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ABSTRACT
We present algorithmic, complexity and implementation re-
sults for the problem of isolating the real roots of a univari-
ate polynomial in Bα ∈ L[y], where L = (Q(α) is a simple
algebraic extension of the rational numbers. We revisit two
approaches for the problem. In the first approach, using
resultant computations, we perform a reduction to a poly-
nomial with integer coefficients and we deduce a bound of

ÕB(N
10) for isolating the real roots of Bα, where N is an

upper bound on all the quantities (degree and bitsize) of the
input polynomials. In the second approach we isolate the
real roots working directly on the polynomial of the input.
We compute improved separation bounds for the roots and
we prove that they are optimal, under mild assumptions.
For isolating the real roots we consider a modified Sturm
algorithm, and a modified version of descartes’ algorithm
introduced by Sagraloff. For the former we prove a complex-

ity bound of ÕB(N
8) and for the latter a bound of ÕB(N

7).
We implemented the algorithms in C as part of the core li-
brary of mathematica and we illustrate their efficiency over
various data sets. Finally, we present complexity results for
the general case of the first approach, where the coefficients
belong to multiple extensions.

Categories and Subject Descriptors: F.2 [Theory of
Computation]: Analysis of Algorithms and Problem Com-
plexity; I.1 [Computing Methodology]: Symbolic and alge-
braic manipulation: Algorithms

Keywords real root isolation, algebraic polynomial, field
extension, separation bounds, Sturm, Descartes’ rule of sign

General Terms Algorithms, Experimentation, Theory

1. INTRODUCTION
Real root isolation is a very important problem in com-

putational mathematics. Many algorithms are known for
isolating the real roots of a polynomial with integer or ra-
tional coefficients that are either based solely on operations
with rational numbers, [8, 13, 24, 29] and references therein,
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or they follow a numerical, but certified approach, [25, 33]
and references therein. In this paper we consider a variation
of the problem in which the coefficients of the polynomial
are polynomial functions of a real algebraic number, that is
they belong to a simple algebraic extension of the rationals.

Problem 1. Let α be a real algebraic number with iso-
lating interval representation α ∼= (A, I), where A =∑m

i=0 ai x
i, I = [a1, a2], a1,2 ∈ (Q and deg(A) = m

and L (A) = τ . Let Bα =
∑n

i=0 bi(α) y
i ∈ ZZ(α)[y]

be square-free, where bi(x) =
∑ηi

j=0 ci,j x
j ∈ ZZ[x],

L (ci,j) ≤ σ, and ηi < m, for 0 ≤ i ≤ d. What is the
Boolean complexity of isolating the real roots of Bα?

Rump [31], see also [30], presented an algorithm for the
problem that is an extension of Collins and Loos [6] algo-
rithm for integral polynomials. Johnson [17] presented and
compared various algorithms for Problem 1. He considered a
norm based algorithm that reduces the problem to root iso-
lation of integral polynomial (this is the approach that we
consider in Sec. 3) and extended three algorithms used for
integral polynomials, i.e. Sturm (we present it in Sec. 4.2),
the algorithm based on derivative sequence and Rolle’s the-
orem [6], and the algorithm based on Descartes’ rule of sign
[5] (we present a modified version in Sec. 4.3). Johnson and
Krandick [16] modified the latter and managed to replace
exact arithmetic, when possible, with certified floating point
operations; a novelty that speeds up considerably the com-
putations. Along the same lines, Rouillier and Zimmermann
[29] presented an optimal in terms of memory used algo-
rithm for integral polynomials that exploits adaptive mul-
tiprecision techniques that could be used for Problem 1, if
we approximate the real algebraic number up to a sufficient
precision. In a series of works [11, 12, 22] a bitstream ver-
sion of Descartes’ algorithm was introduced. The coefficients
of the input polynomial are considered to be real numbers
that we can approximate up to arbitrary precision. We use
the most recent version of this approach, which is due to
Sagraloff [32], to tackle Problem 1. Last but not least, let us
also mention the numerical algorithms due to Pan [25] and
Schönhage [33], that could be also used if approximate α in
our problem up to a sufficient precision.

Rioboo [28] considered various symbolic algorithms for op-
erations with real algebraic numbers, based on quasi Sylvester
sequences. These algorithms could be used for Problem 1,
and they are closely connected with the Sturm algorithm



that we present (Sec. 4.2). However, we use different subal-
gorithms for sign evaluations and solving polynomials. The
focus in [28] is on efficient implementation of the real closure
in axiom.
Problem 1 is closely related to real root isolation of of

triangular systems and regular chains. In [4, 20, 38, 39] al-
gorithms and implementations are presented for isolating the
real roots of triangular polynomial systems, based on interval
arithmetic and the so-called sleeve polynomials. In the case
of two variables the problem at study is similar to Problem 1.
In this line of research the coefficients of the algebraic poly-
nomial are replaced with sufficiently refined intervals, hence
obtaining upper and lower bounds (i.e. a sleeve) for the
polynomial. Isolation is performed using evaluations and
exclusion predicates that involve the non-vanishing of the
derivative. To our knowledge there is no complexity analy-
sis of the algorithms. Neverthelss in [4] evaluation bounds
are presented, which are crucial for the termination of the
algorithm, based on separation bounds of polynomial sys-
tems. However, the systems used for the bounds involve the
derivative of the polynomial (this is needed for the exclusion
criterion), which is not the case for our approach. In [3] the
problem of real root isolation of 0-dim square-free regular
chains is considered. A generalization of Vincent-Collins-
Akritas (or Descartes) algorithm is used to isolate the real
roots of of polynomials with real algebraic numbers as coef-
ficients. This approach is similar to the direct strategy that
we study. To our knowledge the authors do not present a
complexity analysis since they focus on efficient algorithms
and implementation in maple.
We revisit two approaches for isolating the real roots of a

