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Abstract

We present a new algorithm for isolating the real roots of a system of multivariate polynomials, given
in the monomial basis. It is inspired by existing subdivision methods in the Bernstein basis; it can be
seen as generalization of the univariate continued fraction algorithm or alternatively as a fully analog of
Bernstein subdivision in the monomial basis. The representation of the subdivided domains is done through
homographies, which allows us to use only integer arithmetic and to treat efficiently unbounded regions. We
use univariate bounding functions, projection and preconditioning techniques to reduce the domain of search.
The resulting boxes have optimized rational coordinates, corresponding to the first terms of the continued
fraction expansion of the real roots. An extension of Vincent’s Theorem to multivariate polynomials is
established and used to prove termination of the algorithm. New complexity bounds are provided for a
simplified version of the algorithm and for a family of subdivision algorithms in terms of the real condition
number of the system. Examples computed with our C++ implementation illustrate the approach.

1. Introduction

The problem of computing roots of univariate polynomials has a long mathematical history [18]. Re-
cently, some new investigations focused on subdivision methods, where root localization is based on simple
tests such as Descartes’ Rule of Signs and its variant in the Bernstein basis [17, 11, 8]. Complexity analysis
was developed for univariate integer polynomial (real) solving taking into account the bitsize of the coeffi-
cients, and providing a good understanding of their behavior from a theoretical and practical point of view.
Approximation and bounding techniques have been developed [2] to improve the local speed of convergence
to the roots.

Even more recently, new attention has been given to continued fraction algorithms (CF), see e.g. [20, 23]
and references therein. They differ from previous subdivision-based algorithms in that instead of bisecting
a given initial interval and thus producing a binary expansion of the real roots, they compute continued
fraction expansions of these roots. The algorithm relies heavily on computations of lower bounds of the
positive real roots, and different ways of computing such bounds lead to different variants of the algorithm.
The best known worst-case complexity of CF is ÕB(d5τ2) [20], while its average complexity is ÕB(d3τ),
thus being the only complexity result that matches, even in the average the complexity bounds of numerical
algorithms [19]. Moreover, the algorithm seems to be the most efficient in practice [10, 23].

Subdivision methods for the approximation of isolated roots of multivariate systems are also investigated
but their analysis is much less advanced. In [21], the authors used tensor product representation in Bernstein
basis and domain reduction techniques based on the convex hull property to speed up the convergence and
reduce the number of subdivisions. In [9], the emphasis is put on the subdivision process, and stopping
criterion based on the normal cone attached to the surface patch. In [16], this approach has been improved
by introducing pre-conditioning and univariate-solver steps. The complexity of the method is also analyzed
in terms of intrinsic differential invariants.

This work is in the spirit of [16]. The novelty of our approach is the presentation of a tensor-monomial
basis algorithm that generalizes the univariate continued fraction algorithm and does not assume generic
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position. We apply a subdivision approach also exploiting sign properties of the Bernstein polynomial
representation, by proving a correspondence between the latter and a specific sequence of homography
transformations.

Our contributions are as follows. We propose a new adaptive algorithm for polynomial system real solving
that acts in monomial basis, and exploits the continued fraction expansion of (the coordinates of) the real
roots. This yields the best rational approximation of the real roots. All computations are performed with
integers, thus this is a division-free algorithm. We propose a first step towards the generalization of Vincent’s
theorem to the multivariate case (Th. 4.2). We perform a (bit) complexity analysis of the algorithm, when
oracles for lower bounds and counting the real roots are available (Proposition 5.2) and we propose non-
trivial improvements for reducing the total complexity even more (Sec. 5.3). In all cases the bounds that we
derive for the multivariate case, match the best known ones for the univariate case, if we restrict ourselves
to n = 1. Finally, using an inclusion test based on α-theorems (Sec. 6), we provide an output-sensitive
complexity bound which involves the real condition number a of the system.

1.1. Notation

For a polynomial f ∈ R[x1, .., xn] = R[x], deg(f) denotes its total degree, while degxi
(f) denotes its

degree with respect to xi. Let f(x) = f(x1, .., xn) ∈ R[x1, .., xn] with degxk
f = dk, k = 1, .., n. If not

specified, we denote d = d(f) = max{d1, .., dn}.
We are interested in isolating the real roots of a system of polynomials f1(x), .., fs(x) ∈ Z[x1, .., xn], in a

box I0 = [u1, v1] × · · · × [un, vn] ⊂ Rn, uk, vk ∈ Q. We denote by ZKn(f) = {p ∈ Kn; f(p) = 0} the solution
set in Kn of the equation f(x) = 0, where K is R or C.

For a homogeneous polynomial f(x0, . . . , xn) =
∑

|α|=d cαxα ∈ R[x] of degree d, we define

‖f‖ = (
∑

|α|=d

|cα|2
(

d

α

)−1

)
1
2 .

For an affine polynomial f(x1, . . . , xn) of degree d, we define ‖f‖ as the norm of its homogenization in degree

d. For a system f = (f1, . . . , fn) of polynomials fi of degree di, we define ‖f‖ = (‖f1‖2 + · · ·+ ‖fn‖2)
1
2 . An

important property of this norm is that it stays invariant by a unitary change of coordinates.
For v = (v1, . . . , vn) ∈ Cn, ‖v‖ := (v2

1 + · · · + v2
n)

1
2 , ‖v‖∞ := max{vi; i = 1, . . . , n}.

For K = R or K = C, x ∈ Kn and ρ > 0, we denote by

• BK(x, ρ) = {y ∈ Kn; ‖y − x‖ < ρ} the ball of center x and radius ρ;

• IK(x, ρ) = {y ∈ Kn; ‖y − x‖∞ < ρ} the box of center x and radius ρ;

If I = I1 × · · · × In ⊂ Rn, we denote by IC the product DC(I1) × · · · × DC(In) ⊂ Cn of discs DC(Ij) ⊂ C of
diameter Ij .

In what follows OB, resp. O, means bit, resp. arithmetic, complexity and the ÕB , resp. Õ, notation
means that we are ignoring logarithmic factors. For a ∈ Q, L (a) ≥ 1 is the maximum bit size of the
numerator and the denominator. For a polynomial f ∈ Z[x1, .., xn], we denote by L (f) the maximum of the
bitsize of its coefficients (including a bit for the sign). In the following, we will consider classes of polynomials
such that log(d(f)) = O(L (f)).

Also, to simplify the notation we introduce multi-indices, for the variable vector x = (x1, .., xn), xi :=

xi1
1 · · ·xin

n , the sum

d∑

i=0

:=

d1∑

i1=0

· · ·
dn∑

in=0

, and

(
d

i

)
:=

(
d1

i1

)
· · ·
(

dn

in

)
. The tensor Bernstein basis polynomials

of multidegree degree d of a box I are denoted B(x; i, d; I) := Bi1
d1

(x1; u1, u1) · · · Bin

dn
(xn; un, un) where

I = [u, v] := [u1, v1] × · · · × [un, vn].
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1.2. The general scheme

In this section, we describe the family of algorithms that we consider. The main ingredients are

• a suitable representation of the equations in a given (usually rectangular) domain, in terms of a basis
of Z[x], for instance a representation in the Bernstein basis or in the monomial basis;

• an algorithm to split the representation into smaller sub-domains;

• a reduction procedure to shrink the domain.

Different choices for each of these ingredients lead to algorithms with different practical behavior. The
general process is summarized in Algorithm 1.

Algorithm 1.1: Subdivision scheme

Input: A set of equations f1, f2, .., fs ∈ Z[x] represented over a domain I.
Output: A list of disjoint domains, each containing one and only one real root of f1 = · · · = fs = 0.
Initialize a stack Q and add (I, f1, .., fs) on top of it;
While Q is not empty do

a) Pop a system (I, f1, .., fs) and:

b) Perform a precondition process and/or a reduction process to refine the domain.

c) Apply an exclusion test to identify if the domain contains no root.

d) Apply an inclusion test to identify if the domain contains a single root. In this case output
(I, f1, .., fs).

e) If both tests fail split the representation into a number of sub-domains and push them to Q.

The instance of this general scheme that we obtain generalizes the continued fraction method for uni-
variate polynomials; the realization of the main steps (b-e) can be summarized as follows:

b) Perform a precondition process and compute a lower bound on the roots of the system, in order to
reduce the domain.

c) Apply interval analysis or sign inspection to identify if some fi has constant sign in the domain, i.e. if
the domain contains no root.

d) Apply Miranda test to identify if the domain contains a single root. In this case output (I, f1, .., fs).

e) If both tests fail, split the representation at (1, .., 1) and continue.

