
A CGAL-based Univariate Algebraic Kernel and Application to
Arrangements

Sylvain Lazard ∗ Luis Peñaranda∗ Elias Tsigaridas †

Abstract

Solving univariate polynomials and multivariate poly-
nomial systems is critical in geometric computing with
curved objects. Moreover, the real roots need to be
computed in a certified way in order to avoid possi-
ble inconsistency in geometric algorithms. We present
a Cgal-based univariate algebraic kernel, which fol-
lows the Cgal specifications for univariate kernels. It
provides certified real-root isolation of univariate poly-
nomials with integer coefficients (based on the library
Rs) and standard functionalities such as basic arith-
metic operations, gcd and square-free factorization.

We compare our implementation with that of other
univariate algebraic kernels that follow the same
Cgal specifications. In particular, we compare it to
the one developed at MPII. We also apply this ker-
nel to the computation of arrangements of univariate
polynomial functions.

1 Introduction

Implementing geometric algorithms robustly is known
to be a difficult task for two main reasons. First, all
degenerate situations have to be handled and second,
algorithms often assume a real-RAM model which is
not realistic in practice. In recent years, the paradigm
of exact geometric computing arose as a standard for
robust implementations. In this paradigm, geometric
decisions, such as “is a point inside, outside or on a
circle?”, are made exactly, usually using exact arith-
metic combined with interval arithmetic for efficiency;
on the other hand, geometric constructions, such as
the coordinates of a point of intersection, may be ap-
proximated.

We address here one recurrent difficulty arising
when implementing algorithms dealing with curved
objects. Such algorithms usually require evaluat-
ing, manipulating and solving systems of polynomials
equations and comparing their roots. One of the most
critical parts of dealing with polynomials or polyno-
mial systems is the isolation of the real roots and their
comparison.

∗LORIA (INRIA, CNRS, Nancy Université) and INRIA
Grand Est, Nancy, France. Firstname.Name(AT)loria.fr
†INRIA Méditerranée, Sophia-Antipolis, France.

Elias.Tsigaridas(AT)inria.fr

We restrict here our attention to the case of uni-
variate polynomials and address this problem in the
context of Cgal, a C++ Computational Geometry
Algorithms Library, which is an open source project
and became a standard for the implementation of ge-
ometric algorithms [3].

Cgal is designed in a modular fashion. Algo-
rithms are typically parameterized by a traits class
which encapsulates the geometric objects, predicates
and constructions used by the algorithm. Typi-
cally, this allows implementing algorithms indepen-
dently of the type of input objects. For instance, a
sweep-line algorithm for computing arrangements can
be implemented generically for segments or curves.
Similarly, the model of computation, such as exact
arbitrary-length integer arithmetic or approximate
fixed-precision floating-point arithmetic are encapsu-
lated in the concept of kernel. An implementation is
thus typically separated in three layers, the geometric
algorithm which relies on a traits class, which itself
relies on a kernel for elementary operations. A choice
of traits class and kernel gives freedom to the users
and allows comparison.

We present here a kernel for solving and manipu-
lating the real roots of univariate polynomials with
integer coefficients which follows Cgal specifications
[2]. In particular, this kernel performs the isolation
and comparison of the real roots of such polynomials.
The kernel also provides various operations on polyno-
mials, such as gcd, which are central for manipulating
algebraic numbers. We also present experimental re-
sults and compare our kernel with the one developed
by Hemmer and Limbach [10].

2 Univariate algebraic kernel

We describe here our implementation of our univariate
algebraic kernel. The two main requirements of the
Cgal specifications, which we describe here, are the
isolation of real roots and their comparison. We also
describe our implementation of two important spe-
cific operations, greatest common divisor (gcd) com-
putation and refinement of isolating intervals, that are
needed, in particular, for comparing algebraic num-
bers.