square-free polynomial with coefficients in a simple algebraic
extension of the rational numbers. The first, indirect, ap-
proach (Sec. 3), already presented in [17], is to find a polyno-
mial with integer coefficients which is zero at all roots of Bα,
isolate its real roots, and identify the intervals which contain
the roots of Bα. We compute (aggregate) separation bounds
for the resulting polynomial (Lem. 7), that are slightly bet-
ter than the ones in [31], and prove that the complexity of

the algorithm is ÕB(N
10), where N is an upper bound on

all the quantities (degrees and bitsizes) of the input. The
second approach (Sec. 4.1) is to isolate the roots of the in-
put polynomial directly, using either the Sturm’s algorithm
or Sagraloff’s modified Descartes algorithm. We analyze the
worst-case asymptotic complexity of the algorithms and we

obtained a bound of ÕB(N
8) and ÕB(N

7), respectively. We
obtain these complexity bounds by estimating improved sep-
aration bounds for the roots (Sec. 4.1 and Lem. 9), that we
also prove that they are optimal (Sec. 4.4). The bounds are
better than the previously known ones [17, 30] by a factor
of N . We empirically compare the performance of the indi-
rect approach and the direct approach based on Sagraloff’s
modified Descartes algorithm. The algorithms were imple-
mented in C as part of the core library of mathematica,
and we illustrate their behavior on various datasets (Sec. 5).
The complexity bounds that we present are many factors
better that the previously known ones. However, a fair and
explicit comparison with the bounds in [17] is rather diffi-
cult, if possible at all, since, besides the improved separation
bounds that we present, the complexity bounds of many sub-
algorithms that are used have been dramatically improved
over the last 20 years, and it is not clear how to take this
into account in the comparison.

Finally, we present a generalization of the first approach
to the case where the input polynomials are univariate, but
with coefficients that belong to multiple extensions (Sec. 6).
We derive (aggregate) separation bounds for this case (Lem. 12)
and we sketch the overall complexity of the algorithm. The
bounds are single exponential with respect to the number of
extensions.

Notation. OB means bit complexity and the ÕB-notation
means that we are ignoring logarithmic factors. For A =∑d

i=1 aix
i ∈ ZZ[x], deg(A) denotes its degree. L (A) denotes

an upper bound on the bitsize of the coefficients of A, includ-
ing a bit for the sign. For a ∈ (Q, L (a) ≥ 1 is the maximum
bitsize of the numerator and the denominator.

If α1, . . . , αd are the distinct, possible complex, roots of
A, then ∆i = |αi − αci |, where αci is the roots closest to
αi. ∆(A) = mini ∆i(A) is the separation bound, that is the
smallest distance between two (real or complex, depending
on the context) roots of A. By Σ(A) = −

∑n
i=1 lg∆i(A),

we denote the numbers of bits needed to represent isolating
rational numbers for all the roots of A.

Given two polynomials, possible multivariate, f and g,
then resx(f, g) denotes their resultant with respect to x.

2. PRELIMINARIES
Real algebraic numbers are the real roots of univariate

polynomials with integer coefficients; let their set be IRalg.
We represent them in the so-called isolating interval repre-

sentation. If α ∈ IRalg then the representation consists of a
square-free polynomial with integer coefficients, A ∈ ZZ[x],
that has α as a real root, and an isolating interval with ra-
tional endpoints, I = [a1, a2], that contains α and no other
root of the polynomial. We write α ∼= (A, I).

The following proposition provides various bounds for the
roots of a univariate polynomial. Various versions of the
proposition could be found in e.g. [8, 10, 36]. We should
mention that the constants that appear are not optimal. For
multivariate bounds we refer to [15].

Proposition 1. Let f be a univariate polynomial of degree
p. If γi are the distinct real roots of f , then it holds

|γi| ≤ 2‖f‖∞ ≤ 2τ+1 , (1)

− lg∆(f) ≤ −
1

2
lg |3 disc(fred)|+

p+ 2

2
lg(p) +

(p− 1) lg‖fred‖2 (2)

≤ 2p lg p+ pτ ,

−
∑

i

lg∆i(f) ≤ −
1

2
lg |disc(fred)|+

p2 − p− 2

2
+

(2p− 1) lg‖fred‖2 (3)

≤ 3p2 + 3pτ + 4p lg p ,

where fred is the square-free part of f , and the second in-
equalities hold if we consider f ∈ ZZ[x] and L (f) = τ .

Proposition 2. Let f ∈ ZZ[x] have degree p and bitsize τ .
We compute the isolating interval representation of its real

roots and their multiplicities in ÕB(p
5+p4τ+p3τ2) [32, 35].

The endpoints of the isolating intervals have bitsize O(p2 +
p τ) and L (fred) = O(p + τ), where fred is the square-free
part of f . If N = max{p, τ} then complexity bound for

isolation becomes ÕB(N
5).



Proposition 3. [9, 14] Given a real algebraic number α ∼=
(f, [a, b]), where L (a) = L (b) = O(p2 + pτ), and g ∈ ZZ[x],
such that deg(g) = q, L (g) = σ, we compute sign(g(α)) in

bit complexity ÕB(pqmax{τ, σ}+ pmin{p, q}2τ).

For the proofs of the following results the reader may
refer to [9]. Let f, g ∈ (ZZ[x])[y] such that degx(f) = p,
degx(g) = q, degy(f), degy(g) ≤ d, τ = max(L (f) ,L (g)).
By SR(f, g ; a) we denote the evaluation of the signed poly-
nomial remainder sequence of f and g with respect to x over
a, and by SRj(f, g ; a) the j-th element in this sequence.

Proposition 4. We can compute res(f, g) w.r.t. x or y in

ÕB(pqmax{p, q}dτ).

Proposition 5. We compute SR(f, g ; a), where a ∈ (Q ∪

{∞} and L (a) = σ, in ÕB(pqmax{p, q}dmax{τ, σ}). For
the polynomials SRj(f, g ; a) ∈ ZZ[y], except for f, g, we have
degy(SRj(f, g ; a)) = O((p + q)d) and L (SRj(f, g ; a)) =
O(max{p, q}τ +min{p, q}σ).