In the following sections, we are going to describe more precisely these specific steps and analyze their
complexity. In Sec. 2, we describe the representation of domains via homographies and the connection with
the Bernstein basis representation. Subdivision, based on shifts of univariate polynomials, reduction and
preconditioning are analyzed in Sec. 3. Exclusion and inclusion tests as well as a generalization of Vincent’s
theorem to multivariate polynomials, are presented in Sec. 4. In Sec. 5, we recall the main properties of
Continued Fraction expansion of real numbers and use them to analyze the complexity of a subdivision
algorithm following this generic scheme. In Sec. 6, we bound the complexity of the subdivision method
using the α-inclusion test in terms of the real condition number of the system. We conclude with examples
produced by our C++ implementation in Sec. 7.

2. Representation: Homographies

A widely used representation of a polynomial f over a rectangular domain is the tensor-Bernstein repre-
sentation. De Casteljau’s algorithm provides an efficient way to split this representation to smaller domains.
A disadvantage is that converting integer polynomials to Bernstein form results in rational or, if one uses
machine numbers, approximate Bernstein coefficients. We follow an alternative approach that does not re-
quire basis conversion since it applies to monomial basis: We introduce a tensor-monomial representation,
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i.e. a representation in the monomial basis over P1 × · · · × P1 and provide an algorithm to subdivide this
representation analogously to the Bernstein case.

In a tensor-monomial representation a polynomial is represented as a tensor (higher dimensional matrix)
of coefficients in the natural monomial basis, that is,

f(x) =

d1,..,dn∑

i1,..,in

ci1..in
x(i1,..,in) =

d∑

i=0

cix
i,

for every equation f of the system. Splitting this representation is done using homographies. The main
operation in this computation is the Taylor shift.

Definition 2.1. A homography (or Mobius transformation) is a bijective projective transformation H =
(H1, ..,Hn), defined over P1 × · · · × P1 as

xk 7→ Hk(xk) =
αkxk + βk

γkxk + δk

with αk, βk, γk, δk ∈ Z, γkδk 6= 0, k = 1, .., n.

Using simple calculations, we can see that the inverse

H−1
k (xk) =

δkxk − βk

γkxk − αk

is also a homography, hence the set of homographies is a group under composition. Also, notice that if
detH > 0 then, taking proper limits when needed, we can write

R+ 7→ Hk(R+) =

[
βk

δk
,
αk

γk

]
(1)

hence H(f) : Rn
+ → R,

H(f) :=

n∏

k=1

(γkxk + δk)dk · (f ◦ H)(x)

is a polynomial defined over Rn
+ that corresponds to the (possibly unbounded) box

IH = H(Rn
+) =

[
β1

δ1
,
α1

γ1

]
× · · · ×

[
βn

δn
,
αn

γn

]
, (2)

of the initial system, in the sense that the zeros of the initial system in IH are in one-to-one correspondence
with the positive zeros of H(f).

We focus on the computation of H(f). We use the basic homographies T c
k(f) = f |xk=xk+c (translation

by c) or simply Tk(f) if c = 1, Cc
k(f) = f |xk=cxk

(contraction by c) and Rk(f) = xdk

k f |xk=1/xk
(reciprocal

polynomial). These notations are naturally extended to variable vectors; for instance T c = (T c1
1 , .., T cn

n ),
c = (c1, .., cn) ∈ Zn. Complexity results for these computations appear in the following sections. We can see
that they suffice to compute any homography:

Lemma 2.2. The group of homographies H with coefficients in Z is generated by Rk, Cc
k, T c

k , k = 1, .., n,
c ∈ Z.

Proof. It can be verified that Hk(f) is computed as

Hk(f) = Cγk

k RkCδk

k TkRkC
βk/δk−αk/γk

k T
βk/δk

k (f)

where the product denotes composition. We abbreviate C
1/c
k = RkCc

kRk and T
1/c
k = Cu

k T 1
k RkT c

kRk.
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Representation via homography is in an interesting correspondence to the Bernstein representation:

Lemma 2.3. Let f =
∑d

i=0 bi Bn
i (x, IH) the Bernstein expansion of f in the box IH yielded by a homography

H. If

H(f) = CγRCδT 1RCβ/δ−α/γT β/δ(f) =

d∑

i=0

cix
i

then ci =

(
d

i

)
γiδd−ibi.

Proof. Let [uk, vk] =
[

αk

γk
, βk

δk

]
. For a tensor-Bernstein polynomial

(
d

i

)
1

(v − u)d
(x − u)i(v − x)d−i we

compute

CγRCδT 1RCv−uT u(

(
d

i

)
1

(v − u)d
(x − u)i(v − x)d−i)

= CγRCδRT 1RCv−u(

(
d

i

)
1

(v − u)d
xi(v − u − x)d−i)

= CγRCδRT 1(

(
d

i

)
(x − 1)d−i)

= CγRCδ(

(
d

i

)
xi) =

(
d

i

)
γiδd−ixi

as needed.

Corollary 2.4. The Bernstein expansion of f in IH is

d∑

i=0

ci(
d
i

)
γiδd−i

B(x; i, d; IH).

That is, the coefficients of H(f) coincide with the Bernstein coefficients up to contraction and binomial
factors.

Thus tensor-Bernstein coefficients and tensor-monomial coefficients in a sub-domain of Rn
+ differ only by

multiplication by positive constant. In particular they are of the same sign. Hence this corollary allows us
to take advantage of sign properties (eg. the variation diminishing property) of the Bernstein basis that still
hold in homography representation.

The resulting representation of the system consists of the transformed polynomials H(f1), .., H(fn),
represented as tensors of coefficients as well as 4n integers, αk, βk, γk, δk for k = 1, .., n from which we can
recover the endpoints of the domain, using (2).

3. Subdivision and reduction

3.1. The subdivision step

We describe the subdivision step using the homography representation. This is done at a point u =
(u1, .., un) ∈ Zn

≥0. It consists in computing up to 2n new sub-domains (depending on the number of nonzero
uk’s), each one having u as a vertex.

Given H(f1), .., H(fs) that represent the initial system over some domain, we consider the partition of
Rn

+ defined by the hyperplanes xk = uk, k = 1, .., n. These intersect at u hence we call this partition at u.
Subdividing at u is equivalent to subdividing the initial domain into boxes that share the common vertex
H(u) and have faces either parallel or perpendicular to those of the initial domain.
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We need to compute a homography representation for every domain in this partition. The computation
is done coordinate wise; observe that for any domain in this partition we have, for all k, either xk ∈ [0, uk]
or xk ∈ [uk,∞]. It suffices to apply a transformation that takes these domains to R+. In the former case,
we apply T 1

k RkCuk

k to the current polynomials and in the latter case we shift them by uk, i.e. we apply T uk

k .
The integers αk, βk, γk, δk that keep track of the current domain can be easily updated to correspond to the
new subdomain.

We can make this process explicit in general dimension: every computed subdomain corresponds to a
binary number of length n, where the k−th bit is 1 if T 1

k RkCuk is applied or 0 if T uk

k is applied.
In our continued fraction algorithm the subdivision is performed at u = 1.

Illustration. Let us illustrate this process in dimension two. The system f1, f2 is defined over R2
>0. We

subdivide this domain into [0, 1]2, [0, 1] × R>1, R>1 × [0, 1] and R>1 × R>1. Equivalently, we compute four
new pairs of polynomials, as illustrated in Fig. 1 (we abbreviate Sk = T 1

k Rk).

S1S2(f)

S1T2(f)

T1S2(f)

T1T2(f)

(1, 1)

(0, 0)

Figure 1: Subdividing the domain of f .

Complexity of subdivision step. The transformation of a polynomial into two sub-domains, i.e. splitting
with respect to one direction, consists in performing dn−1 univariate shifts, one for every coefficient ∈ Z[xk]
of f ∈ Z[xk][x1, .., x̂k, .., xn].

If the subdivision is performed in every direction, each transformation consists of dn−1 univariate shifts
for every variable, i.e. ndn−1 shifts. There are 2n sub-domains to compute, hence a total of n22ndn−1

shifts have to be performed in a single subdivision step. We must also take into account that every time a
univariate shift is performed, the coefficient bitsize increases.

The operations
Tk(f) = f |xk=xk+1 and TkRk(f) = (xk + 1)dkf |xk= 1

xk+1

are essentially of the same complexity, except that the second requires one to exchange the coefficient of
ci1,..,ik,..,in

with ci1,..,dk−ik,..,in
before translation, i.e. an additional O(dn) cost. Hence we only need to

consider the case of shifts for the complexity.
The continued fraction algorithm subdivides a domain using unit shifts and inversion. Successive opera-

tions of this kind increase the bitsize equivalently to a big shift by the sum of these units. Thus it suffices
to consider the general computation of f(x + u) to estimate the complexity of the subdivision step.