Preliminaries. The kernel handles univariate polyno-
mials and algebraic numbers. The polynomials have

1

integer coefficients and are represented by arrays of
Gmp arbitrary-length integers [9]. We implemented in
the kernel the basic functions on polynomials, includ-
ing basic arithmetics, evaluation, and input/output.
An algebraic number that is a root of a polynomial
F is represented by F and an isolating interval, that
is an interval containing this root but no other. We
implemented intervals using the Mpfi library, which
represents intervals with two Mpfr arbitrary fixed-
precision floating point numbers; note that Mpfr
is developed on top of the Gmp library for multi-
precision arithmetic [11] [12].

Root isolation. For isolating the real roots of uni-
variate polynomials with integer coefficients, we de-
veloped an interface with the library Rs [14]. This
library is written in C and is based on Descartes’ rule
for isolating the real roots of univariate polynomials
with integer coefficients.

We briefly detail here the general design of the Rs
library; see [13] for details. Rs is based on an algo-
rithm known as interval Descartes [4]; namely, the
coefficients of the polynomials obtained by changes of
variable, sending intervals [a, b] onto [0, +∞], are only
approximated using interval arithmetic when this is
sufficient for determining their signs. Note that the
order in which these transformations are performed in
Rs is important for memory consumption. The inter-
vals and operations on them are handled by the Mpfi
library.

Another characteristic of Rs is its memory man-
agement: it implements a mark-and-sweep garbage
collector, which is well suited to Rs needs.

Algebraic number comparison. As mentioned
above, one of the main requirements of the Cgal
algebraic kernel specifications is to compare two
algebraic numbers r1 and r2. If we are lucky, their
isolating intervals do not overlap and the comparison
is straightforward. This is, of course, not always
the case. If we knew that they were not equal, we
could refine both isolating intervals until they do not
overlap. See below for details on how we perform
the refinements. Hence, the problem reduces to
determining whether the algebraic numbers are equal
or not.

To do so, we compute the gcd of the polynomials
P1 and P2 associated to the algebraic numbers; see
below for details on this operation. The roots of this
gcd are the common roots of both polynomials. After
calculating the gcd, we isolate its roots and refine the
isolation intervals until each one of them overlap with
exactly one root of P1 and of P2. If the isolating
interval of r1 and r2 both overlap with the isolating
interval of a root of the gcd, then r1 = r2. Otherwise
they are not equal.

Gcd computations. Computing greatest common di-
visors between two polynomials is not a difficult task,
however, it is not trivial to do so efficiently. Indeed,
a naive implementation of the Euclidean algorithm
works fine for small polynomials but the intermediate
coefficients suffer an exponential grow in size, which is
not manageable for medium to large size polynomials.

We thus implemented a modular gcd function,
which calculates the gcd of polynomials modulo some
prime numbers and reconstructs later the result with
the help of the Chinese remainder theorem. Details
on these algorithms can be found in [8]. Note modular
gcd is always more efficient than regular gcd, especially
when the two polynomials have no common roots.

Refining isolating intervals. As we mentioned be-
fore, refining the interval representing an algebraic
number is critical for comparing such numbers. We
have implemented two approaches for refinement.

Both approaches require that the polynomial asso-
ciated to the algebraic number is square free. The first
step thus consists of computing the square-free part
of the polynomial. This is easily done by computing
the gcd of the polynomial and its derivative.

Our first approach is a simple bisection algorithm.
It consists in calculating the sign of the polynomial
associated to the algebraic number at the endpoints
and midpoint of the interval. Depending on those
three signs we can take as isolating interval the left of
right half of the previous one.1

The second approach we implemented is the
quadratic interval refinement [1]. Roughly speaking,
this method splits the interval in many parts and
guesses in which one the root lies. If the guess is
correct, the algorithm will divide, in the next refine-
ment step the (chosen) interval in more parts and, if
not, in less. Unfortunately, we can not always guar-
antee that we guess the correct interval at each step,
so on average the algorithm turns out to be just a bit
faster than the bisection one. Moreover, we have to
implement its data structures very carefully in order
to be efficient. In particular, this required the develop-
ment of functions to handle dyadic numbers efficiently.
Note that these functions are also useful in the bisec-
tion method when increasing the precision (because
working directly with Mpfr is rather tricky).