3. REDUCTION TO INTEGER COEFFICIENTS

3.1 Some useful bounds
The roots of Bα in Problem 1 are algebraic numbers, hence

they are roots of a polynomial with integer coefficients. We
estimate bounds on the degree and the bitsize of this poly-
nomial, and we will use them to analyze the Boolean com-
plexity of the real root isolation algorithm.
Consider a real algebraic number α ∈ IRalg, in isolating

interval representation α ∼= (A, I), where A =
∑m

i=0 ai x
i,

I = [a1, a2], a1,2 ∈ (Q and deg(A) = m and L (A) = τ .
Since A is square-free, has m, possible complex, roots, say
α1, α2, . . . , αm and after a (possible) reordering let α = α1.
Let Bα ∈ ZZ(α)[y], be a univariate polynomial in y, with

coefficients that are polynomials in α with integer coeffi-
cients. More formally, let Bα =

∑n
i=0 bi(α) y

i, where bi(x) =∑ηi
j=0 cij x

j and ηi < m, 0 ≤ i ≤ d. The restriction ηi < m

comes from the fact that ZZ(α) is a vector space of dimension1

m and the elements of one of its bases are 1, α, . . . , αm−1.
Finally, let L (Bα) = maxi,j L (cij) = σ. We assume that
Bα is a square-free.
Our goal is to isolate the real roots of Bα (Problem 1).

Since Bα has algebraic numbers as coefficients, its roots are
algebraic numbers as well. Hence, there is a polynomial with
integer coefficients that has as roots the roots of Bα, and
possible other roots as well. To construct this polynomial,
e.g. [8, 17, 19], we consider the following resultant w.r.t. x

R(y) = resx(B(x, y), A(x)) = (−1)mη aη
m

m∏

j=1

B(αj , y), (4)

where η = max{ηi}, and B(x, y) ∈ ZZ[x, y] is obtained from
Bα after replacing all the occurrences of α with x. Inter-
preting the resultant using the Poisson formula, R(y) is the
product of polynomials B(αj , y), where j ranges over all the
roots of A. Our polynomial Bα ∈ ZZ(α)[y] is the factor in
this product for j = 1. Hence, R has all the roots that Bα

has and maybe more.
1If A is the minimal polynomial of α then the dimension is
exactly m. In general it is not (computational) easy to com-
pute the the minimal polynomial of a real algebraic number,
thus we work with a square-free polynomial that has it as
real root.

Remark 6. Notice that R(y) is not square-free in general.
For example consider the polynomial Bα = y4 − α2, where
α is the positive root of A = x2 − 3. In this case R(y) =
resx(A(x), B(x, y) = resx(x

2 − 3, y2 − x2) = (y4 − 3)2.

Using Prop. 14 and by taking into account that ηi < m, we
get deg(R) ≤ mn and L (R) ≤ m(τ + σ) + 2m lg(4mn). We

may also write deg(R) = O(mn) and L (R) = Õ(m(σ + τ)).
In order to construct an isolating interval representation

for the real roots of Bα, we need a square-free polynomial.
This polynomial, C(y) ∈ ZZ[y], is a square factor of R(y), and
so it holds deg(C) ≤ mn and L (C) ≤ m(τ+σ)+3m lg(4mn),
where the last inequality follows from Mignotte’s bound [23].

Using the Prop. 1, we deduce the following lemma:

Lemma 7. Let Bα be as in Problem 1. The minimal poly-
nomial, C ∈ ZZ[x], of the, possible complex, roots of Bα, γi,
has degree ≤ mn and bitsize ≤ m(τ + σ) + 3m lg(4mn)) or

Õ(m(τ + σ)). Moreover, it holds

|γi| ≤ 2m(τ+σ)+2m lg(4mn) , (5)

− lg∆(C) ≤ m2n(τ + σ + 4 lg(4mn)) , (6)

−
∑

i

lg∆i(C) ≤ 3m2n(n+ τ + σ + 6 lg(4mn)) , (7)

|γi| ≤ 2Õ(m(τ+σ)) , (8)

− lg∆(C) = Õ(m2n(τ + σ)) , (9)

Σ(C) = −
∑

i

lg∆i(C) = Õ(m2n(n+ τ + σ)) . (10)

3.2 The algorithm
The indirect algorithm for Problem 2, follows closely the

procedure described in the previous section to estimate the
various bounds on the roots of Bα. First, we compute the
univariate polynomial with integer coefficients, R, such that
the set of its real roots includes those of Bα. We isolate the
real roots of R and we identify which ones are roots of Bα.

Let us present in details the three steps and their com-
plexity. We compute R using resultant computation, as pre-
sented in (4). For this we consider B as a bivariate polyno-
mial in ZZ[x, y] and we compute resx(B(x, y), A(x)), using
Prop. 4. Since degx(B) < m, degy(B) = n, L (B) = σ,
degx(A) = m, degy(A) = 0 and L (A) = τ , this computa-

tion costs ÕB(m
3n(σ + τ)), using Prop. 4.

Now we isolate the real roots of R. This can be done
in ÕB(m

4n3(mn2 +mnτ + n2σ +mτ2 +mσ2 +mτσ)), by
Prop. 2. In the same complexity bound we can also compute
the multiplicities of the real roots, if needed [14].

The rational numbers that isolate the real roots of R have
bitsize bounded by Õ(m2n(n+σ+τ)), which is also a bound
on the bitsize of all of them, as Prop. 1 and Lem. 7 indicate.

