodic continued fraction expansion if
and only if it is a root of an irreducible quadratic polynomial. “There is no
reason to believe that the continued fraction expansions of non-quadratic alge-
braic irrationals generally do anything other than faithfully follow Khintchine’s
law”[8], and also various experimental results [7,25,26] suggest so.

3 The CF algorithm

Theorem 1 (Budan). [20,5] Let A ∈ R[X] and a < b, where a, b ∈ R. Let Aa

(Ab) be the polynomial produced after we apply the map X 7→ X+a (X 7→ X+b)
to A. Then the followings hold: (i) V ar(Aa) ≥ V ar(Ab), (ii) #{γ ∈ (a, b)|A(γ) =
0} ≤ V ar(Aa)−V ar(Ab) and (iii) #{γ ∈ (a, b)|A(γ) = 0} ≡ V ar(Aa)−V ar(Ab)
mod 2.

Theorem 2 (Descartes’ rule of sign). The number R of real roots of A(X)
in (0,∞) is bounded by V ar(A) and we have R ≡ V ar(A) mod 2.

In general Descartes’ rule of sign obtains an overestimation of the number of
the positive real roots. However if we know that A is hyperbolic, i.e has only real
roots or when the number of sign variations is 0 or 1 then it counts exactly.

The CF algorithm depends on the following theorem, which dates back to
Vincent’s theorem in 1836 [32]. It is a very interesting question whether the one
and two circle theorems (cf [19] and references therein), employed in the analysis
of the subdivision-based real-root isolation algorithm [9], can also be applied and
possibly improve the complexity of CF.

Theorem 3. [5,29] Let A ∈ Z[X], with deg(A) = d and let ∆ be the separation
bound. Let n be the smallest index such that Fn−1∆ > 2 and Fn−1Fn∆ > 1+ 1

ǫd
,

where Fn is the n-th Fibonnaci number and ǫd = (1 + 1
d)

1
d−1 − 1. Then the map

X 7→ [c0, c1, . . . , cn, X], where c0, c1, . . . , cn is an arbitrary sequence of positive
integers, transforms A(X) to An(X), which has no more than one sign variation.

Remark 1. Since 3
4d2 < ǫd < 4

d2 [10] we conclude that 1
ǫd

+ 1 < 2d2 for d ≥ 2.

Thus, if d ≥ 2 we can replace the two conditions of Th. 3 by Fn−1∆ ≥ 2d2, since
Fn ≥ Fn−1 ≥ 1 and Fn−1Fn∆ ≥ Fn−1∆ ≥ 2d2 > 2.

Th. 3 can be used to isolate the positive real roots of a square-free polyno-
mial A. In order to isolate the negative roots we perform the transformation
X 7→ −X , so in what follows we will consider only the positive real roots of A.
Vincent’s variant of CF goes as follows: A polynomial A is transformed to A1 by
the transformation X 7→ 1 + X and if V ar(A1) = 0 or V ar(A1) = 1 then A has
0, resp. 1, real root greater than 1 (Th. 2). If V ar(A1) < V ar(A) then (possibly)
there are real roots of A in (0, 1), due to Budan’s theorem (Th. 1). A2 is pro-
duced by applying the transformation X 7→ 1/(1 + X) to A, if V ar(A2) = 0 or
V ar(A2) = 1 then A has 0, resp. 1, real root less than 1 (Th. 2). Uspensky’s [29]
variant of the algorithm (see also [26]) at every step produces both polynomials
A1 and A2, probably, as Akritas states [2], because he was unaware of Budan’s
theorem (Th. 1). In both variants, if the transformed polynomial has more than
one sign variations, we repeat the process.

We may consider the process of CF as an infinite binary tree in which the
root corresponds to the initial polynomial A. The branch from a node to a right
(left) child corresponds to the map X 7→ X +1 (X 7→ 1

1+X). Vincent’s algorithm
(and Uspensky’s) results to a sequence of transformations as in Th. 3, and so
the leaves of the tree hold (transformed) polynomials that have no more than
one sign variations, if Th. 3 holds. Akritas [1,5] replaced a series of X 7→ X + 1
transformations by X 7→ X + b, where b is the positive lower bound (PLB) on the
positive roots of the tested polynomial, using Cauchy’s bound [5,34]. This way,

the number of steps is polynomial and the complexity is in ÕB(d5τ3). However,
it is not clear whether or how the analysis takes into account that the coefficient
bitsize increases after a shift operation. Another issue is to bound the size of b.