Lemma 3.1 (Shift complexity). The computation of f(x + u) with L(f) = τ and L(uk) ≤ σ, k = 1, .., n

can be performed in ÕB(n2dnτ + dn+1n3σ).

Proof. We use known facts for the computation of T uk

k (f) for univariate polynomials. If degkf = dk and

f is univariate, this operation is performed in ÕB(d2
kσ +dkτ); the resulting coefficients are of bitsize τ +dkσ

[25]. Hence f(x1, .., xk + uk, .., xn) is computed in ÕB(dn−1(d2
kσ + dkτ)).

Suppose we have computed f(x1 + u1, xk−1 + uk−1, xk, .., xn) for some k. The coefficients are of bitsize

τ +
∑k−1

i=1 σi. The computation of shift with respect to k−th variable f(x1+u1, .., xk +uk, xk+1, .., xn) results

in a polynomial of bitsize τ +
∑k

i=1 σi and consists of dn−1ÕB(d2
∑k

i=1 σi + dτ)) operations. That is, we
perform dn−1 univariate polynomial shifts, one for every coefficient of f in Z[xk][x1, .., x̂k, .., xn].
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This gives a total cost for computing f(x + u) of

dn−1
n∑

k=1

(
d2

k∑

i=1

σi + dτ

)
= ndnτ + dn+1

n∑

k=1

(n + 1 − k)σk.

The latter sum implies that it is faster to apply the shifts with increasing order, starting with the smallest
number uk. Since σk = O(σ) for all k, and we must shift a system of O(n) polynomials we obtain the stated
result.

Let us present an alternative way to compute a sub-domain using contraction, preferable when the bitsize
of u is big. The idea behind this is the fact that T c

k and T 1
k Cc compute the same sub-domain, in two different

ways.

Lemma 3.2. If f =
∑d

i=0 cix
i, L(f) = τ , then the coefficients of Cu(f), L(uk) ≤ σ, k = 1, .., n, can be

computed in ÕB(dnτ + ndn+1σ) .

Proof. The operation, i.e. computing the new coefficients ciu
i can be done with Õ(dn) multiplica-

tions: Since u(i1,..,ik,..,in) = uku(i1,..,ik−1,..,in), if these powers are computed successively then every co-
efficient is computed using two multiplications. Moreover, it suffices to keep in memory the n powers
u(i1,..,ik−1,ik−1,ik+1,..,in), k = 1, .., n in order to compute any uici. Geometrically this can be understood as a
stencil of n points that sweeps the coefficient tensor and updates every element using one neighbor at each
time. The bitsize of the multiplied numbers is O(τ + dσ) hence the result follows.

Now if we consider a contraction followed by a shift by 1 with respect to xk for O(n) polynomials we

obtain ÕB(n2dnτ + n3dn+1 + ndn+1σ) operations for the computation of the domain. The disadvantage is
that the resulting coefficients are of bitsize O(τ + dσ) instead of O(τ + nσ) with the use of shifts. Also
note that this operation would compute a expansion of the real root which differs from continued fraction
expansion.

3.2. Reduction: Bounds on the range of f

In this section we define univariate polynomials whose graph in Rn+1 bounds the graph of f . For every
direction k, we provide two polynomials bounding the values of f in Rn from below and above respectively.

Define

mk(f ; xk) =

dk∑

ik=0

min
i1,.., bik,..,in

ci1..in
xik

k (3)

Mk(f ; xk) =

dk∑

ik=0

max
i1,.., bik,..,in

ci1..in
xik

k (4)

Lemma 3.3. For any x ∈ Rn
+, n > 1 and any k = 1, .., n, we have

mk(f ; xk) ≤ f(x)

∏

s6=k

ds∑

is=0

xis
s

≤ Mk(f ; xk). (5)

Proof. For x ∈ Rn
+, we can directly write

f(x) ≤
(

dk∑

ik=0

max
i1,.., bik,..,in

ci1..in
xik

k

)
∏

s6=k

ds∑

is=0

xis
s

The product of power sums is greater than 1; divide both sides by it. Analogously for Mk(f ; xk).
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Corollary 3.4. Given k ∈ {1, .., n}, if u ∈ Rn
+ with uk ∈]0, µk], where

µk =





min. pos. root of Mk(f, xk) if Mk(f ; 0) < 0
min. pos. root of mk(f, xk) if mk(f ; 0) > 0

0 otherwise
,

then f(u) 6= 0. Consequently, all positive roots of f lie in R>µ1 × · · · × R>µn
. Also, for u ∈ Rn

+ with
uk ∈ [Mk,∞],

Mk =





max. pos. root of Mk(f, xk) if Mk(f ;∞) < 0
max. pos. root of mk(f, xk) if mk(f ;∞) > 0

∞ otherwise
,

it is f(u) 6= 0, i.e. all pos. roots are in R<M1 × · · · × R<Mn
.

Combining both bounds we deduce that [µ1,M1] × · · · × [µn,Mn] is a bounding box for f−1({0}) ∩ Rn
+.

Proof. The denominator in (5) is always positive in Rn
+. Let u ∈ Rn with uk ∈ [0, µk]. If Mk(f, 0) < 0

then also Mk(f, u) < 0 and it follows f(u) < 0. Similarly mk(f, 0) > 0 ⇒ mk(f, u) > 0 ⇒ f(u) < 0. The
same arguments hold for [Mk,∞], Mk(f ;∞) = R(Mk(f ; xk))(0), mk(f ;∞) = R(mk(f ; xk))(0), and R(f),
since lower bounds on the zeros of R(f) yield upper bounds on the zeros of f .

Thus lower and upper bounds on the k−th coordinates of the roots of (f1, .., fs) are given by

max
i=1,..,s

{µk(fi)} and min
i=1,..,s

{Mk(fi)} (6)

respectively, i.e. the intersection of these bounding boxes.
We would like to remain in the ring of integers all along the process, thus integer lower or upper bounds

will be used. These can be the floor or ceil of the above roots of univariate polynomials, or even known
bounds for them, e.g. Cauchy’s bound.

If the minimum and maximum are taken with the ordering of coefficients defined as ci ≺ cj ⇐⇒
ci

(
d
j

)
γjδd−j < cj

(
d
i

)
γiδd−i then different mk(f, xk), Mk(f, xk) polynomials are obtained. By Corollary 2.4

their control polygon is the lower and upper hull respectively of the projections of the tensor-Bernstein coef-
ficients to the k−th direction and are known to converge quadratically to simple roots when preconditioning
(described in the following paragraph) is utilized [16, Corollary 5.3].

Complexity analysis. The analysis of the subdivision step in Sec. 3.2 applies as well to the reduction
step, since reducing the domain means to compute a new subdomain and ignore the remaining volume of
the initial box.

If a lower bound l = (l1, . . . , ln) is known, with L (lk) = Õ(σ), then the reduction step is performed in

ÕB(n2dnτ + dn+1n3σ). This is an instance of Lemma 3.1.
The projections of Lemma 3.3 are computed using O(dn) comparisons. The computation of l costs

ÕB(d3τ) in average, for solving these projections using univariate CF algorithm. Another option would be
to compute well known lower bounds on their roots, for instance Cauchy’s bound in O(d).
Illustration. Consider a bi-quadratic f0 ∈ R[x, y], namely, degx1

f0 = degx2
f0 = 2 with coefficients cij .

Suppose that f0 = H(f) for I0 = IH . We compute

m1(f, x1) =
2∑

i=0

min
j=0,...,2

cij xi
1 and M1(f, x1) =

2∑

i=0

max
j=0,...,2

cij xi
1.

thus m(f, x1) ≤ f(x1,x2)
1+x2+x2

2
≤ M1(f, x1). Fig. 2 shows how these univariate quadratics bound the graph of f

in I0.
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Figure 2: The enveloping polynomials M1(x), m1(x) in domain I0 for a bi-quadratic polynomial f(x, y).

3.3. Preconditioning

To improve the reduction step, we use preconditioning. The aim of a preconditioner is to tune the system
so that it can be tackled more efficiently; in our case we aim at improving the bounds of Corollary 3.4.

A preconditioning matrix P is an invertible s × s matrix that transforms a system (f1, .., fs)
t into the

equivalent one P · (f1, .., fs)
t. This transformation does not alter the roots of the system, since the computed

equations generate the same ideal. The bounds obtained on the resulting system can be used directly to
reduce the domain of the equations before preconditioning. Preconditioning can be performed to a subset of
the equations.

Since we use a reduction process using Corollary 3.4 we want to have among our equations n of them
whose zero locus f−1({0}) is orthogonal to the k−th direction, for all k.