It is possible that R can have more roots that Bα, thus
it remains to identify which real roots of R are roots of Bα.
For sure all the real roots of Bα are roots of R. Consider a
real root γ of R and its isolating interval [c1, c2]. If γ is a
root of Bα, then since Bα is square-free, by Rolle’s theorem
it must change signs if we evaluate it over the endpoints of
the isolating interval of γ. Hence, in order to identify the
real roots of R that are roots of Bα it suffices to compute the
sign of Bα over all the endpoints of the isolating intervals.

We can improve the step that avoids the non-relevant roots
of R by applying the algorithm for chainging the ordering of



a bivariate regular chain [26]. However, currently, this step
is not the bottleneck of the algorithm so we do not elaborate
further.
Consider an isolating point of R, say cj ∈ (Q, of bitsize

sj . To compute the sign of the evaluation of Bα over it, we
proceed as follows. First we perform the substitution y = cj ,
and after clearing denominators, we get a number in ZZ[α],
for which we want to compute its sign. This is equivalent to
consider the univariate polynomial B(x, cj) and to compute
its sign if we evaluate it over the real algebraic number α.

We have deg(B(x, cj)) = O(m) and L (B(x, cj)) = Õ(σ +

nsj). Hence the sign evaluation costs ÕB(m
3τ + m2σ +

m2nsj) using Prop. 3. Summing up over all sj ’s, there are

O(mn), and taking into account that
∑

j sj = Õ(m2n(σ +

τ + n)) (Lem. 7), we conclude that the overall complexity

of identifying the real roots of Bα is ÕB(m
4n3 + m4nτ +

m3nσ +m4n2(σ + τ)).
The overall complexity of the algorithm is dominated by

that of real solving. We can state the following theorem:

Theorem 8. The complexity of isolating the real roots of

B ∈ ZZ(α)[y] using the indirect method is ÕB(m
4n3(mn2 +

mnτ + n2σ +mτ2 +mσ2 +mτσ)). If N = max{m,n, σ, τ},

then the previous bounds become ÕB(N
10).

If the polynomial Bα is not square-free then we can apply
the algorithm of [37] to compute its square-free factoriza-
tion and then we apply the previous algorithm either to the
square-free part or to each polynomial of the square-free fac-
torization. The complexity of the square-free factorization

is ÕB(m
2n(σ2 + τ2) +mn2(σ + τ)), and does not dominate

the aforementioned bound.

4. TWO DIRECT APPROACHES
The computation of R, the polynomial with integer co-

efficients that has the real roots of Bα is a costly opera-
tion that we usually want to avoid. If possible, we would
like to try to solve the polynomial Bα directly, using one of
the well-known subdivision algorithms, for example strum

or descartes and bernstein, specially adopted to handle
polynomials that have coefficients in an extension field. In
practice, this is accomplished by obtaining, repeatedly im-
proved, approximations of the real algebraic number α and
subsequently apply descartes or bernstein for polynomi-
als with interval coefficients, e.g. [16, 29].
The fact that we compute the roots using directly the rep-

resentation of Bα allows us to avoid the complexity induced
by the conjugates of α. This leads to improved separation
bounds, and to faster algorithms for real root isolation.

4.1 Separation bounds forBα

We compute various bounds on the roots of Bα based on
the first inequalities of Prop. 1. For this we need to compute
a lower bound for |disc(Bα)| and an upper bound for ‖Bα‖2.
First we compute bounds on the coefficients on Bα. Let

α1 = α, α2, . . . , αm be the roots of A. We consider the re-
sultants

ri := resx(A(x), z−bi(x)) = resx

(
A(x), z −

ηi∑

j=0

ci,jx
j

)
∈ ZZ[z] .

It holds that

ri(z) = aη
m

m∏

k=1

(z − bi(αk)) ,

where η = max{ηi} < m. The roots of ri are the numbers
bi(αk), where k runs over all the roots of A. We use Prop. 14
to bound the degree and bitsize of ri. The degree of ri is
bounded by m and their coefficient are of bitsize ≤ mσ +
mτ + 5m lg(m). Using Cauchy’s bound, we deduce

2−mσ−mτ−5m lg(m) ≤ |bi(αk)| ≤ 2mσ+mτ+5m lg(m) , (11)

for all i and k. To bound |disc(Bα)| we consider the identity

disc(Bα) =(−1)
1
2
n(n−1) 1

bn(α)
resy(Bα, ∂Bα(y)/∂y)

=(−1)
1
2
n(n−1) 1

bn(α)
RB(α) ,

where the resultant, RB ∈ ZZ[α], can be computed as the
determinant of the Sylvester matrix of Bα and ∂Bα(y)/∂y,
evaluated over α.

The Sylvester matrix is of size (2n − 1) × (2n − 1), the
elements of which belong to ZZ[α]. The determinant con-
sists of (2n − 1)! terms. Each term is a product of n − 1
polynomials in α of degree at most m − 1 and bitsize at
most σ, times a product of n polynomials in α of degree at
most m − 1 and bitsize at most σ + lg n. The first product
results a polynomial of degree (n − 1)(m − 1) and bitsize
(n− 1)σ + (n− 1) lgm. The second product results polyno-
mials of degree n(m− 1) and bitsize nσ lg n+ n lgm. Thus,
any term in the determinant expansion is a polynomial in α
of degree at most (2n − 1)(m − 1), or O(mn), and bitsize

at most 4(2n − 1)σ lg(mn) or Õ(nσ). The determinant it-
self, is a polynomial in α of degree at most mn and of bitsize
4(2n−1)σ lg(mn)+(2n−1) lg(2n−1) ≤ 5(2n−1)σ lg(mn) =

Õ(nσ).
To compute a bound on RB(α) we consider RB as a poly-

nomial in ZZ[y], and we compute a bound on its evaluation
over α. For this we use resultants. It holds

D = resx(A(x), y −RB(x)) = adeg(RB)
m

m∏

i=1

(y −RB(αi)) .