For these polynomials that have one sign variation we still have to find the
interval where the real root of the initial polynomial A lies. Consider a polyno-
mial An that corresponds to a leaf of the binary tree that has one sign variation.
Notice that An is produced after a transformation as in Th. 3, using positive
integers c0, c1, . . . , cn. Using the convergents, this transformation becomes

M : X 7→
PnX + Pn−1

QnX + Qn−1
(3)

where Pn−1

Qn−1
and Pn

Qn
are consecutive convergents of the continued fraction [c0, c1, . . . , cn].

Notice that (3) is a Möbius transformation, see [5,34] for more details. Since An

has one sign variation it has one and only one real root in (0,∞), so in order to
obtain the isolating interval for the corresponding real root of A we evaluate the

Algorithm 1: CF(A, M)

Input: A ∈ Z[X], M(X) = kX+l
mX+n

, k, l, m, n ∈ Z

if A(0) = 0 then1

OUTPUT Interval(M(0), M(0)) ;2

A← A(X)/X;3

CF(A, M);4

if Var(A) = 0 then return ;5

if Var(A) = 1 then OUTPUT Interval(M(0), M(∞)), return ;6

b← PLB(A) // PLB ≡ PositiveLowerBound ;7

if b > 1 then A← A(b + X), M ←M(b + X) ;8

A1 ← A(1 + X), M1 ←M(1 + X) ;9

CF(A1, M1) // Looking for real roots in (1, +∞);10

A2 ← A(1
1+X

), M2 ←M(1
1+X

) ;11

CF(A2, M2) // Looking for real roots in (0, 1) ;12

right part of Eq. (3) once over 0 and once over ∞. The (unordered) endpoints

of the isolating interval are Pn−1

Qn−1
and Pn

Qn
.

The pseudo-code of CF is presented in Alg. 1. The Interval function orders
the endpoints of the computed isolating interval and PLB(A) computes a lower
bound on the positive roots of A. The input of the algorithm is a polynomial
A(X) and the trivial transformation M(X) = X . Notice that Lines 11 and 12
are to be executed only when V ar(A1) < V ar(A2), but in order to simplify the
analysis we omit this, since it only doubles the complexity.

4 The complexity of the CF algorithm

Let disc(A) be the discriminant and lead (A) the leading coefficient of A.

Mahler’s measure of a polynomial A is M(A) = | lead (A) |∏d
i=1 max {1, |γi|},

where γi are all the (complex) roots of A [34,20,21]. We prove the following
theorem, which is based on a theorem by Mignotte [20], thus extending [11,13].

Theorem 4. Let A ∈ Z[X], with deg(A) = d and L (A) = τ . Let Ω be any set
of k pairs of indices (i, j) such that 1 ≤ i < j ≤ d and let the non-zero (complex)
roots of A be 0 < |γ1| ≤ |γ2| ≤ · · · ≤ |γd|. Then

2kM(A)k ≥
Y

(i,j)∈Ω

|γi − γj | ≥ 2k−
d(d−1)

2 M(A)1−d−k
p
disc(A)

Proof. Consider the multiset Ω = {j|(i, j) ∈ Ω}, |Ω| = k. We use the inequality

∀ a, b ∈ C |a − b| ≤ 2 max{|a|, |b|} (4)

and the fact [20,21] that for any root of A, 1
M(A) ≤ |γi| ≤ M(A). In order to

prove the left inequality
Y

(i,j)∈Ω

|γi − γj | ≤ 2k
Y

j∈Ω

|γj | ≤ 2k max
j∈Ω
|γj |

k ≤ 2kM(A)k.