Assuming a square system, we precondition H(f1), .., H(fn) to obtain a locally orthogonal to the axis
system; an ideal preconditioner would be the Jacobian of the system evaluated at a common root; instead,
we evaluate JH(f) at the image of the center u of the initial domain IH , uk = αkδk+βkγk

2γkδk
. Thus we must

compute the inverse of the Jacobian matrix JH(f)(x) = [∂xi
H(fj)(x)]1≤i,j,≤n evaluated at u′ := H(u) =

(δ1/γ1, .., δn/γn).

Precondition step complexity. Computing JH(f)(u) · (H(f1), .., H(fn))t is done with cost ÕB(n2dn) and

evaluating at u′ has cost ÕB(n2dn−1). We also need ÕB(n2) for inversion and O(n2dn) for multiplying
polynomials times scalar as well as summing polynomials. This gives a precondition cost of order O(n2dn).

4. Regularity tests

A subdivision scheme 1 is able to work when two tests are available: one that identifies empty domains
(exclusion test) and one that identifies domains with exactly one zero (inclusion test). If these two tests are
negative, a domain cannot be neither included nor excluded so we need to apply further reduction/subdivision
steps to it. Nevertheless, if the result of the test is affirmative, then this is certified to be correct.

4.1. Exclusion test

The bounding functions defined in the previous section provide a fast filter to exclude empty domains.
Define min ∅ = ∞ and max∅ = 0.

Corollary 4.1. If for some k ∈ {1, .., n} and for some i ∈ {1, .., s} it is µk(fi) = ∞ or Mk(fi) = 0 then the
system has no solutions. Also, if maxi=1,..,s{µk(fi)} > mini=1,..,s {Mk(fi)} then there can be no solution
to the system.

Proof. For the former statement observe that fi has no real positive roots, thus the system has no roots.
The latter statement means that the reduced domains of each fi, i = 1, .., s do not intersect, thus there are
no solutions.
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We can use interval arithmetic to identify additional empty domains; if the sign of some initial fi is
constant in IH = H(Rn

>0) then this domain is discarded. We can also simply inspect the coefficients of each
H(fi); if there are no sign changes then the corresponding box contains no solution.

The accuracy of these criteria greatly affects the performance of the algorithm. In particular, the sooner
an empty domain is rejected the less subdivisions will take place and the process will terminate faster. We
justify that the exclusion criteria will eventually succeed on an empty domain by proving a generalization of
Vincent’s theorem to the tensor multivariate case.

Theorem 4.2. Let f(x) =
∑d

i=0 ci xi be a polynomial with real coefficients, such that it has no (complex)

solution with ℜ(zk) ≥ 0 for k = 1, .., n. Then all its coefficients ci1,..,in
are of the same sign.

Proof. We prove the result by induction on n, the number of variables. For n = 1, this is the classical
Vincent’s theorem [1].

Consider now a polynomial

f(x1, x2) =
∑

0≤i1≤d1,0≤i2≤d2

ci1,i2 xi1
1 xi2

2

in two variables with no (complex) solution such that ℜ(xi) ≥ 0 for i = 1, 2. We prove the result for n = 2,
by induction on the degree d = d1 + d2. The property is obvious for polynomials of degree d = 0. Let us
assume it for polynomials of degree less than d.

By hypothesis, for any z1 ∈ C with ℜ(z1) ≥ 0, the univariate polynomial f(z1, x2) has no root with
ℜ(x2) ≥ 0. According to Lucas theorem [15], the complex roots of ∂x2f(z1, x2) are in the convex hull of
the complex roots of f(z1, x2). Thus, there is no root of ∂x2f(x1, x2) with ℜ(x1) ≥ 0 and ℜ(x2) ≥ 0. By
induction hypothesis, the coefficients of ∂x2f(x1, x2) are of the same sign. We decompose P as

f(x1, x2) = f(x1, 0) + f1(x1, x2)

where f1(x1, x2) =
∑

0≤i1≤d1,1≤i2≤d2
ci1,i2 xi1

1 xi2
2 with ci1,i2 of the same sign, say positive. By Vincent

theorem in one variable, as f(x1, 0) has no root with ℜ(x1) ≥ 0, the coefficients ci1,0 of f(x1, 0) are also of
the same sign. If this sign is different from the sign of ci1,i2 for i2 > 1 (ie. negative here), then f(0, x2) has
one sign variation in its coefficients list. By Descartes rule, it has one real positive root, which contradicts
the hypothesis on f . Thus, all the coefficients have the same sign.

Assume that the property has been proved for polynomials in n − 1 variables and let us consider a
polynomial f(x) =

∑d
i=0 ci xi in n variables with no (complex) solution such that ℜ(xk) ≥ 0 for k =

1, .., n. For any z1, .., zn−1 ∈ C with ℜ(zk) ≥ 0, for k = 1, .., n − 1, the polynomial f(z1, .., zn−1, xn) and
∂xn

f(z1, .., zn−1, xn) has no root with ℜ(xn) ≥ 0. By Lucas theorem and induction hypothesis on the degree,
∂xn

f(x) has coefficients of the same sign. We also have f(x1, .., xn−1, 0) with coefficients of the same sign,
by induction hypothesis on the number of variables. If the two signs are different, then f(0, .., 0, xn) has
one sign variation in its coefficients and thus one real positive root, say ζn, which cannot be the case, since
(0, .., 0, ζn) would yield a real root of f . We deduce that all the coefficients of f are of the same sign.

This completes the induction proof of the theorem.

We can reformulate this result for bounded domains, using homography transformations, as follows.

Corollary 4.3. Let H(f) =
∑d

i=0 ci xi be the representation of f through H in a box IH = [u, v]. If there
is no root z ∈ Cn of f such that

∣∣∣∣zk − uk + vk

2

∣∣∣∣ ≤
vk − uk

2
, for k = 1, .., n,

then all the coefficients ci1,..,in
are of the same sign.

That is, if dist∞(ZCn(f), m) >
δ

2
, where m is the center of IH of size δ, then IH is excluded by sign

conditions.
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Proof. The interval [uk, vk] is transformed by H−1 into [0, +∞] and the disk
∣∣zk − uk+vk

2

∣∣ ≤ vk−uk

2 is
transformed into the half complex plane ℜ(zk) ≥ 0. We deduce that H(f) has no root with ℜ(zk) ≥ 0,
k = 1, . . . , n. By Theorem 4.2, the coefficients of H(f) are of the same sign.

We deduce that if a domain is far enough from the zero locus of some fi then it will be excluded, hence
redundant empty domains concentrate only in a neighborhood of f = 0.

The regions which will be excluded during the subdivision algorithm can be quantitatively related to the
regions where ‖f(x)‖∞ is large, using the Lipschitz constant of f :

Definition 4.4. For a system f = (f1, . . . , fs) of polynomials fi ∈ R[x] (i = 1, . . . , s) and a box I =
I1 × · · · × In ⊂ Rn, let

λI(f) = max{‖f(x) − f(y)‖
‖x − y‖ ; x 6= y ∈ IC}

be the Lipschitz constant of f on IC.

By definition, we have ‖f(x) − f(y)‖ ≤ λI(f)‖x − y‖ for all x, y ∈ IC.

Lemma 4.5. Suppose that IC ⊂ SCn(0, ρ) with ρ ≥ 1 and f ∈ R[x] is of degree d, then

λI(f) ≤
√

2 d ‖f‖ρd−1.

Proof. Let x, y ∈ IC ⊂ SCn(0, ρ). We consider g(t) := ℜ(f(x + t (y − x)) − f(x)). By the intermediate
value theorem, there exists τ ∈ [0, 1] such that

|ℜ(f(y) − f(x))| = |g′(τ)| ≤ ‖Dy−x(f)(x + τ (y − x))|

The same results applies if we take the imaginery part. By [22, III, Prop. 1 p. 484] we have

|f(y) − f(x)| ≤
√

2‖Dy−x(f)(x + τ (y − x))| ≤
√

2‖Dy−x(f)‖ρd−1

since x + τ(y − x) ∈ IC ⊂ SCn(0, ρ). By [22, III, Lem. 2, p. 485] we deduce that

|f(y) − f(x)| ≤
√

2 d ‖f‖ρd−1‖y − x‖,

which concludes the proof of the Lemma.

Proposition 4.6. Let H be a homography of Rn and ε > 0 is such that |I| < 2 ε, where I = IH . If
‖f(x)‖∞ >

√
n λI(f) ε then the coefficients of at least one of the functions H(fi) are of constant sign.