We notice that the roots of D ∈ ZZ[x] are the evaluations of
RB over the roots of A. So it suffices to compute bounds on
the roots of D. Using Prop. 14 we deduce that deg(D) ≤ m

and L (D) ≤ 13mnσ lg(mn)+mnτ or L (D) = Õ(mn(σ+τ)).
Using Cauchy bound, refer to Eq. (1), we conclude that

2−13mnσ lg(mn)−mnτ ≤ |RB(α)| ≤ 213mnσ lg(mn)+mnτ .

Using this inequality and (11), we can bound |disc(Bα)|, i.e.

2−13mnσ lg(mn)−2mnτ ≤ |disc(Bα)| ≤ 213mnσ lg(mn)+2mnτ .
(12)

It remains to bound ‖Bα‖2. Using Eq. (11) we get

‖Bα‖
2
2 ≤

n∑

i=0

(bi(α))
2 ≤ (n+ 1) 22m(σ+τ+5 lg(m)) .

The previous discussion leads to the following lemma



Lemma 9. Let Bα be as in Problem 1, and ξi be its roots.
Then, it holds

|ξi| ≤ 2m(τ+σ+5 lgm) , (13)

− lg∆(Bα) ≤ 12mn(σ lg(mn) + τ + 5 lgm) ,(14)

−
∑

i

lg∆i(Bα) ≤ 14mn(σ lg(mn) + τ + 5 lgm) ,(15)

or

|ξi| ≤ 2Õ(m(τ+σ)) , (16)

− lg∆(Bα) = Õ(mn(τ + σ)) , (17)

Σ(Bα) = −
∑

i

lg∆i(Bα) = Õ(mn(τ + σ)) . (18)

4.2 Thesturm algorithm
Let us first study the sturm algorithm. We assume Bα

as in Problem 1 to be square-free. To isolate the real roots
of Bα using the sturm algorithm, we need to evaluate the
Sturm sequence of B(α, y) and its derivative with respect
to y, ∂B(α, y)/∂y, over various rational numbers. For the
various bounds needed we will use Lem. 9.
The number of steps that a subdivision-based algorithm,

and hence sturm algorithm, performs to isolate the real
roots of a polynomial depends on the separation bound. To
be more specific, the number of steps, (#T ), that sturm

performs is (#T ) ≤ 2r + r lgB + Σ(Bα) [8, 10], where r is
the number of real roots and B is an upper bound on the
real roots. Using (14) and (15) we deduce that (#T ) =

Õ(mn(τ + σ)).
To complete the analysis of the algorithm it remains to

compute the complexity of each step, i.e. the cost of eval-
uating the Sturm sequence over a rational number, of the
worst possible bitsize. The latter is induced by the separa-

tion bound, and in our case is Õ(mn(τ + σ)).
We consider B as polynomial in ZZ[x, y] and we evaluate

the Sturm-Habicht sequence of B and ∂B
∂y

, over rational num-

bers of bitsize Õ(mn(τ + σ)). The cost of this operation is

ÕB(m
2n4(τ + σ)) (Prop. 5).

It produces O(n) polynomials in ZZ[x], of degrees O(mn)

and bitsize Õ(nτ + nσ). For each polynomial we have to
compute its sign if we evaluate it over α. Using Prop. 3 each

sign evaluation costs ÕB(m(m2 + n2)τ +mn2σ), and so the

overall cost is ÕB(mn(m2 + n2)τ + mn3σ). If we multiply

the latter bound with the number of steps, Õ(mn(τ + σ)),
we get the following theorem.

Theorem 10. The complexity of isolating the real roots of

B ∈ ZZ(α)[y] using the sturm algorithm is ÕB(m
2n2(m2 +

n2)(τ2 + σ2)), or ÕB(N
8), where N = max{m,n, σ, τ}.

4.3 A modifieddescartes algorithm
We consider Sagraloff’s modified version of Descartes’ al-

gorithm [32], that applies to polynomials with bitstream co-
efficients. We also refer the reader to [12, 21].
As stated in Problem 1, let α be a real root of A =∑m
i=0 aix

i ∈ Z[x], where am 6= 0 and |ai| < 2τ for 0 ≤

i ≤ m, and let Bα =
∑n

i=0 bi(α)y
i ∈ Z[α][y], where bi =∑ηi

j=0 ci,jx
j ∈ ZZ[x] , ηi < m and |ci,j | < 2σ for 0 ≤ i ≤ n

and 0 ≤ j ≤ ηi, where we also assume that Bα is square-free.
Let ξ1, . . . , ξn be all (complex) roots of B, and ∆i(Bα) :=

minj 6=i|ξj − ξi|. By Theorem 19 of [32], the complexity of

isolating real roots of Bα is

ÕB(n(Σ(Bα) + nτB)
2) ,

where
∣∣∣ bi(α)
bn(α)

∣∣∣ ≤ 2τB and Σ(Bα) = −
∑n

i=1 lg(∆i(Bα)). From

Lem. 9 we get that

Σ(Bα) ≤ 14mn(τ + σ lg(mn)) + n lg n = Õ(mn(τ + σ)) .
(19)

To compute a bound on τB , we use Eq. (11). It holds∣∣∣ bi(αk)
bn(αk)

∣∣∣ ≤ 22mσ+2mτ+6m lg(m), for all i and k. Hence,

τB ≤ 2mσ + 2mτ + 6m lg(m) = Õ(m(σ + τ)) . (20)

Finally, by combining (19) and (20), we deduce that the
cost of isolating real roots of B is

ÕB(n(Σ(Bα) + nτB)
2) = ÕB(n(mnτ +mnσ)2)

= ÕB(m
2n3(σ2 + τ2)) .

If N = max{m,n, σ, τ}, then the bound becomes ÕB(N
7).