Recall [34,20] that disc(A) = lead (A)2d−2 ∏
i<j (γi − γj)

2. For the right in-
equality we consider the absolute value of the discriminant of A:

| disc(A)| = | lead (A) |2d−2
Q

i<j |γi − γj |
2

= | lead (A) |2d−2
Q

(i,j)∈Ω |γi − γj |
2

Q
(i,j)/∈Ω |γi − γj |

2 ⇔p
| disc(A)| = | lead (A) |d−1 Q

(i,j)∈Ω |γi − γj |
Q

(i,j)/∈Ω |γi − γj |

We consider the product
∏

(i,j)/∈Ω |γi − γj | and we apply d(d−1)
2 − k times in-

equality (4), thus

Q
(i,j)/∈Ω |γi − γj | ≤ 2

d(d−1)
2

−k |γ1|
0|γ2|

1 · · · |γd|
d−1 (

Q
j∈Ω |γj |)

−1

≤ 2
d(d−1)

2
−kM(A)d−1| lead (A) |1−dM(A)k

(5)

where we used the inequality |γ1|0|γ2|1 · · · |γd|d−1 ≤ |M(A)/ lead (A) |d−1, and
the fact [20] that, since ∀i, |γi| ≥ M(A)−1, we have

∏
j∈Ω |γj | ≥ |γ1|k ≥

M(A)−k. Thus
∏

(i,j)∈Ω |γi − γj | ≥ 2k− d(d−1)
2 M(A)1−d−k

√
| disc(A)|. ⊓⊔

A similar theorem but with more strict hypotheses on the roots first appeared
in [11] and the conditions were generalized in [13]. Th. 4 has a factor 2d2

instead
of dd in [11,13], which plays no role when d = O(τ) or when notation with N is
used. Possibly a more involved proof of Th. 4 may eliminate this factor [22].

Remark 2. There is a simple however crucial observation about Th. 3. When
the transformed polynomial has one (zero) sign variation, then the interval with

endpoints Pn−1

Qn−1
= [c0, . . . , cn−1] and Pn

Qn
= [c0, . . . , cn] isolates a positive real

root (a complex root with positive real part) of A, say γi. Then, in order for
Th. 3 to hold, it suffices to consider, instead of the separation bound ∆, the
quantity |γi − γci

|, where γci
is the (complex) root of A closest to γi.

Theorem 5. The CF algorithm performs at most O(d2 + dτ) steps.

Proof. Let 0 < |γ1| ≤ · · · ≤ |γk|, k ≤ d be the (complex) roots of A with positive
real part and let γci

denote the root of A that is closest to γi. We consider the
binary tree T generated during the execution of CF. The number of steps of CF
corresponds to the number of nodes in T , which we denote by #(T). We use
some arguments and the notation from [13] in order to prune T .

With each node v of T we associate a Möbius transformation Mv : X 7→
kX+l

mX+n , a polynomial Av and implicitly an interval Iv whose unordered endpoints
can be found if we evaluate Mv on 0 and on ∞. Recall that Av is produced
after Mv is applied to A. The root of T is associated with A, M(X) = X (i.e
k = n = 1, l = m = 0) and implicitly with the interval (0,∞).

Let a leaf u of T be type-i if its interval Iu contains i ≥ 0 real roots. Since
the algorithm terminates the leaves are type-0 or type-1. We will prune certain
leaves of T so as to obtain a certain subtree T ′. We remove every leaf that
has a sibling that is not a leaf. Now we consider the leaves that have a sibling
that is also a leaf. If both leaves are type-1, we arbitrary prune one of them. If
one of them is type-1 then we prune the other. If both leaves are type-0, this

means that the polynomial on the parent node has at least two sign variations
and thus that we are trying to isolate the (positive) real part of some complex
root. We keep the leaf that contains the (positive) real part of this root. And so
#(T) < 2 #(T ′).

Now we consider the leaves of T ′. All are type-0 or type-1. In both cases they
hold the positive real part of a root of A, the associated interval is |Iv| ≥ |γi−γci

|
(Rem. 2) and the number of nodes from a leaf to the root is ni, which is such
that the condition of Rem. 1 is satisfied. Since ni is the smallest index such that
the condition of Rem. 1 holds, if we reduce ni by one then the inequality does
not hold. Thus

Fni−2|γi − γci
| ≤ 2d2 ⇒ φni−3|γi − γci

| < 2d2 ⇒ ni < 4 + 2 lg d− lg |γi − γci
|

We sum over all ni to bound the nodes of T ′, thus

#(T ′) ≤
kX

i=1

ni ≤ 2k(2 + lg d)−
kX

i=1

log |γi − γci
| ≤ 2k(2 + lg d)− log

kY

i=1

|γi − γci
| (6)

