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Abstract

We consider the problem of analyzing the complexity of isolating the complex roots of polynomials
with Gaussian integers as coefficients. We provide a simplified proof for the number of steps that a
subdivision-based algorithm performs. If d is the degree of the polynomial and 7 the maximum coefficient
bitsize, then we prove a bound of o (d” + d°T + d®7?), for algorithms based on Sturm sequences, thus
improving the previously known by a factor.

1 Introduction

One of the fundamental operations in algebraic algorithms is root isolation of univariate polynomials, i.e.
given a polynomial to compute intervals (zsolating intervals) in the case of the real roots, or squares
(zsolating squares) in the case of the complex roots, that contain one and only one root of the polynomial,
for every root.

In this paper we consider exact algorithms, that is algorithms that perform computations with rational
numbers of arbitrary size, for the complex case. Given a polynomial with Gaussian integers as coefficients
we wish to isolate its complex roots in a given square. Exact algorithms for this problem are typically
based on Sturm sequences (denoted sTURM-C) [, 6, [10]. For other certified approaches to this problem see,
e.g., [4, 8, l7]. For the worst-case analysis of such algorithms, we significantly simplify the proof in [1] for
bounding the number of subdivisions, and we improve the total complexity by a factor of d, thus obtaining
a new bound of 6B(d7 + d°7 + d°72). We also prove that the same bound holds when the polynomial has
Gaussian rationals as coefficients.

Notation. Op means bit complexity and the O p-notation means that we are ignoring logarithmic factors.
For a € Q, £L(a) > 1 is the maximum bitsize of the numerator and the denominator. We consider square-
free polynomials. For A = Zle ¢ Xt € (Z[i])[X], dg(A) denotes its degree. L (A) denotes an upper
bound on the bitsize of the coefficients of A (including a bit for the sign), i.e. if ¢; = a; + b;, then
L(A) = max;{L(a;),L(b;)}. A is the separation bound of A, that is the smallest distance between two
complex roots of A and A; is the smallest distance between the root : of A and all the other roots. Notice
that A = min;{A;}.
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2 Complex root isolation

The first in analyzing the complexity of complex root isolation is to bound the number of steps (subdivisions)
that an algorithm performs. The exact algorithms that we consider are based on Sturm sequences and
computation of the Cauchy index, cf. [6, 10, [L1]. For this we call the algorithm STURM-C. The idea is,
using a Sturm-based method, to count the number of complex roots in a square of the complex plane. If
this number is > 2, then the square is subdivided to 4 (equal) squares and the algorithm continues on each
square.

We need the following proposition. For a proof we refer the reader to [3, I9].

Theorem 1 (Davenport-Mahler-Mignotte). Let A € C[X], with deg(A) = d and L(A) = 7, where
A(0) # 0. Let Q be any set of k couples of indices (z,7) such that 1 < ¢ < 7 < d and let the non-zero
(complex) roots of A be 0 < |y1| < |v2| < -+ < |v4|. Then

M(AF > T b=l > 2555 M(A) ™ /[disc(4)],

(i,5)€Q

where M (A) is the Mahler measure of A.

If A € (Z][i])[z], that is its coefficients are Gaussian integers, {a +ib| a,b € Z} where £ (a) < 7, then
M (A) <||All2 < 27F/2/d+ 1.

2.1 The number of subdivisions

Thm. [0 allows us to prove a bound on the number of subdivisions needed to isolate all complex roots.
Suppose that, initially, all complex roots are in a square of side B. This is either given, or derived as a
bound on the roots’ magnitude, e.g. B < 271 |3, [L1]. At step h, we check for complex roots in squares that
have sides equal to B/2".

Consider the algorithm expressed as a tree of out-degree 4, where each node holds a square and the root
holds the initial square. Each leaf contains a square that isolates a complex root and, since there are at
most d complex roots, this bounds the number of leaves. The squares that correspond to leaves have sides
of length < A; and the number of nodes from a leaf to the root is

10E
gAj'

The number of subdivisions equals the number of nodes, which is
d B d d
#(T):Z[IgE-‘:2d+dT—ZlgAj:2d+dT—lgHAj. (1)
7=1 J Jj=1 J=1

It remains to bound H?:l A;. For this we use Thm.[[l Recall that the hypotheses of the theorem are

not fulfilled when symmetric products occur. So, H?:1 N; = ]_[fil N ]_[fil A;, where k; + k; = d and the
factors are such that no symmetric products occur. By applying to each factor Thm. [l and by taking into
account that |disc(A)| > 1 we have:

d
[Ta:i> 2% M (A)% % > 2 (27/d + 1),
=1

since M (A) <27+/d + 1. If we combine the last equation with () we obtain:



Lemma 2. The number of subdivisions for complex root isolation is O(d? + dr).