It remains to estimate the cost of computing the suc-
cessive approximations of bi(α)/bn(α). The root isolation
algorithm requires approximations of bi(α)/bn(α) to accu-
racy of O(Σ(Bα) + nτB) bits after the binary point. Since
|bi(α)/bn(α)| ≤ 2τB , to approximate each fraction, for 0 ≤
i ≤ n−1, to accuracy L, it is sufficient to approximate bi(α),
for 0 ≤ i ≤ n, up to precision O(L + τB). Hence, the al-
gorithm requires approximation of bi(α), for 0 ≤ i ≤ n, to
precisionO(Σ(B)+nτB). By inequality (11), |bi(α)| ≥ 2−τB ,
and therefore it is sufficient to approximate bi(α) to accuracy
O(Σ(Bα) + nτB).

Approximation of ci,jα
j to accuracy of L bits requires ap-

proximation of α to accuracy of L + lg |ci,j | + lg(j) + (j −

1) lg |α| ≤ L+ σ+ lg(m) + (m− 1)(τ + 1) = Õ(L+ σ+mτ)
bits. Hence the accuracy of approximations of α required by
the algorithm is

O(Σ(Bα) + nτB) = Õ(mn(σ + τ)) .

By Lemmata 4.4, 4.5 and 4.11 of [18], the bit complexity
of approximating α to accuracy L is

Õ(m4τ2 +m2L) .

Therefore, the bit complexity of computing the required ap-
proximations of bi(α)/bn(α) is

Õ(m4τ2 +m2mn(σ + τ)) = Õ(m3(mτ2 + nσ + nτ)) .

Theorem 11. The bit complexity of isolating the real roots
of Bα of Problem 1 using the modified Descartes’ algorithm

in [32] is ÕB(m
2n3(σ2 + τ2) + m3(mτ2 + nσ + nτ)), or

ÕB(N
7), where N = max{m,n, σ, τ}.

4.4 Almost tight separation bounds
Let α be the root of A(x) = xm−axm−1−1, in (a, a+1), for

a ≥ 3, m ≥ 3. Then the Mignotte polynomial Bα(y) = yn −
2(αky−1)2, where k = ⌊(m−1)/2⌋, has two roots in (1/αk−

h, 1/αk + h), where h = α−k(n+2)/2 < a−(m−2)(n+2)/4.
If a ≤ 2τ and τ = Ω(lg(mn)), then − lg∆(Bα) = Ω(mnτ),

which matches the upper bound in (15) of Lem. 9. This
quantity, Ω(mnτ), is also a tight lower bound for the num-
ber of steps that an subdivision based algorithm performs,
following the arguments used in [13] to prove a similar bound
for polynomials with integer coefficients.



n Algorithm m = 2 m = 3 m = 5 m = 10 m = 20

10 ICF 0.003 0.006 0.013 0.082 0.820
BMD 0.002 0.002 0.003 0.006 0.019

20 ICF 0.004 0.010 0.048 1.49 2.80
BMD 0.008 0.008 0.010 0.017 0.053

50 ICF 0.014 0.044 0.271 8.29 20.5
BMD 0.046 0.050 0.061 0.079 0.213

100 ICF 0.047 0.173 1.09 33.1 108
BMD 0.165 0.206 0.137 0.246 0.546

200 ICF 0.144 0.612 4.90 141 626
BMD 0.746 0.701 1.00 0.824 1.55

Table 1. Randomly generated polynomials

n Algorithm m = 2 m = 3 m = 5 m = 10 m = 20

10 ICF 0.011 0.008 0.032 0.208 1.75
BMD 0.007 0.007 0.009 0.010 0.015

20 ICF 0.019 0.041 0.193 1.50 13.9
BMD 0.075 0.071 0.080 0.088 0.106

50 ICF 0.122 0.270 1.51 25.8 338
BMD 1.78 1.63 1.83 1.90 2.27

100 ICF 0.834 2.17 16.1 365 10649
BMD 54.7 51.3 56.0 74.7 92.4

200 ICF 7.53 31.2 246 8186 > 36000
BMD 2182 3218 3830 4280 4377

Table 2. Generalized Laguerre polynomials

5. IMPLEMENTATION AND EXPERIMENTS
We compare implementations of two methods of real root

isolation for square-free polynomials over simple algebraic
extensions of rationals. The first method, ICF (for Inte-
ger Continued Fractions), performs reduction to integer co-
efficients described in Section 3.2. For isolating roots of
polynomials with integer coefficients it uses the mathemat-

ica implementation of the Continued Fractions algorithm
[1]. The second method, BMD (for Bitstream Modified
Descartes), uses Sagraloff’s modified version of Descartes’
algorithm ([32], see Section 4.3). The algorithm has been
implemented in C as a part of the mathematica system.
For the experiments we used a 64-bit Linux virtual ma-

chine with a 3 GHz Intel Core i7 processor and 6 GB of RAM.
The timings are in given seconds. Computations that did not
finish in 10 hours of CPU time are reported as > 36000.

Randomly generated polynomials. For given values of m
and n each instance was generated as follows. First, uni-
variate polynomials of degree m with uniformly distributed
random 10-bit integer coefficients were generated until an
irreducible polynomial which had real roots was obtained.
A real root r of the polynomial was randomly selected as
the extension generator. Finally, a polynomial in Z[r, y] of
degree n in y and degree m − 1 in r with 10-bit random
integer coefficients was generated. The results of the exper-
iments are given in Table 1. Each timing is an average for
10 randomly generated problems.