So as to use Th. 4 we should rearrange
∏k

i=1 |γi − γci
| so that the require-

ments on the indices of roots are fulfilled. This can not be achieved when sym-
metric products occur and the worst case is when the product consists only of

symmetric products i.e
∏k/2

i=1 |(γj − γcj
)(γcj

− γj)|. Thus we consider the square

of the inequality of Th. 4 taking k
2 instead of k and disc(A) ≥ 1 (since A is

square-free), thus

Qk
i=1 |γi − γci

| ≥
“
2

k
2
−

d(d−1)
2 M(A)1−d−k

2

”2

− log
Qd

i=1 |γi − γci
| ≤ d2 − d− k + (2d + k − 2) lgM(A)

(7)

Eq. (6) becomes #(T ′) ≤ 2k(2+lg d)+d2−d−k+(2d+k−2) lgM(A). However
for Mahler’s measure it is known that M(A) ≤ 2τ

√
d + 1 ⇒ lgM(A) ≤ τ + lg d,

for d ≥ 2, thus #(T ′) ≤ 2k(2 + lg d) + d2 − d − k + (2d + k − 2)(τ + lg d). Since
#(T) < 2 #(T ′) and k ≤ d, we conclude that #(T) = O(d2 + d τ + d lg d). ⊓⊔

To complete the analysis of CF we have to compute the cost of every step that
the algorithm performs. In the worst case every step consists of a computation
of a positive lower bound b (Line 7) and three transformations, X 7→ b + X ,
X 7→ 1 + X and X 7→ 1

1+X (Lines 8, 9 and 11 in Alg. 1). Since inversion can be
performed in O(d), the complexity is dominated by the cost of the shift operation
(Line 8 in Alg. 1) if a small number of calls to PLB is needed in order to compute
a partial quotient. We will justify this in the end of the section. We also will use
the following theorem:

Theorem 6 (Fast Taylor shift). [33] Let A ∈ Z[X], with deg(A) = d and
L (A) = τ and let a ∈ Z, such that L (a) = σ. The cost of computing B =
A(a + X) ∈ Z[X] is OB(M

(
d2 lg d + d2σ + dτ

)
). Moreover L (B) = O(τ + dσ).

Initially A has degree d and bitsize τ . Evidently the degree does not change
after a shift operation. Each shift operation by a number of bitsize bh increases

100 200 300 400 500 600 700 800 900 1000

L
cf 0.27 2.24 9.14 25.27 55.86 110.13 214.99 407.09 774.22 1376.34
rs 0.65 3.65 13.06 35.23 77.21 151.17 283.43 527.42 885.86 1387.45

#roots 100 200 300 400 500 600 700 800 900 1000

C1
cf 0.11 0.85 3.16 8.61 19.67 38.23 77.75 139.18 247.11 414.51
rs 0.21 1.36 3.80 10.02 23.15 46.02 82.01 150.01 269.35 458.67

#roots 100 200 300 400 500 600 700 800 900 1000

C2
cf 0.11 0.77 3.14 8.20 19.28 38.58 73.59 133.52 233.48 386.61
rs 0.23 1.48 3.80 9.84 23.28 46.34 83.58 146.04 273.00 452.77

#roots 100 200 300 400 500 600 700 800 900 1000

W
cf 0.11 0.76 2.54 6.09 12.07 21.43 34.52 53.35 81.88 120.21
rs 0.09 0.59 2.25 6.34 14.62 29.82 55.47 104.56 179.23 298.45

#roots 100 200 300 400 500 600 700 800 900 1000

M1
cf 0.02 0.08 0.21 0.42 0.73 1.19 1.84 2.75 4.16 6.22
rs 7.83 287.27 1936.48 7328.86 * * * * * *

aberth 0.01 0.04 0.07 0.11 0.12 0.26 0.43 0.37 0.47 0.90
#roots 4 4 4 4 4 4 4 4 4 4

M2

cf 0.08 0.43 1.10 2.78 4.71 8.67 18.26 25.28 40.15 60.10
rs 1.24 144.64 1036.785 4278.275 12743.79 * * * * *

aberth 0.04 0.78 3.24 ? ? ? ? ? ? ?
#roots 8 8 8 8 8 8 8 8 8 8

R1

cf 0.001 0.04 0.07 0.33 0.06 0.37 0.66 0.76 1.03 1.77
rs 0.026 0.09 0.11 0.68 0.22 0.89 0.95 0.69 1.55 2.09

aberth 0.02 0.03 0.07 0.14 0.21 0.31 0.44 0.51 0.64 0.80
#roots 4 4 2 6 2 4 4 2 4 4

R2

cf 0.01 0.04 0.08 0.36 0.14 0.38 0.74 0.77 1.24 1.42
rs 0.05 0.23 0.47 1.18 0.81 1.64 2.68 3.02 4.02 4.88

aberth 0.01 0.05 0.08 0.14 0.23 0.33 0.44 0.55 0.67 0.83
#roots 4 4 4 6 4 4 6 4 6 4

Table 1. Experimental results.

the bit size of the polynomial by an additive factor d bh, in the worst case (Th. 6).