Proof. Suppose that ‖f(x)‖∞ = |fi0(x)| and let z ∈ Cn be the closest point to x such that fi0(z) = 0. We
have

|fi0(x)| = |fi0(x) − fi0(z)| ≤ λI(f) ‖x − z‖ ≤ λI(f)
√

n ‖x − z‖∞.

and thus there is no root of fi0 in IC(x, ε) for ε <
|fi0 (x)|√
n λI (f)

. By Corollary 4.3, we deduce that the coefficients

of H(fi0) are of constant sign.

To analyze more precisely the subdivision process, we are going to relate the number of boxes which are
not removed with some integral geometry invariants [28]:

Definition 4.7. The tubular neighborhood of size ε of fi is the set

τε(fi) = {x ∈ Rn : ∃z ∈ Cn, fi(z) = 0, s.t. ‖z − x‖∞ < ε}.

We bound the number of boxes that are not excluded at each level of the subdivision tree.
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Lemma 4.8. Assume that I = I1 × · · · × In is bounded. There exists N∗
f (I) ∈ N+ such that the number of

boxes of size ε > 0 kept by the algorithm is less than N∗
f (I) and such that

V (f, ε) := volume (∩s
i=1τε(fi) ∩ I)) ≤ N∗

f (I) ǫn.

Proof. Consider a subdivision of the domain I0 into boxes of size ε > 0. We will bound the number Nε
f (I)

of boxes in this subdivision that are not rejected by the algorithm. By Corollary 4.3 if a box is not rejected,
then we have for all i = 1, . . . , s dist∞(ZCn(fi), m) < ε

2 , where m is the center of the box. Thus all the
points of this box (at distance < ε

2 to m) are at distance < ε to ZCn(fi) that is in ∩s
i=1τε(fi) ∩ I.

To bound Nε
f (I), it suffices to estimate the n−dimensional volume V (f, ε), since we have:

Nε
f (I)εn ≤ volume (∩s

i=1τε(fi) ∩ I) = V (f, ε).

When ε tends to 0, this volume becomes equivalent to a constant times εn. For a square system
with simple roots in I, it becomes equivalent to the sum for all real roots ζ in I of the volumes of par-
allelotopes in n dimensions of height 2ε and edges proportional to the gradients of the polynomials at

ζ; More precisely, it is bounded by εn2n
∑

ζ∈I,f(ζ)=0

Q

i
||∇fi(ζ)||
|Jf (ζ)| . We deduce that there exists an integer

N∗
f (I) ≥ 2n

∑
ζ∈I,f(ζ)=0

Q

i
||∇fi(ζ)||
|Jf(ζ)| such that V (f, ε) ≤ N∗

f (I) εn < ∞. For overdetermined systems, the

volume is bounded by a similar expression.
Since V (f, ε) ε−n has a limit when ε tends to 0, we deduce the existence of the finite constant N∗

f (I) =
maxε>0 Nε

f (I), which concludes the proof of the lemma.

Notice that preconditioning operations can be used here to improve this bound.

4.2. Inclusion test

We consider two types of inclusion tests (which can easily be combined) and analyze the complexity of
the corresponding subdivision process in the following sections.

4.3. Miranda’s test

We present a first test that discovers common solutions, in a box, or equivalently in Rn
+, through homog-

raphy. To simplify the statements we assume that the system is square, i.e. s = n.

Definition 4.9. The lower face polynomial of f with respect to direction k is low(f, k) = f |xk=0. The upper
face polynomial of f with respect to k is upp(f, k) = f |xk=∞ := Rk(f)|xk=0.

Lemma 4.10 (Miranda Theorem [26]). If for some permutation π : {1, . . . , n} → {1, . . . , n}, we have
sign(low(H(fk), π(k))) and sign(upp(H(fk), π(k))) are constant and opposite for all k = 1, . . . , n, then the
equations (f1, . . . , fn) have at least one root in IH .

The implementation of Miranda’s test can be done efficiently if we compute a 0− 1 matrix with (i, j)−th
entry 1 iff sign(low(H(fi), j)) and sign(upp(H(fi), j)) are opposite. Then, Miranda test is satisfied iff there
is no zero row and no zero column. To see this observe that the matrix is the sum of a permutation matrix
and a 0 − 1 matrix iff this permutation satisfies Miranda’s test.

Combined with the following simple fact, we have a test that identifies boxes with a single root.

Lemma 4.11. If detJf (x) has constant sign in a box I, then there is at most one root of f = (f1, . . . , fn)
in I.

Proof. Suppose u, v ∈ I are two distinct roots; by the mean value theorem there is a point w on the line
segment uv, and thus in I, such that Jf (w) · (u − v) = f(u) − f(v) = 0 hence detJf (w) = 0.
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4.3.1. Complexity of the test

Miranda test can be decided with O(n2) evaluations on interval (cf. [13]) as well as one evaluation of
Jf , overall O(n2dn) operations. The cost of the inclusion test is dominated by the cost of evaluating O(n)

polynomials of size O(dn) on an interval, i.e. O(ndn) operations suffice.

Proposition 4.12. If the real roots of the square system in the initial domain I are simple, then Algorithm 1
stops with boxes isolating the real roots in I0.

Proof. If the real roots of f = (f1, . . . , fn) in I0 are simple, in a small neighborhood of them the Jacobian
of f has a constant sign. By the inclusion test, any box included in this neighborhood will be output if
and only if it contains a single root and has no real roots of the jacobian. Otherwise, it will be further
subdivided or rejected. Suppose that the subdivision algorithm does not terminate. Then the size of the
boxes kept at each step tends to zero. By Corollary 4.3, these boxes are in the intersection of the tubular
neighborhoods (∩s

i=1τε(fi)) ∩ Rn for ε > 0 the maximal size of the kept boxes. If ε is small enough, these
boxes are in a neighborhood of a root in which the Jacobian has a constant size, hence the inclusion test will
succeed. By the exclusion criteria, a box domain is not subdivided indefinitely, but is eventually rejected
when the coefficients become positive. Thus the algorithm either outputs isolating boxes that contains a real
root of the system or rejects empty boxes. This shows, by contradiction, the termination of the subdivision
algorithm.

4.4. α-inclusion test

In this section, we consider another inclusion test, based on α-theory and properties of convergence of
Newton’s method. This test of existence and unicity of a root in a neighborhood of a point involve the
following constants:

Definition 4.13.

• βf (x) = ‖Df(x)−1f(x)‖

• γf (x) = supk≥2 ‖ 1
k!Df(x)−1Dkf(x)‖ 1

k−1

• αf (x) = βf (x) γf (x).

Let δ(u) := 1
4 (1+u−

√
(1 + u)2 − 8 u). We recall here a well-known theorem [22], [3] which is the foundation

of the theory:

Theorem 4.14. If αf (x) < α0 ≤ 1
4 (13− 3

√
17) ∼ 0.1577 then f has a unique zero ζ in the ball B(x, δ0

γf (x)),

with δ0 = δ(α0) ≤ 2−
√

2
2 ∼ 0.2929. Moreover, for each point z ∈ I(x, δ0

γf (x)), Newton’s method starting from

z converges quadratically to ζ.

This yields the following definition:

Definition 4.15. A box I(x, ε) is an α0-inclusion box if

• αf (x) < α0 and

• ε <
√

n δ(α0)
γf (x) .

By theorem 4.14, if I(x, ε) is an α0-inclusion box then there is a unique root in the ball B(x, δ0

γf (x)) where

δ0 = δ(α0). Moreover, we have I(x, ε) ⊂ B(x, δ0

γf (x)).

As we will see, the α0-inclusion boxes that derive from the subdivision process (1) determine regions
which isolate the roots of the system f(x) = 0. In fact, if we are able to decompose a domain I0 into a union
of boxes which either do contain no roots or are α0-inclusion boxes, then
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• each root is in a connected component of the union of the α0-inclusion boxes and

• each connected component of the union of the α0-inclusion boxes contains a unique root of f(x) = 0.

More precisely, if such a connected component is ∪s
i=1I(xi, εi) with xi ∈ D0 and εi > 0, then by theorem

4.14, there is a unique root ζi in B(xi,
δ0

γf (xi)
). As the balls B(xi,

δ0

γf (xi)
), B(xj ,

δ0

γf (xj)
) of two adjacent

α0-inclusion boxes intersect, we must have

ζi = ζj ∈ B(xi,
δ0

γf (xi)
) ∩ B(xj ,

δ0

γf (xj)
).

Since the connected component ∪s
i=1I(xi, εi) is a union of boxes in which every box has at least one adjacent,

by recursive application of the above argument we derive that it contains a unique root ζ, which moreover
is in ∩s

i=1B(xi, εi).