Generalized Laguerre Polynomials. This example com-
pares the two root isolation methods for generalized Laguerre
polynomials Lα

n(x), where α was chosen to be the smallest
root of the Laguerre polynomial Lm(x). Note that Lα

n(x) has
n positive roots for any positive α and Lm(x) has m positive
roots, so this example maximizes the number of real roots
of both the input polynomial with algebraic number coeffi-
cients and the polynomial with integer coefficients obtained
by ICF. The results of the experiment are given in Table 2.

n Algorithm m = 2 m = 3 m = 5 m = 10 m = 20

10 ICF 0.017 0.012 0.035 0.285 2.09
BMD 0.015 0.013 0.011 0.015 0.008

20 ICF 0.029 0.069 0.262 2.23 18.3
BMD 0.059 0.052 0.069 0.039 0.027

50 ICF 0.137 0.356 2.04 45.4 429
BMD 1.84 1.35 1.29 0.703 0.561

100 ICF 0.808 2.84 24.6 674 8039
BMD 47.0 38.6 32.0 23.3 8.38

200 ICF 8.48 35.1 348 11383 > 36000
BMD 3605 2566 2176 927 565

Table 3. Generalized Wilkinson polynomials

n Algorithm m = 3 m = 5 m = 10 m = 20

10 ICF 0.003 0.008 0.049 0.594
BMD 0.010 0.006 0.014 0.036

20 ICF 0.006 0.027 0.288 8.83
BMD 0.015 0.020 0.049 0.137

50 ICF 0.041 0.441 12.2 777
BMD 0.112 0.147 0.321 0.854

100 ICF 0.866 11.6 729 28255
BMD 0.702 0.868 2.32 5.99

200 ICF 35.7 684 23503 > 36000
BMD 3.12 5.30 13.8 46.1

Table 4. Mignotte polynomials

Generalized Wilkinson Polynomials. This example uses
the following generalized Wilkinson polynomials Wn,α(x) :=∏n

k=1(x− kα), where α is the smallest root of the Laguerre
polynomial Lm(x). The timings are presented in Table 3.

Mignotte Polynomials. The variant of Mignotte polynomi-
als used in this example is given by Mn,α(x) := yn−2(αky−
1)2, where α is the root of Am(x) := xm−3xm−1−1 in (3, 4),
m ≥ 3 and k = ⌊(m− 1)/2⌋ (see Section 4.4). The results of
the experiment are given in Table 4.

The experiments suggest that for low degree extensions
ICF is faster than BMD, but in all experiments as the de-
gree of extension grows BMD becomes faster than ICF. An-
other fact worth noting is that ICF depends directly on the
extension degree m, since it isolates roots of a polynomial
of degree mn. On the other hand, the only part of BMD

that depends directly on m is computing approximations of
coefficients, which in practice seems to take a very small pro-
portion of the running time. The main root isolation loop
depends only on the geometry of roots, which depends on m
only through the worst case lower bound on root separation.
Indeed, in all examples the running time of ICF grows sub-
stantially withm, but the running time of BMD either grows
at a much slower pace or, in case of generalized Wilkinson
polynomials, it even decreases with m (because the smallest
root α of Lm(x), and hence the root separation of Wn,α(x),
increase with m). The superiority of the direct approach was
also observed in [17].

6. MULTIPLE EXTENSIONS
In this section we consider the problem of real root isola-

tion of a polynomials with coefficients in multiple extensions.
We tackle the problem using a reduction to a polynomial
with integer coefficients. The technique could be considered
as a generalization of the one presented in Sec. 3.

We use xe to denote the monomial xe1
1 · · ·x

eℓ
n , with e =

(e1, . . . , eℓ) ∈ INℓ. For a polynomial f =
∑m

j=1 cjx
ej ∈

ZZ[x], let {e1, . . . , em} ⊂ INℓ be the support of f ; its Newton
polytope Q is the convex hull of the support. By (#Q) we



denote the integer points of the polytope Q, i.e. (#Q) =
|Q ∩ ZZℓ|.

Problem 2. Let αj , where 1 ≤ j ≤ ℓ, be a real alge-
braic numbers. Their isolating interval representation is
αj

∼= (Aj , Ij), where Aj =
∑m

i=0 ai x
i
j , Ij = [aj,1, aj,2],

a1,2 ∈ (Q, deg(Aj) = m, and L (Aj) = τ . Let

Bα =
n∑

i=0

bi(α1, . . . , αℓ) y
i ∈ ZZ(α)[y],

be square-free, where bi(x) =
∑

e
cij x

e ∈ ZZ[x],
L (ci,j) ≤ σ, for 0 ≤ i ≤ d, and for e = (e1, . . . , eℓ),
it holds ej ≤ η < m, What is the Boolean complexity of
isolating the real roots of Bα?

We denote by ai the coefficients of Ai, where 1 ≤ i ≤
ℓ, and by c the coefficients of B. We compute separation
bounds following the technique introduced [15].
We consider the zero dimensional polynomial system (S) :

A1(x) = · · · = Aℓ(x) = Aℓ+1(x) = 0, where Ak(x) =∑m
i=0 ak,i x

i
k = 0, 1 ≤ k ≤ ℓ, and Aℓ+1 = B(x, y) =∑n

i=0 bi(x1, . . . , xℓ) y
i = 0. We should mention that we

make the assumption that B does not become identically
zero when α1, . . . , αl are replaced with some set of their con-
jugates (otherwise the resultant is zero).
We hide variable y, that is we consider (S) as an overde-

termined system of ℓ + 1 equations in ℓ variables. We con-
sider the resultant, R, with respect to x1, . . . , xℓ, that is
we eliminate these variables, and we obtain a polynomial
R ∈ ZZ[a1, . . . ,aℓ, c, y]. We interpret the resultant using the
Poisson formula [7], see also [27], i.e.

R(y) = resx(A1, . . . , Aℓ, B) =
∏

B(α1,i1 , . . . , αℓ,iℓ , y) ,

and R(y) ∈ (ZZ[a1, . . . ,aℓ, c])[y]. Similar to the single exten-
sion case, Bα, is among the factors of R, hence it suffices to
compute bounds for the roots of R(y).
We consider R as a univariate polynomial in y. The re-

sultant is a homogeneous polynomial in the coefficients of
(S), we refer to e.g. [7, 27] for more details and to [15] for
a similar application. To be more specific, the structure of
the coefficients of R is

R(y) = · · ·+ ̺k a
M1

1 · · ·aMℓ
ℓ c

Mℓ+1−k(yi)k + · · · ,

where 1 ≤ k ≤ Mℓ+1 = mℓ, and i is a number in {1, . . . , n}.

