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AbstractWe 
onsider the problem of analyzing the 
omplexity of isolating the 
omplex roots of polynomialswith Gaussian integers as 
oeÆ
ients. We provide a simpli�ed proof for the number of steps that asubdivision-based algorithm performs. If d is the degree of the polynomial and � the maximum 
oeÆ
ientbitsize, then we prove a bound of eOB(d7 + d6� + d5� 2), for algorithms based on Sturm sequen
es, thusimproving the previously known by a fa
tor.

1 IntroductionOne of the fundamental operations in algebrai
 algorithms is root isolation of univariate polynomials, i.e.given a polynomial to 
ompute intervals (isolating intervals) in the 
ase of the real roots, or squares(isolating squares) in the 
ase of the 
omplex roots, that 
ontain one and only one root of the polynomial,for every root.In this paper we 
onsider exa
t algorithms, that is algorithms that perform 
omputations with rationalnumbers of arbitrary size, for the 
omplex 
ase. Given a polynomial with Gaussian integers as 
oeÆ
ientswe wish to isolate its 
omplex roots in a given square. Exa
t algorithms for this problem are typi
allybased on Sturm sequen
es (denoted sturm- (C) [1, 6, 10℄. For other 
erti�ed approa
hes to this problem see,e.g., [4, 5, 7℄. For the worst-
ase analysis of su
h algorithms, we signi�
antly simplify the proof in [1℄ forbounding the number of subdivisions, and we improve the total 
omplexity by a fa
tor of d, thus obtaininga new bound of eOB(d7 + d6� + d5� 2). We also prove that the same bound holds when the polynomial hasGaussian rationals as 
oeÆ
ients.
Notation. OB means bit 
omplexity and the eOB-notation means that we are ignoring logarithmi
 fa
tors.For a 2 (Q, L (a) � 1 is the maximum bitsize of the numerator and the denominator. We 
onsider square-free polynomials. For A = Pdi=1 
iXi 2 (ZZ[i℄)[X ℄, dg(A) denotes its degree. L (A) denotes an upperbound on the bitsize of the 
oeÆ
ients of A (in
luding a bit for the sign), i.e. if 
i = ai + bi, thenL (A) = maxifL (ai) ;L (bi)g. � is the separation bound of A, that is the smallest distan
e between two
omplex roots of A and �i is the smallest distan
e between the root i of A and all the other roots. Noti
ethat � = minif�ig.�proje
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2 Complex root isolationThe �rst in analyzing the 
omplexity of 
omplex root isolation is to bound the number of steps (subdivisions)that an algorithm performs. The exa
t algorithms that we 
onsider are based on Sturm sequen
es and
omputation of the Cau
hy index, 
f. [6, 10, 11℄. For this we 
all the algorithm sturm- (C. The idea is,using a Sturm-based method, to 
ount the number of 
omplex roots in a square of the 
omplex plane. Ifthis number is � 2, then the square is subdivided to 4 (equal) squares and the algorithm 
ontinues on ea
hsquare.We need the following proposition. For a proof we refer the reader to [3, 9℄.
Theorem 1 (Davenport-Mahler-Mignotte). Let A 2 (C[X ℄, with deg(A) = d and L (A) = � , whereA(0) 6= 0. Let 
 be any set of k 
ouples of indi
es (i; j) su
h that 1 � i < j � d and let the non-zero(
omplex) roots of A be 0 < j
1j � j
2j � � � � � j
dj. Then2kM(A)k � Y(i;j)2
 j
i � 
j j � 2k� d(d�1)2 M(A)1�d�kpjdisc(A)j;where M (A) is the Mahler measure of A.If A 2 (ZZ[i℄)[x℄, that is its 
oeÆ
ients are Gaussian integers, fa+ ib j a; b 2 ZZg where L (a) � � , thenM (A) � kAk2 � 2�+1=2pd+ 1.
2.1 The number of subdivisionsThm. 1 allows us to prove a bound on the number of subdivisions needed to isolate all 
omplex roots.Suppose that, initially, all 
omplex roots are in a square of side B. This is either given, or derived as abound on the roots' magnitude, e.g. B � 2�+1 [3, 11℄. At step h, we 
he
k for 
omplex roots in squares thathave sides equal to B=2h.Consider the algorithm expressed as a tree of out-degree 4, where ea
h node holds a square and the rootholds the initial square. Ea
h leaf 
ontains a square that isolates a 
omplex root and, sin
e there are atmost d 
omplex roots, this bounds the number of leaves. The squares that 
orrespond to leaves have sidesof length � �j and the number of nodes from a leaf to the root is�log B�j � :The number of subdivisions equals the number of nodes, whi
h is#(T ) = dXj=1 �lg B�j � = 2d+ d� � dXj=1 lg�j = 2d+ d� � lg dYj=1�j : (1)It remains to bound Qdj=1�j . For this we use Thm. 1. Re
all that the hypotheses of the theorem arenot ful�lled when symmetri
 produ
ts o

ur. So, Qdi=1�i = Qk1i=1�iQk2i=1�i, where k1 + k2 = d and thefa
tors are su
h that no symmetri
 produ
ts o

ur. By applying to ea
h fa
tor Thm. 1 and by taking intoa

ount that jdisc(A)j � 1 we have:dYi=1�i � 2d2 M (A)2�3d � 2d2 (2�pd+ 1)2�3d;sin
e M (A) � 2�pd+ 1. If we 
ombine the last equation with (1) we obtain:2