At the h−th step of the algorithm the polynomial has bit size O(τ + d
∑h

i=1 bi)
and we perform a shift operation by a number of bit size bh+1. Th. 6 states that

this can be done in OB

(
M

(
d2 lg d + d2bh+1 + d(τ + d

∑h
i=1 bi)

))
.

In order to bound
∑h+1

i=1 bi we use Eq. (2), which bounds E[bi]. By linearity

of expectation it follows that E[
∑h+1

i=1 bi] = O(h). Since h ≤ #(T) = O(d2 + dτ)
(Th. 5), the (expected) worst case cost of step h is OB(M

(
d2 lg d + dτ + d2(d2 + dτ)

)
)

or ÕB(d2(d2 + dτ)). Finally, multiplying by the number of steps, #(T), we con-

clude that the overall complexity is ÕB(d6+d5τ+d4τ2), or ÕB(d4τ2) if d = O(τ).
Now consider Ain ∈ Z[X], not necessarily square-free, with deg(Ain) = d

and L (Ain) = τ . Following [14,15] we compute the square-free part A of Ain

using Sturm-Habicht sequences in ÕB(d2τ) and L (A) = O(d + τ). Using CF
we isolate the positive real root of A and then, by applying the map X 7→ −X ,
we isolate the negative real roots. Finally, using the square-free factorization of
Ain, which can be computed in ÕB(d3τ), it is possible to find the multiplicities

in ÕB(d3τ). The previous discussion leads to the following theorem:

Theorem 7. Let A ∈ Z[X] (not necessarily square-free) such that deg(A) =
d > 2 and L (A) = τ . We can isolate the real roots of A and compute their

multiplicities in expected time ÕB(d6+d4τ2), or ÕB(N6), where N = max {d, τ}.

Rational roots and PLB (Positive Lower Bound) realization: If p
q is a root

of A then p divides a0 and q divides ad, thus in the worst case L (p/q) = O(τ) and
so the rational roots are isolated fast. Treating them as real algebraic numbers
leads to an overestimation of the number of iterations. There is one exception
to this good behavior of rational roots, namely when they are very large, well
separated, and we are interested in practical complexity [3], since then PLB must
be applied many times. In [25], the authors performed a small number of Newton
iterations in order to have a good approximation of a partial quotient. In [3,4],
this problem was solved by performing the transformation X 7→ bX , where b is
the computed bound, whenever b ≥ 16. We follow the latter approach so, after
Line 8 in Alg. 1, if b = PLB(A) ≥ 16, we apply X 7→ bX to polynomial A.

PLB(A) is computed as the inverse of an upper bound on the roots of XdA(1
X).

In general PLB(A) is applied more than once in order to compute some ci. How-
ever this number is very small [5,1]. Eq. (1) implies that the probability that a
partial quotient is ≤ 10 is ∼ 0.87, thus in general the partial quotients are of
small magnitude. In order to implement PLB we set PLB(A) = 2 maxaj<0 | aj

ad
|1/j ,

which is nearly optimal [18]. Actually this bound “[...] is to be recommended
among all”[31]. In our implementation we compute PLB only as powers of 2 so
that we can take advantage of fast operations as in [27]. Notice that PLB is not a
general bound on the roots, but a bound on the positive roots only, see [18,28].

5 Implementation and experiments

We have implemented cf in synaps [23], which is a C++ library for symbolic-
numeric computations. The implementation is based on gmp3 (v. 4.1.4) and
uses only transformations of the form X 7→ 2βX and X 7→ X + 1. We con-
sider square-free polynomials of degree ∈ {100, 200, . . . , 1000}. Following [27],
the first class of experiments concerns well-known ill-conditioned polynomi-
als: Laguerre (L), first (C1) and second (C2) kind Chebyshev, and Wilkinson
(W) polynomials. We also consider Mignotte (M1) polynomials Xd − 2(101X −
1)2, that have 4 real roots but two of them very close together, and prod-
ucts,

(
Xd − 2(101X − 1)2

) (
Xd − 2((101 + 1

101)X − 1)2
)
, of two such polyno-

mials (M2). Finally, we consider polynomials with random coefficients (R1), and
monic polynomials with random coefficients (R2) in the range [-1000, 1000], pro-
duced by maple, using 101 as a seed for the pseudo-random number generator.