Currently, refinement function based on both ap-
proaches are present in our kernel and the user can
choose the one best suited to her/his needs.

3 Benchmarks

In this section, we compare the running time for root
isolation of our algebraic kernel with the one devel-

1Note that since the polynomial is square free the signs at
the two endpoints of any isolating interval always differ. We
thus do not need to compute the sign at both endpoints.

2

 0

 1

 2

 3

 4

 5

 6

 7

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

is
ol

at
io

n
tim

e
[m

s]

total bitsize

Our Kernel
MPI’s Kernel

Figure 1: Degree 12 polynomials.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

is
ol

at
io

n
tim

e
[m

s]

bitsize

Our Kernel
MPI’s Kernel

Figure 2: Polynomials of constant degree 100

oped by Hemmer and Limbach [10]. Running times
for root isolation is a very representative test because,
as explained before, it involves other non-trivial op-
erations on polynomials. For technical reasons, we
could not compare our running time for comparing
algebraic numbers with those of [10]. All tests were
ran on a single-core 3.2 GHz Intel Pentium 4 with 2
Gb of RAM, using 64-bit Linux.

The first test sets comes from [10]. See Figure 1. It
consists of polynomials of degree 12, each one being
the product of six degree-two polynomials that have
at least a root in the interval [0, 1]. The tests are
averaged over 50 trials. The value represented on the
x-axis is the total bitsize of all the coefficients of the
input polynomial.

Secondly, we consider random polynomials with
constant degree 100 and varying bitsize. See Figure
2. As before, the x-axis is the total bitsize of all the
coefficients. The tests are averaged over 100 trials.
We also consider random polynomials with constant
bitsize 20000 but varying degrees. The results, shown
in Figure 3 are averaged over 100 trials.

Finally, we tested Mignotte polynomials, that is
nearly degenerate polynomials of the form xd−2(kx−
1)2. The difficulty with solving these polynomials lies
in the fact that two of their roots are very close to each
other (the isolating intervals for these two roots are

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250 300 350 400

is
ol

at
io

n
tim

e
[s

]

degree

Our Kernel
MPI’s kernel

Figure 3: Polynomials of constant bitsize 20000

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30 35 40 45 50

is
ol

at
io

n
tim

e
[s

]

d

Our Kernel
MPI’s Kernel

Figure 4: Mignotte polynomials

thus very small). For these tests, we used Mignotte
polynomials with coefficients of bitsize 50, with vary-
ing degree d. Running time are shown in Figure 4:
the tests are averaged over 5 trials.

4 Discussion

Figure 1 shows that our kernel’s performance is worse
than MPII’s one for small degree polynomials. This
difference comes from the fact that Rs, the most con-
suming part of our process, is conceived for handling
high degree polynomials. This fact is confirmed by
Figures 2 and 3, which show that for polynomials of
larger degrees, our kernel runs faster.

We can also see in these two figures that the iso-
lation time does not depend much on the bitsize of
the input polynomials but mainly on the degree. This
makes sense because of the considered algorithms for
root isolation: bitstream Descartes [6] and interval
Descartes [13] do not use, in most cases, all the bits of
the coefficients. This should theoretically imply that,
on random polynomials, the running time does not
depend at all on the input bitsize. We however ob-
serve in Figure 1 that this is not quite the case for
our kernel. This is presumably caused by the cost of
copying the input polynomials to Rs memory space.