Lemma 2. The number of subdivisions for 
omplex root isolation is O(d2 + d� ).The proof of this lemma simpli�es signi�
antly the proof appeared in [1℄, where an amortized-like ar-gument is used. Our bound on the number of subdivisions has d2 instead of d lg d whi
h, as in the realroot 
ase, is immaterial when d = O(� ). Moreover, if the initial polynomial is not square-free, this is againimmaterial, be
ause the square-free fa
torization 
auses the square-free polynomial to have 
oeÆ
ients ofsize O(d+ � ).
2.2 Overall complexityConsider a polynomial A(X) 2 (ZZ[i℄)[X ℄, where X is a 
omplex variable, i.e. X = x+ iy. After substitutionand some elementary operations, A 
an be written as A(X) = A0(x; y) + iA1(x; y), where A0; A1 2 ZZ[x; y℄and x; y are real variables.To 
ount the number of 
omplex roots in a square we will use the notion of the degree of the Gaussmap [8℄. We refer the reader to Wilf [10℄, Pinkert [6℄, for alternative, however equivalent, approa
hes. Let
SR(f; g) denote a signed polynomial remainder sequen
e of the polynomials f and g and VAR(SR(f; g) ; a))the number of sign variation o

ur when we evaluate the sequen
e over a rational number a. The Cau
hyindex of the real fun
tion g=f in an interval [a; b℄ isIb

a (g=f) = VAR(SR(f; g) ; a))� VAR(SR(f; g) ; b)):The following holds
Proposition 3. [8℄ The number of roots, r, of A(X) in a square in the 
omplex plane de�ned by a1 � x � a2and a3 � y � a4, is given by r = �12(R1 +R2 +R3 +R4)where R1 = Ia2a1 (A1(x; a3); A0(x; a3)); R2 = Ia4a3 (A1(a2; y); A0(a2; y));R3 = Ia1a2 (A1(x; a4); A0(x; a4)); R4 = Ia3a4 (A1(a1; y); A0(a1; y)):To isolate the 
omplex root of A we start with the �rst quadrant, i.e. we isolate the roots in the square[0;B℄� [0;B℄. We apply Prop. 3 and we 
ount the 
omplex roots. If there are more than one roots, then wesplit the square to four squares and we 
ontinue the pro
ess to ea
h of them.Applying Prop. 3 
onsists in 
omputing 4 times the Cau
hy index. Ea
h su
h 
omputation 
orresponds tothe evaluation of signed polynomial remainder sequen
e. It suÆ
es to study only the 
omplexity of 
omputingR1. The polynomialsA0(x; y) and A1(x; y) are of degree at most d and maximum 
oeÆ
ient bitsize � . At theh step of algorithm, we have to 
ompute the Cau
hy index of A0(x;B=2h) and A1(x;B=2h), over rationals ofmagnitude at most B=2h; thus of bitsize � h+lgB = h+� . The degree of these polynomials is � d and theirbitsize is eO(� + d� + dh), or eO(d� + dh). The 
omputation of Cau
hy index 
osts eOB(d2(d� + dh+ � + h),or eOB(d3� + d3h) [2℄. Multiplying by the number of steps, h, we get a bound of eOB(d3�h + d3h2), and byapplying Lem. 2 we get an overall 
omplexity of eOB(d7 + d6� + d5� 2), or eOB(N7), where N = maxfd; �g.This 
ompletes the proof of the following:
Theorem 4. The worst-
ase 
omplexity of 
omplex root isolation, of a polynomial with Gaussian integersas 
oeÆ
ients of degree bounded by d and bitsize bounded by � , is in eOB(d7 + d6� + d5� 2), or eOB(N7).The previous theorem improves the bound in [1℄ by a fa
tor.
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2.3 The case of Gaussian rationalsIn the previous analysis we assumed that the 
oeÆ
ients of the polynomial where Gaussian integers. Anatural question to ask is whether the 
omplexity bound holds if the 
oeÆ
ients are Gaussian rationals, thatis numbers in the set fa+ ib j a; b 2 (Qg. Re
all, that the bitsize of a rational number is the maximum ofthe bitsizes of the numerator and the denominator.We 
ould eliminate denominators by multiplying by their least 
ommon multiple. Sin
e the bitsize ofthe 
oeÆ
ients is � � , after the elimination we get a polynomial with Gaussian integers as 
oeÆ
ients, thebitsize of whi
h is bounded by d� .Even though the bitsize of the polynomial in
reases, we observe that the Mahler bound of the polynomialdoes not 
hange, sin
e it is the produ
t of the roots with measure greater than one. This implies, refer toThm. 1, that the bitsize of the separation bound, and the number of subdivisions remains the same, i.e.eOB(d2 + d� ).Following the analysis of the previous se
tion, we see that also in this 
ase, at ea
h step, we have to
ompute the Cau
hy index of polynomials of degree d and of bitsize O(d�+dh). Thus the overall 
omplexityremains the same.
Corollary 5. The bound of Thm. 4 holds even in the 
ase where the 
oeÆ
ients are Gaussian rationals.
3 Conclusion and future workIn this paper we simpli�ed the proof for 
omputing the number of steps that a subdivision algorithm performsto isolate the 
omplex roots of a polynomial with Gaussian 
oeÆ
ients, we improved the bound of the exa
talgorithms for the problem, based on Sturm sequen
es, by a fa
tor d and we proved that the bound alsoholds when the polynomial has Gaussian rationals, of the same bitsize, as 
oeÆ
ients.The te
hniques that we presented will be useful to study the 
omplexity of algorithms for 
omplex rootisolation that are based on the 
omputation of the topologi
al degree, e.g.[4℄. Su
h algorithms allows 
omplexroot 
ounting to be performed to more 
ompli
ated areas than squares, e.g. polygons, and they are amenableto eÆ
ient implementations.Last, but not least, we are 
urrently working towards obtaining output-sensitive 
omplexity results, aswell as bounds for the average 
ase.
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