The proof of this lemma simplifies significantly the proof appeared in [1l], where an amortized-like ar-
gument is used. Our bound on the number of subdivisions has d? instead of dlgd which, as in the real
root case, is immaterial when d = O(7). Moreover, if the initial polynomial is not square-free, this is again
immaterial, because the square-free factorization causes the square-free polynomial to have coefficients of
size O(d + 7).

2.2 Overall complexity

Consider a polynomial A(X) € (Z]i])[X], where X is a complex variable, i.e. X = z +iy. After substitution
and some elementary operations, A can be written as A(X) = Ao(z,y) + iA1(z,y), where Ao, A; € Z[z,y]
and z,y are real variables.

To count the number of complex roots in a square we will use the notion of the degree of the Gauss
map [&]. We refer the reader to Wilf [10], Pinkert [fl], for alternative, however equivalent, approaches. Let
SR(f, g) denote a signed polynomial remainder sequence of the polynomials f and g and VAR(SR(f,g); a))
the number of sign variation occur when we evaluate the sequence over a rational number a. The Cauchy
index of the real function g/f in an interval [a,b] is

I2(g/ ) = VAR(SR(f,9) ; a)) — VAR(SR({, 9) ; b))
The following holds

Proposition 3. |§] The number of roots, r, of A(X) in a square in the complex plane defined by a; < z < a»
and a3z <y < aq, is given by

1
r = —§(R1+R2+R3+R4)

where
R = ]gf(A]_(l', a3),A0(m, 0’3))1 Ry = Ig;(Al(a2>y)>A0(a21y))1
Rz = I31(A1(z,a4), Ao(z,04)), Ra=I123(A1(a1,y),Ao(a1,y)).

To isolate the complex root of A we start with the first quadrant, i.e. we isolate the roots in the square
[0, B] x [0, B]. We apply Prop.[Bland we count the complex roots. If there are more than one roots, then we
split the square to four squares and we continue the process to each of them.

Applying Prop.Blconsists in computing 4 times the Cauchy index. Each such computation corresponds to
the evaluation of signed polynomial remainder sequence. It suffices to study only the complexity of computing
R;. The polynomials Ap(z,y) and A;(z,y) are of degree at most d and maximum coefficient bitsize 7. At the
h step of algorithm, we have to compute the Cauchy index of Ag(z,B/2") and A;(z, B/2"), over rationals of
magnitude at most B/2"; thus of bitsize < h+1g B = h+7. The degree of these polynomials is < d and their
bitsize is O (7 + dr + dh), or O(dr + dh). The computation of Cauchy index costs Og(d>(d7 + dh + T + h),
or Op(d®7 + d®h) [d]. Multiplying by the number of steps, h, we get a bound of Op(d*h + d*h?), and by
applying Lem. B we get an overall complexity of Op (d" +d81 + d°7?), or Op (N7), where N = max{d, 7}.

This completes the proof of the following:

Theorem 4. The worst-case complexity of complex root isolation, of a polynomial with Gaussian integers
as coefficients of degree bounded by d and bitsize bounded by T, is in Og(d” + d°T + d°72), or Op(N7).

The previous theorem improves the bound in [1] by a factor.



2.3 The case of Gaussian rationals

In the previous analysis we assumed that the coefficients of the polynomial where Gaussian integers. A
natural question to ask is whether the complexity bound holds if the coefficients are Gaussian rationals, that
is numbers in the set {a +ib| a,b € Q}. Recall, that the bitsize of a rational number is the maximum of
the bitsizes of the numerator and the denominator.

We could eliminate denominators by multiplying by their least common multiple. Since the bitsize of
the coefficients is < 7, after the elimination we get a polynomial with Gaussian integers as coefficients, the
bitsize of which is bounded by dr.

Even though the bitsize of the polynomial increases, we observe that the Mahler bound of the polynomial
does not change, since it is the product of the roots with measure greater than one. This implies, refer to
Thm. [, that the bitsize of the separation bound, and the number of subdivisions remains the same, i.e.
Op(d? + dr).

Following the analysis of the previous section, we see that also in this case, at each step, we have to
compute the Cauchy index of polynomials of degree d and of bitsize O(d7 +dh). Thus the overall complexity
remains the same.

Corollary 5. The bound of Thm. [ holds even in the case where the coefficients are Gaussian rationals.

3 Conclusion and future work

In this paper we simplified the proof for computing the number of steps that a subdivision algorithm performs
to isolate the complex roots of a polynomial with Gaussian coefficients, we improved the bound of the exact
algorithms for the problem, based on Sturm sequences, by a factor d and we proved that the bound also
holds when the polynomial has Gaussian rationals, of the same bitsize, as coefficients.

The techniques that we presented will be useful to study the complexity of algorithms for complex root
isolation that are based on the computation of the topological degree, e.g.[4]. Such algorithms allows complex
root counting to be performed to more complicated areas than squares, e.g. polygons, and they are amenable
to efficient implementations.

Last, but not least, we are currently working towards obtaining output-sensitive complexity results, as
well as bounds for the average case.
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