The semantics of aMi
i are that it is a monomial in the coeffi-

cients of Ai of total degree Mi. Similarly, cMℓ+1−k stands for
a monomial in the coefficients of B of total degree Mℓ+1−k.
Moreover, Mi ≤ ℓηmℓ−1 < ℓ(m−1)mℓ−1 < ℓmℓ. The degree
of R with respect to y is at most nMℓ+1 = nmℓ.
Since |ai,j | ≤ 2τ , it holds

lg
ℓ∏

i=i

|ai|
Mi ≤ τℓ2mℓ . (21)

Similarly, since |ci,j | ≤ 2σ, we get

lg|c|Mℓ+1−k ≤ σ(mℓ − k) ≤ σmℓ . (22)

Finally, |̺k| ≤
∏ℓ+1

i=1 (#Qi)
Mi [34], where (#Qi) is the

number of integer points of the Newton polytope of the poly-
nomial Ai. We let Aℓ+1 = B. It is (#Qi) = m + 1 for

1 ≤ i ≤ ℓ, so
∏ℓ

i=1 (#Qi)
Mi ≤ (m + 1)ℓ(m−1)mℓ−1

≤ mℓmℓ

,

and (#Qℓ+1) ≤ (ℓ(m− 1) + n)ℓ+1 + ℓ+ 1. Hence,

(#Qi)
Mℓ+1 ≤

(
(ℓ(m− 1) + n)ℓ+1 + ℓ+ 1

)mℓ

≤ (2ℓm+ n)(ℓ+1)mℓ

≤ (ℓmn)ℓm
ℓ

,

and so for every k

lg |̺k| ≤ lg

ℓ+1∏

i=1

(#Qi)
Mi ≤ 2ℓmℓ lg(mnℓ) . (23)

By combining (21), (22) and (23) we can bound the coef-
ficients of R and its square-free factors. Using also Prop. 1
we get the following lemma.

Lemma 12. Let Bα be as in Problem 2. The minimal poly-
nomial, Cℓ of the, possible complex, roots of Bα, γi, has
degree ≤ nmℓ and bitsize ≤ mℓ(τℓ2 + σ + 3ℓ lg(mnℓ)) or

Õ(mℓ(ℓ2τ + σ)). Moreover, it holds

|γi| ≤ 2m
ℓ(ℓ2τ+σ+2ℓ lg(mnℓ)) , (24)

− lg∆(Cℓ) ≤ m2ℓn(ℓ2τ + σ + 4ℓ lg(mnℓ)) , (25)

−
∑

i

lg∆i(Cℓ) ≤ m2ℓn(ℓ2τ + σ + n+ 6ℓ lg(mnℓ))(26)

|γi| ≤ 2Õ(mℓ(ℓ2τ+σ)) , (27)

− lg∆(Cℓ) = Õ(m2ℓn(ℓ2τ + σ)) , (28)

−
∑

i

lg∆i(Cℓ) = Õ(m2ℓn(ℓ2τ + σ + n)) . (29)

Remark 13. To match exaclty the bounds derived in Lem. 7
one should use for Mi the more accurate inequality Mi <
ℓ(m− 1)mℓ−1.

We can isolate the real roots of Cℓ in ÕB(n
5m5ℓ+n4m5ℓτℓ2+

n4m4ℓσ++n3m5ℓτ2ℓ4++n3m3ℓσ2). That is we get a single
exponential bound with respect to the number of the real
algebraic numbers involved.
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APPENDIX
Proposition 14. Let B =

∑
i,j ci,jx

iyj ∈ ZZ[x, y] of degree
n with respect to y and of degree η with respect to x, and of
bitsize σ. Let A =

∑m
i=0 aix

i ∈ ZZ[x] of degree m and bitsize
τ . The resultant of B and A with respect to x is univariate
polynomial in y of degree at most mn and bitsize at most

mσ + ητ +m lg(n+ 1) + (m+ η) lg(m+ η) or Õ(mσ + ητ).

Proof: The proof follows closely the proof in [2, Prop. 8.15]
that provides a bound for general multivariate polynomials.
We can compute the resultant of B(x, y) and A(x) with re-
spect to x from the determinant of the Sylvester matrix, by
considering them as univariate polynomial in x, with coeffi-
cients that are polynomial in y, which is




bη bη−1 . . . b0

bη bη−1 . . . b0

. . .
. . .

. . .

bη bη−1 . . . b0

am am−1 . . . a0

am am−1 . . . a0

. . .
. . .

. . .

am am−1 . . . a0




x
m−1

B

x
m−2

B

.

.

.
x
0
B

x
η−1

A

x
η−2

A

.

.

.
x
0
A

where bk =
∑n

i=0 ci,ky
i.

The resultant is a factor of the determinant of the Sylvester
matrix. The matrix is of size (η+m)×(η+m), hence the de-
terminant consists of (η+m)! terms. Each term is a product
of m univariate polynomials in y, of degree n and bitsize σ,
times the product of n numbers, of bitsize τ . The first prod-
uct results in polynomials in y of degree at most mn and bit-
size at mostmσ+m lg(n+1); since there are at most (n+1)m

terms with bitsize at most mσ each. The second product re-
sults in numbers of bitsize at most ητ . Hence each term of
the determinant is, in the worst case a univariate polyno-
mial in y of degree m and bitsize mσ + ητ + m lg(n + 1).
We conclude that the resultant is of degree at most mn in y
and of bitsize mσ + ητ +m lg(n+ 1) + (m+ η) lg(m+ η) or

Õ(mσ + ητ). �


	Introduction
	Preliminaries
	Reduction to integer coefficients
	Some useful bounds
	The algorithm

	Two direct approaches
	Separation bounds for B
	The sturm algorithm
	A modified descartes algorithm
	Almost tight separation bounds

	Implementation and experiments
	Multiple extensions