5. The complexity of MCF

In this section we compute an upper bound on the complexity of the algorithm that exploits the continued
fraction expansion of the real roots of the system. Hereafter, we call this algorithm MCF (Multivariate
Continued Fractions). Since the analysis of the reduction steps of Sec. 3 and the Exclusion-Inclusion test
of Sec. 4 would require much more developments, we simplify the situation and analyze a variant of this
algorithm. We assume that two oracles are available. The first one computes, exactly, the partial quotients
of the positive real roots of the system, that is the integer part of the coordinates. The second counts exactly
the number of real roots of the system inside a hypercube in the open positive orthant, namely Rn

+. Actually
the latter suffices for the realization/implementation of the former. In what follows, we will assume the cost
of the first oracle is bounded by C1, while the cost of the second is bounded by C2, and we shall derive the
total complexity of the algorithm with respect to these parameters. In any case the number of reduction or
subdivision steps that we derive is a lower bound on the number of steps that every variant of the algorithm
will perform. The next section presents some preliminaries on continued fractions, and then we detail the
complexity analysis.

5.1. About continued fractions

Our presentation follows closely [23], and we refer the reader to, e.g., [27, 4, 24] for additional details. A
simple (regular) continued fraction is a (possibly infinite) expression of the form

c0 +
1

c1 +
1

c2 + · · ·

= [c0, c1, c2, . . .],

where the numbers ci are called partial quotients, ci ∈ Z and ci ≥ 1 for i > 0. Notice that c0 may have
any sign, however, in our real root isolation algorithm c0 ≥ 0, without loss of generality. By considering the
recurrent relations

P−1 = 1, P0 = c0, Pn+1 = cn+1 Pn + Pn−1,
Q−1 = 0, Q0 = 1, Qn+1 = cn+1 Qn + Qn−1,

it can be shown by induction that Rn = Pn

Qn
= [c0, c1, . . . , cn], for n = 0, 1, 2, . . ..

If γ = [c0, c1, . . .] then γ = c0 + 1
Q0Q1

− 1
Q1Q2

+ · · · = c0 +
∑∞

n=1
(−1)n−1

Qn−1Qn
and since this is a series of

decreasing alternating terms, it converges to some real number γ. A finite section Rn = Pn

Qn
= [c0, c1, . . . , cn]

is called the n−th convergent (or approximant) of γ and the tails γn+1 = [cn+1, cn+2, . . .] are known as its
complete quotients. That is γ = [c0, c1, . . . , cn, γn+1] for n = 0, 1, 2, . . .. There is an one to one correspon-
dence between the real numbers and the continued fractions, where evidently the finite continued fractions
correspond to rational numbers.
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It is known that Qn ≥ Fn+1 and that Fn+1 < φn < Fn+2, where Fn is the n−th Fibonacci number

and φ = 1+
√

5
2 is the golden ratio. Continued fractions are the best rational approximation(for a given

denominator size). This is as follows:

1

Qn(Qn+1 + Qn)
≤
∣∣∣∣γ − Pn

Qn

∣∣∣∣ ≤
1

QnQn+1
< φ−2n+1. (7)

Let γ = [c0, c1, . . .] be the continued fraction expansion of a real number. The Gauss-Kuzmin distribution
[4] states that for almost all real numbers γ, that is the set of exceptions has Lebesgue measure zero, the
probability for a positive integer δ to appear as an element ci in the continued fraction expansion of γ is

Prob[ci = δ] ⋍ lg
(δ + 1)2

δ(δ + 2)
, for any fixed i > 0. (8)

The Gauss-Kuzmin law induces that we can not bound the mean value of the partial quotients or in other
words that the expected value (arithmetic mean) of the partial quotients is diverging, i.e.

E[ci] =
∞∑

δ=1

δ Prob[ci = δ] = ∞, for i > 0.

However, the geometric, as well as the harmonic, mean is not only asymptotically bounded, but is bounded
by a constant, for almost all γ ∈ R. For the geometric mean this is the famous Khintchine’s constant [14],
i.e.

lim
n→∞

n

√√√√
n∏

i=1

ci = K = 2.685452001...

It is not known if K is a transcendental number. The expected value of the bit size of the partial quotients
is a constant for almost all real numbers, when n → ∞ or n sufficiently big [14]. Notice that in (8), i > 0,
thus γ ∈ R is uniformly distributed in (0, 1). Let L (ci) , bi, then

E[bi] = O(lgK) = O(1). (9)

5.2. Complexity results

We denote by σ the upper bound on the bitsize of the partial quotients that appear during the execution
of the algorithm.

Lemma 5.1. The number of reduction and subdivision steps that the algorithm performs is Õ(2n n(d + n +
τ)d2n−1).

Proof. Let ζ = (ζ1, . . . , ζn) be a real root of the system. It suffices to consider the number of steps needed
to isolate the i coordinate of ζ. We remind the reader that we are working in the positive orthant and we
can compute exactly the next partial quotient in each coordinate; in other words a vector l = (l1, . . . , ln),
where each li, 1 ≤ i ≤ n, is the partial quotient of a coordinate of a positive real1 solution of the system.

Let ki(ζ) be the number of steps needed to isolate the ith coordinate of the real root ζ. The analysis is
similar to the univariate case. We may consider the whole process of the subdivision algorithm as a 2n−ary
tree, where at each node we associate a, possible, open hypercube, and to the root of the tree we associate
the positive orthant. The leaves of the tree form a partition of the positive orthant, and they contain at
most one real root of the system. The number of nodes of the tree correspond to the number of steps if
the algorithms. We prune some leaves of the tree to make the counting easier. We prune all the leaves that

1Actually the analysis holds even in the case where each li is the partial quotient of the positive imaginary part of a coordinate
of a solution of the system.
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have siblings that are not leaves. We prune all the leaves that do not contain a real root. Notice that these
leaves have at least one sibling that contains a real root, since otherwise the subdivision process would have
stopped one step before. All the remaining leaves contain a real root. If there are siblings that are all leaves
then we keep arbitrarily one of them. The number of nodes in the original tree is at most 2n times the
number of nodes of the pruned tree.

Now all the leaves of the pruned tree correspond to a hypercube that contains exactly one real root, say
ζ, of the system. The edges of the hypercube correspond to successive approximations of ζi by consecutive

approximants. The ki(ζ)-th approximant is
Pki(ζ)

Qki(ζ)
and following (7) should satisfy

∣∣∣∣
Pki(ζ)

Qki(ζ)
− ζi

∣∣∣∣ ≤
1

Qki(ζ)Qki(ζ)+1
< φ−2ki(ζ)+1.

In order to isolate ζi, it suffices to have

∣∣∣∣
Pki(ζ)

Qki(ζ)
− ζi

∣∣∣∣ ≤ ∆i(ζ),

where ∆i(ζ) is the local separation bound of ζi, that is the smallest distance between ζi and all the other
i-coordinates of the positive real solutions of the system. The number of nodes from the hypercube that
isolates ζ to the root of the tree is, in the worst case, k(ζ) = maxi ki(ζ).

Combining the last two equations, we deduce that to achieve the desired approximation, we should have
φ−2ki(ζ)+1 ≤ ∆i(ζ), or ki(ζ) ≥ 1

2 − 1
2 lg ∆i(ζ). That is to achieve the desired approximation it suffices to

compute O(− 1
2 lg ∆i(ζ)) approximants. In other words, from the leaf that corresponds to a hypercube that

isolates ζ to the root of the tree there are O(− 1
2 lg ∆(ζ)) nodes, where ∆ = min ∆i.

To compute the total number of steps, i.e. the total number of nodes of the pruned tree, we need to sum
over all the real roots that appear at the leaves of the tree; hence

∑

ζ∈V

k(ζ) ≤ 1

2
R − 1

2

∑

ζ∈V

lg ∆(ζ) =
1

2
R − 1

2
lg
∏

ζ∈V

∆(ζ),

where |V | ≤ R, V is the set of positive real roots at the leaves of the pruned tree and R and the total number
of positive real roots.

To bound the logarithm of the product, we use DMMn [12], i.e. aggregate separation bounds for multivari-
ate, zero-dimensional polynomial systems. It holds

∏
ζ∈V ∆(ζ) ≥ 2−(3+4 lg n+4n lg d)d2n

2−2n(1+n lg d+τ)d2n−1

− log
∏

ζ∈V ∆(ζ) ≤ (3 + 4 lg n + 4n lg d)d2n + 2n(1 + n lg d + τ)d2n−1,

− log
∏

ζ∈V ∆(ζ) = Õ(nd2n + (n2 + nτ)d2n−1).

Taking into account that R ≤ dn we conclude that the total number of nodes of the pruned tree is Õ(nd2n +

n(n + τ)d2n−1), and hence the number of steps of the algorithms is Õ(2n nd2n + 2n n(n + τ)d2n−1).