We performed experiments against rs that implements a subdivision-based
algorithm using Descartes’ rule of sign with several optimizations and symbolic-
numeric techniques [27]. We used rs through its maple interface and with de-
fault options. Timings were reported by its function rs time(). We also test
aberth [6], a numerical solver with unknown (bit) complexity but very efficient
in practice, available through synaps. In particular, it uses multi-precision floats
and provides a floating-point approximation of all (real and complex) roots. Un-
fortunately, we were not always able to tune its behavior in order to produce the
correct number of real roots in all the cases.
3 www.swox.com/gmp/

So, in Table 1, we report experiments with cf, rs and aberth, where the
timings are in seconds. The asterisk (*) denotes that the computation did not
finish after 12000s and the question-mark (?) that we were not able to tune
aberth. The experiments were performed on a 2.6GHz PIII with 1GB RAM,
using g++ 3.3 with option -O3.

For (M1) and (M2), there are rational numbers with a very simple continued
fraction expansion that isolate the real roots which are close. These experiments
are extremely hard for rs. On (M1), aberth is the fastest and correctly com-
putes all real roots, but on (M2), which has 4 real roots close together, it is
slower than cf. cf is advantageous on (W) since, as soon as a real root is found,
transformations of the form X 7→ X +1 rapidly produce the other real roots. We
were not able to tune aberth on (W). For (L), (C1) and (C2), cf is comparable
to rs, while we were not able to appropriately tune aberth to produce the cor-
rect number of real roots. The polynomials in (R1) and (R2) have few and well
separated roots, thus the semi-numerical techniques of rs isolate all roots using
only 63 bits of accuracy. aberth is even faster on these experiments. However,
even in this case, cf is only a little slower than aberth. Finally, we tested a
univariate polynomial that appears in the Voronoi diagram of ellipses [16]. The
polynomial has degree 184, coefficient bitsize 903, and 8 real roots. cf solves it
in 0.12s, rs in 0.3s and aberth in 1.7s. We have to mention, as F. Rouillier
pointed out to us, that rs can be about 30% faster in (L), (C1) and (C2), if we
use it with the (non-default) option precision=0.

Acknowledgments: Both authors acknowledge fruitful discussions with A. Akri-

tas and B. Mourrain. The first author is also grateful to M. Mignotte, F. Rouillier and

D. Stefanecu for various discussions and suggestions. Both authors acknowledge partial

support by IST Programme of the EU as a Shared-cost RTD (FET Open) Project under

Contract No IST-006413-2 (ACS - Algorithms for Complex Shapes).

References

1. A. Akritas. An implementation of Vincent’s theorem. Numerische Mathematik,
36:53–62, 1980.

2. A. Akritas. There is no ”Uspensky’s method”. Extended Abstract. In Proc. Symp.
on Symbolic and Algebraic Computation, pp. 88–90, Waterloo, Canada, 1986.

3. A. Akritas, A. Bocharov, and A. Strzébonski. Implementation of real root isolation
algorithms in Mathematica. Abstracts of Interval’94, pp. 23–27, Russia, 1994.

4. A. Akritas and A. Strzebonski. A comparative study of two real root isolation
methods. Nonlinear Analysis: Modelling and Control, 10(4):297–304, 2005.

5. A.G. Akritas. Elements of Computer Algebra with Applications. J. Wiley & Sons,
New York, 1989.

6. D. Bini and G. Fiorentino. Design, analysis, and implementation of a multiprecision
polynomial rootfinder. Numerical Algorithms, pp. 127–173, 2000.

7. E. Bombieri and A. van der Poorten. Continued fractions of algebraic numbers. In
Computational algebra and number theory, pp. 137–152. Kluwer, Dordrecht, 1995.

8. R. Brent, A. van der Poorten, and H. Riele. A comparative study of algorithms
for computing continued fractions of algebraic numbers. In Henri Cohen, editor,
ANTS, volume 1122 of LNCS, pp. 35–47. Springer, 1996.