Proposition 5.2. The total complexity of the algorithm is ÕB(23nn5(n2+d2+τ2)d5n−1σ+(C1+C2)2
n n(d+

n + τ)d2n−1).

Proof. At each h-th step of algorithm, if there are more than one roots of the corresponding system in the
positive orthant, (let the cost of estimating this is be C2), we compute the corresponding partial quotients
lh = (lh,1, . . . , lh,n), where L (hh,i) ≤ σh (let the cost of this computation be C1). Then, for each polynomial
of the system, f , we perform the shift operation f(x1 + l1, . . . , xn + ln), and then we split the positive orthant
to 2n subdomains. Let us estimate the cost of the last two operations.

A shift operation on a polynomial of degree ≤ d, by a number of bitsize σ, increases the bitsize of the
polynomial by an additive factor ndσ. At the h step of the algorithm, the polynomials of the corresponding
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system are of bitsize O(τ + nd
∑h

i=1 σh), and we need to perform a shift operation to all the variables,

with number of bitsize σh+1. The cost of this operation is ÕB(ndnτ + n2dn+1
∑h+1

k=1 σk), and since we

have n polynomials the costs becomes ÕB(n2dnτ + n3dn+1
∑h+1

k=1 σk), The resulting polynomial has bitsize

O(τ + nd
∑h+1

k=1 σk).
To compute the cost of splitting the domain, we proceed as follows. The cost is bounded by the cost of

performing n2n operations f(x1 + 1, . . . , xn + 1), which in turn is ÕB(ndnτ + n2dn+1
∑h+1

k=1 σk + n2dn+1).

So the total cost becomes ÕB(2nn2dnτ + 2nn3dn+1
∑h+1

k=1 σk). It remains to bound
∑h+1

k=1 σk. If σ is a
bound on the bitsize of all the partial quotients that appear during and execution of the algorithm, then∑h+1

k=1 σk = O(hσ).

Moreover, h ≤ #(T ) = Õ(2n nd2n + 2n n(n + τ)d2n−1) (lem. 5.1), and so the cost of each step is

ÕB(22nn4(n + d + τ)d3nσ).

Finally, multiplying by the number of steps (lem. 5.1) we get a bound of ÕB(23nn5(n2 +d2 + τ2)d5n−1σ).
To derive the total complexity we have to take into account that at each step we compute some partial

quotients and and we count the number of real root of the system in the positive orthant. Hence the total
complexity of the algorithm is ÕB(23nn5(n2 + d2 + τ2)d5n−1σ + (C1 + C2)2

n n(d + n + τ)d2n−1).

In the univariate case (n = 1), if we assume that (9) holds for real algebraic numbers, then the cost of C1

and C2 is dominated by that of the other steps, that is the splitting operations, and the (average) complexity

becomes ÕB(d3τ) and matches the one derived in [23] (without scaling).

5.3. Further improvements

We can reduce the number of steps that the algorithm performs, and thus improve the total complexity
bound of the algorithm, using the same trick as in [23]. The main idea is that the continued fraction
expansion of a real root of a polynomial does not depend on the initial computed interval that contains all
the roots. Thus, we spread away the roots by scaling the variables of the polynomials of the system by a
carefully chosen value.

If we apply the map (x1, . . . , xn) 7→ (x1/2ℓ, . . . , xn/2ℓ), to the initial polynomials of the system, then the
real roots are multiplied by 2ℓ, and thus their distance increases. The key observation is that the continued
fraction expansion of the real roots does not depend on their integer part. Let ζ be the roots of the system,
and γ, be the roots after the scaling. It holds γ = 2ℓ ζ. From [12] it holds that

− log
∏

ζ∈V

∆i(ζ) ≤ (3 + 4 lg n + 4n lg d)d2n + 2n(1 + n lg d + τ)d2n−1,

and thus

− log
∏

ζ∈V

∆i(γ) = − log 2Rℓ
∏

ζ∈V

∆i(ζ)

≤ (2nτd2n−1 + 2ndn) lg(nd2n) − R ℓ.

If we choose ℓ = Õ(ndn−1(n+d+τ)) and assume that R ≤ dn which is the worst case, then − log
∏

ζ∈V ∆i(γ) =

Õ(1). Thus, following the proof of Lemma 5.1, the number of steps that the algorithm performs is O(2n dn).

The bitsize of the scaled polynomials becomes Õ(n2dn+1 + n2dnτ). The total complexity of algorithm is
now

ÕB(22nn3d3n(n + 2ndσ + nτ) + +2ndn(C1 + C2)),

where σ the maximum bitsize of the partial quotient appear during the execution of the algorithm. If we
assume that (9) holds for real algebraic numbers, then σ = O(1). Notice that in this case, when n = 1, the

bound becomes ÕB(d3τ), which agrees with the one proved in [23].
The discussion above combined with Proposition 5.2 lead us to:

Theorem 5.3. The total complexity of the algorithm is ÕB(22nn3d3n(n + 2ndσ + nτ) + 2ndn(C1 + C2)).
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6. Complexity and condition number

We are going to analyze the behavior of the subdivision algorithm in terms of condition numbers of the
input polynomial system. This analysis uses the same tools as in [6]. However, we provide a bound which is
not exponential but linear in the logarithm of this condition number. This bounds are closely connected to
the results in [16] or [5]. They are formulated in terms of this condition number defined in [7], which takes
into account the distance to systems with degenerate real roots.

In the following, we consider a system f = (f1, . . . , fn) of polynomials fi ∈ R[x] of degree di := deg(fi).
We denote by d = max{d1, . . . , dn}. We assume that the roots of the system in the box I0 ⊂ Rn are
simple. By a homographic transformation, we will assume that the initial domain is I0 := [−1, 1]n, so that
I0,C ⊂ BC(0, ρ) with ρ =

√
n. We assume that the system f has no multiple root in I0. We consider a

subdivision algorithm based on the exclusion test of Sec. 4.1 and the inclusion test of Sec. 4.4. We assume
moreover that there is a constant 0 < Φ < 1 such that at each subdivision the size of a box which is kept is
at most Φ times the size of its parent box. Consequently, if we apply k subdivision steps, the boxes which
are kept are of size Φk times the size of the initial box.

We recall here the definitions that will be used in this complexity analysis.

Definition 6.1. For a system f = (f1, . . . , fn) of polynomials fi ∈ R[x] with deg(fi) = di,

µf (x) := ‖f‖‖Df(x)−1∆(
√

d1‖x‖1, . . . ,
√

dn‖x‖1)‖,

where ∆(z1, . . . , zn) is the diagonal matrix with entry zi for the index (i, i) and 0 for the indices (i, j) with
1 ≤ i 6= j ≤ n.

For a root ζ ∈ Cn, µf (ζ) is the condition number of the system f at ζ. It measures the distance to the set of
systems which are degenerated at ζ. See [3, p. 233]. This distance bounds the size of complex perturbation
we can apply on our system, while staying in the safe region of systems with simple roots. However in
practice, we usually consider real perturbations. To take into account the distance to real systems which are
degenerate, we use the following real condition number [7]:

Definition 6.2. The local condition number at x ∈ Rn for the system f is

κf(x) :=
‖f‖

(‖f‖2µf (x)−2 + ‖f(x)‖2
∞)

1
2

=
1

(µf (x)−2 + ‖f(x)‖2
∞ ‖f‖−2)

1
2

.

This condition number κf(x) is related to the distance to the set ΣR(x, d) of systems of real polynomials
(f1, . . . , fn) with d = (d1, . . . , dn), deg(fi) = di which are singular at x [7]:

κf (x) :=
1

dist(f, ΣR(x, d))
.

Definition 6.3. κI(f) := max{k(x, f); x ∈ I}.

In the univariate case f ∈ R[x], the value of κf will be large at the real roots ζ ∈ R of f where f ′(ζ) is
small and at local extrema ξ where |f(ξ)| is small.

Proposition 6.4. For all σ ≥ ‖f‖ and ε < 4 α0 ‖f‖2

d
3
2 κf (x)2σ2

, we have

• ‖f(x)‖∞ > σ ε, or

• αf (x) < α0.
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Proof. Let us suppose that αf (x) ≥ α0 and prove that ‖f(x)‖∞ > σ ε. We consider two cases.

In the case where µf (x)−1 < ‖f(x)‖ ‖f‖−1, we have κf (x) > 2
1
2 µf (x). By [22, Proposition 2, p. 467],

we have

βf (x) ≤ ‖x‖1µf (x)
‖f(x)‖∞

‖f‖ ,

where ‖x‖1 = (1 + |x1|2 + · · · + |xn|2)
1
2 . By [22, Proposition 3, p. 468],

γf (x) ≤ 1

2 ‖x‖1
µf (x)d3/2.

We deduce that

1

4
ε d

3
2 κf (x)2

σ2

‖f‖2
< α0 ≤ αf (x) = βf (x) γf (x) ≤ 1

2
µf (x)2d

3
2
‖f(x)‖∞

‖f‖

which implies that

ε
σ2

‖f‖ < ‖f(x)‖∞,

since κf (x) > 2
1
2 µf (x). As σ ≥ ‖f‖, we deduce that

ε σ < ‖f(x)‖∞.

In the case where µf (x)−1 ≥ ‖f(x)‖∞

‖f‖ , we have κf (x) ≥ 2
1
2

‖f‖
‖f(x)‖∞

and

2 ε
‖f‖2

‖f(x)‖2
∞

σ2

‖f‖2
≤ 2 ε κf(x)2

σ2

‖f‖2
< 4

α0

d
3
2

,

which implies that

‖f(x)‖∞ >

√
d

3
2

2 α0
σε

1
2 > σ ε,

since ε < 1 and d
3
2

2 α0
> 1.

Let α0 = 0.1 so that δ0 = δ(α0) ∼ 0.1145. We bound the complexity of the subdivision algorithm for the
exclusion test of section 4.1 and the α0-inclusion test of section 4.4.

Theorem 6.5. The number of arithmetic operations needed to isolate the roots of a polynomial system f
with simple roots in I = I1 × · · · × In ⊂ Rn with IC ⊂ SCn(0, ρ) and ρ > 1 is in

O(N∗
f (I) dn+1 (log(κI(f)) + d log(ρ) + log(n)).

Proof. By Lemma 4.8, the number of boxes of size ε kept during the subdivision is bounded by N∗
f (I).

The number of arithmetic operations is bounded by N∗
f (I) times the cost of a subdivision step times the

depth of the subdivision tree. The cost of a subdivision step is in O(dn+1).
We are going to bound the depth of the subdivision tree as follows. We will show that a box of size

ε < α0

8 n d
7
2 κI(f)2ρ2d−2

either satisfies the exclusion test or is an α0-inclusion box. By Proposition 6.4, for a

box I(x, ε) with ε < α0

8 n d
7
2 κI(f)2ρ2d−2

< 4 α0‖f‖2

d
3
2 κI (f)2(2 n d2 ρ2d−2‖f‖2)

, we have

• either ‖f(x)‖ >
√

2 nd‖f‖ρd−1ε, which implies by Lemma 4.5 and Proposition 4.6 that the box I(x, ε)
satisfies the exclusion test;

• or αf (x) < α0 and by Theorem 4.14 there is unique root ζ of f(x) = 0 in B(x, δ0

γf (x)).
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Figure 3: Isolating boxes of the real roots of Left: (Σ1), Right:(Σ2).

To prove that in the latter case, the box I(x, ε) is an α0-inclusion box, we need to check that

δ0

γf (x)
≥ n

1
2 ε.

By [22, Proposition 2, p. 476], it is
1

γf (x)
≥ ν0

γf (ζ)
,

where ν0 = (2δ2
0 − 4δ0 + 1)(1 − δ0) ∼ 0.5016. By [22, Proposition 3, p. 468], we have

1

γf (ζ)
≥ 2

d
3
2 µf (ζ)

≥ 2

d
3
2 κI(f)

,

since µf (ζ) = κ(ζ, f) ≤ κI(f). This implies that

δ0

γf (x)
≥ 2δ0ν0

d
3
2 κI(f)

.

As ε < α0

8 nd
7
2 κI (f)2ρ2d

and ε < 1, we have 1
κI(f) >

√
8 ρ2d d

7
2 n ε

α0
> 2

√
2ρd d

7
4 n

1
2√

α0
ε. We deduce that

δ0

γf (x)
>

4
√

2 ρd δ0ν0√
α0

d
1
4 n

1
2 ε > n

1
2 ε,

since ρ ≥ 1, d ≥ 1 and 4
√

2δ0ν0√
α0

> 1. This proves that the box I(x, ε) is an α0-inclusion box. Therefore the

subdivision step must stop before this precision, which gives a bound of order O(log(κI(f) + d log(ρ)) for
the depth of the subdivision tree.

7. Implementation and Examples

We have implemented the algorithm in the C++ library realroot of Mathemagix2, which is an open
source effort that provides fundamental algebraic operations such as algebraic number manipulation tools,
different types of univariate and multivariate polynomial root solvers, resultant and GCD computations, etc.

2http://www.mathemagix.org/
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Figure 4: Isolating boxes of the real roots of the system Left: (Σ3), Right: (Σ4).

The polynomials are internally represented as a vector of coefficients along with some additional data,
such as a variable dictionary and the degree of the polynomial in every variable. This allows us to map the
tensor of coefficients to the one-dimensional memory. The univariate solver that is used is the continued
fraction solver; this is essentially the same algorithm with a different inclusion criterion, namely Descartes
rule. The same data structures is used to store the univariate polynomials, and the same shift/contraction
routines. The univariate solver outputs a lower bound on the smallest positive root, as a result of a breadth-
first traverse of the subdivision tree. Our code is templated and support different types of coefficients. It
can use the integer arithmetic of GMP, since long integers appear as the box size decreases.

The following four examples demonstrate the output of our implementation, which we visualize using
Axel3.

First, we consider the system f1 = f2 = 0 (Σ1), where f1 = x2 + y2 − xy − 1, and f2 = 10xy − 4. We
are looking for the real solutions in the domain I = [−2, 3] × [−2, 2], which is mapped to R2

+, by an initial
transformation. The isolating boxes of the real roots can be seen in Fig. 3.

In systems (Σ2), (Σ3), We multiply f1 and f2 by quadratic components, hence we obtain

(Σ2)

{
f1 = x4 + 2x2y2 − 2x2 + y4 − 2y2 − x3y − xy3 + xy + 1
f2 = 20x3y − 10x2y2 − 10xy3 − 8x2 + 4xy + 4y2

and

(Σ3)






f1 = 10x2y − 10xy3 − 4x + 4y2

f2 = x4 − 2x2y − 2x2 + y2x2 − 2y3 − y2 − x3y+
+2xy2 + xy + 2y + 1

The isolating boxes of this system could be seen in Fig. 4. Notice, that size of the isolation boxes that are
returned in this case is considerably smaller.

Consider the system (Σ4), which consists of f1 = x4 − 2x2 − y4 + 1 and f2, which is a polynomial of
bidegree (8, 8). The output of the algorithm, that is the isolating boxes of the real roots can be seen in
Fig. 4. One important observation is that the isolating boxes are not squares, which verifies the adaptive
nature of the proposed algorithm.

We provide execution details on these experiments in Table 1. Several optimizations can be applied to
our code, but the results already indicate that our approach competes well with the Bernstein case.

3http://axel.inria.fr
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System Domain Iters. Subdivs. Sols. Excluded

Σ1 [0, 10]2 53 26 4 25
Σ2 [−2, 3]2 263 131 12 126
Σ3 [−2, 3]2 335 167 8 160
Σ4 [−3, 3]2 1097 548 16 533

Table 1: Execution data for Σ1, Σ2, Σ3, Σ4.

Degrees in (x, y) Domain MCF(integer) MCF(GMP) Bernstein

(2, 1), (3, 1) [0, 2]× [0, 2] 20 110 2
(4, 4), (2, 1) [0, 1]× [0, 1] 70 280 30
(6, 6), (3, 2) [−2, 2]× [−2, 2] 10 200 10
(4, 3), (7, 6) [−5, 5]× [−5, 5] 110 600 20
(8, 8), (6, 7) [0, 10]× [0, 10] 110 540 20
(8, 8), (6, 7) [−2, 2]× [−2, 2] 960 8820 490

(16, 16), (12, 15) [0, 10]× [0, 10] 460 6550 320

Table 2: Running times in ms for our implementation (MCF) and the Bernstein solver [16].

We compared our implementation with the Bernstein solver of [16] on a number of bi-variate systems,
and we present the times in milliseconds in Table 2. The tests were run on the same machine and the timings
are rounded averages over 10 executions. When using machine integers for representing the polynomials,
the Bernstein solver is proved faster from MCF, but the timings for both solvers are of the same order. If
we use GMP integers then our algorithm is 10-20 times slower than the Bernstein solver; this difference is
expected since GMP integers ought to be slower than machine numbers. Also, when using machine numbers,
large coefficient values may occur if the degree as well as the predefined precision are high. For this, we
declare the coefficients as doubles, in order to take advantage of their big range of available numbers. But
then not all integers in this range are feasible, thus we work locally with a nearby system. However, setting
the rounding mode to −∞ guarantees that the lower univariate bounding functions we compute are indeed
lower envelopes of the real system.
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