9. G. Collins and A. Akritas. Polynomial real root isolation using Descartes’ rule of
signs. In SYMSAC ’76, pp. 272–275, New York, USA, 1976. ACM Press.

10. G.E. Collins and R. Loos. Real zeros of polynomials. In B. Buchberger, G.E.
Collins, and R. Loos, editors, Computer Algebra: Symbolic and Algebraic Compu-
tation, pp. 83–94. Springer-Verlag, Wien, 2nd edition, 1982.

11. J. H. Davenport. Cylindrical algebraic decomposition. Technical Report 88–10,
School of Mathematical Sciences, University of Bath, England, 1988.

12. Z. Du, V. Sharma, and C. K. Yap. Amortized bound for root isolation via Sturm
sequences. In D. Wang and L. Zhi, editors, Int. Workshop on Symbolic Numeric
Computing, pp. 81–93, School of Science, Beihang University, Beijing, China, 2005.

13. A. Eigenwillig, V. Sharma, and C. Yap. Almost tight complexity bounds for the
Descartes method. (to appear in ISSAC 2006), 2006.

14. I. Emiris and E. P. Tsigaridas. Computations with one and two algebraic numbers.
Technical report, ArXiv, Dec 2005.

15. I. Z. Emiris, B. Mourrain, and E. P. Tsigaridas. Real Algebraic Numbers: Com-
plexity Analysis and Experimentation. RR 5897, INRIA, Apr 2006.

16. I.Z. Emiris, E.P. Tsigaridas, and G.M. Tzoumas. The predicates for the Voronoi
diagram of ellipses. In Proc. 24th Annual ACM SoCG, pp. 227–236, 2006.

17. A. Khintchine. Continued Fractions. University of Chicago Press, Chicago, 1964.
18. J. Kioustelidis. Bounds for the positive roots of polynomials. Journal of Compu-

tational and Applied Mathematics, 16:241–244, 1986.
19. W. Krandick and K. Mehlhorn. New bounds for the Descartes method. JSC,

41(1):49–66, Jan 2006.
20. M. Mignotte. Mathematics for computer algebra. Springer-Verlag, New York, 1991.
21. M. Mignotte and D. Stefanescu. Polynomials. Springer, 1999.
22. M. Mignotte. On the Distance Between the Roots of a Polynomial. Appl. Algebra

Eng. Commun. Comput., 6(6):327–332, 1995.
23. B. Mourrain, J. P. Pavone, P. Trébuchet, and E. Tsigaridas. SYNAPS, a library for

symbolic-numeric computation. In 8th MEGA, Italy, 2005. Software presentation.
24. V. Pan. Solving a polynomial equation: Some history and recent progress. SIAM

Rev., 39(2):187–220, 1997.
25. R. Richtmyer, M. Devaney, and N. Metropolis. Continued fraction expansions of

algebraic numbers. Numerische Mathematik, 4:68–64, 1962.
26. D. Rosen and J. Shallit. A continued fraction algorithm for approximating all real

polynomial roots. Math. Mag, 51:112–116, 1978.
27. F. Rouillier and Z. Zimmermann. Efficient isolation of polynomial’s real roots. J.

of Computational and Applied Mathematics, 162(1):33–50, 2004.
28. D. Stefanescu. New bounds for the positive roots of polynomials. Journal of

Universal Computer Science, 11(12):2132–2141, 2005.
29. J. V. Uspensky. Theory of Equations. McGraw-Hill, 1948.
30. A. van der Poorten. An introduction to continued fractions. In Diophantine anal-

ysis, pp. 99–138. Cambridge University Press, 1986.
31. A. van der Sluis. Upper bounds for the roots of polynomials. Numerische Mathe-

matik, 15:250–262, 1970.
32. A. J. H. Vincent. Sur la résolution des équations numériques. J. Math. Pures

Appl., 1:341–372, 1836.
33. J. von zur Gathen and J. Gerhard. Fast Algorithms for Taylor Shifts and Certain

Difference Equations. In ISSAC, pp. 40–47, 1997.
34. C.K. Yap. Fundamental Problems of Algorithmic Algebra. Oxford University Press,

New York, 2000.

	Univariate polynomial real root isolation: Continued Fractions revisited
	Elias P. Tsigaridas and Ioannis Z. Emiris