Despite this fact, we observe that the running time

3

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35

tim
e

[s
]

n

With our traits class
With CORE traits class

Figure 5: Arrangement calculation

of our implementation is very stable and does not de-
pend too much on the bitsize or on the degree of the
input polynomials. On the other hand, MPII’s kernel
does not either depend on the input bitsize. However
it is much more dependent on the degree and is less
stable.

Finally, we can mention that Figure 4 shows no sig-
nificant difference between both kernels for isolating
roots of Mignotte polynomials. MPII’s kernel is barely
faster for the smaller values of d, but that difference
disappears when this value grows. However, this fig-
ure depicts the expected difficulty of solving Mignotte
polynomials compared to random polynomials.

5 Arrangements

As an example of possible benefit of having efficient
algebraic kernels in Cgal, we used our implementa-
tion to construct arrangements of polynomial func-
tions. Wein and Fogel provided a CGAL package for
calculating arrangements [15]. This package calculates
the arrangements of general curves [7]. It is the user
who must implement the data structures to store the
curves and the primitive operations; requiring for ex-
ample comparing positions of points, comparing the
vertical order of curves at infinity and intersecting and
splitting curves. All these functions must be grouped
in a traits class, which is a transparent and conve-
nient way to work with a package in Cgal. We im-
plemented a traits class which uses the functions of
our algebraic kernel and compared its performance
with another traits classes which comes with Cgal’s
arrangement package and uses the Core library [5].

To test the arrangement calculation, we generated
n polynomials of degree n− 1 with (n) coefficients of
bitsize n. The running time for the construction of
this type of arrangements is shown in Figure 5. We
observe that we gain a factor of roughly two when
using our kernel.

Acknowledgments

We would like to thanks M. Hemmer, E. Berberich,
M. Kerber, and S. Limbach for fruitful discussion on
the kernel developed at MPII and on the experiments.

References

[1] J. Abbott. Quadratic interval refinement for real
roots. Poster in ISAAC, 2006.

[2] E. Berberich, M. Hemmer, M.I. Karavelas, and
M. Teillaud. Revision of the interface specification of
algebraic kernel. Technical Report, ACS-TR-243301-
01, 2007.

[3] Cgal, Computational Geometry Algorithms Library.
http://www.cgal.org/

[4] G.E. Collins, J.R. Johnson, and W. Krandick. In-
terval arithmetic in Cylindrical Algebraic Decompo-
sition. Journal of Symbolic Computation, (2002)
34:145–157.

[5] Core. http://cs.nyu.edu/exact/

[6] A. Eigenwillig, L. Kettner, W. Krandick,
K. Mehlhorn, S. Schmitt and N. Wolpert. A
Descartes algorithm for polynomials with bit-stream
coefficients. In Proc. 8th Int. Workshop on Com-
puter Algebra in Scient. Comput. (CASC), LNCS.
Springer, 2005.

[7] E. Fogel, D. Halperin, L. Kettner, M. Teillaud,
R. Wein and N. Wolpert. Effective Computational
Geometry for Curves and Surfaces. Chapter 1, Ar-
rangements. J.-D. Boissonnat. and M. Teillaud (edi-
tors), Springer, 2006.

[8] K.O. Geddes, S.R. Czapor and G. Labahn. Algo-
rithms for Computer Algebra. Kluwer Academic Pub-
lishers, 1992.

[9] Gmp. GNU multiple precision arithmetic library.
http://gmplib.org/

[10] M. Hemmer and S. Limbach Benchmarks on a
generic univariate algebraic kernel ACS Technical
Report No. ACS-TR-243306-03, 2006.

[11] Mpfi. Multiple precision interval arithmetic library.
http://perso.ens-lyon.fr/nathalie.revol/

software.html

[12] Mpfr. Library for multiple-precision floating-point
computations. http://mpfr.org/

[13] F. Rouillier and P. Zimmermann. Efficient Isolation
of Polynomial Real Roots. Journal of Computational
and Applied Mathematics, vol. 162 n. 1, p. 33-50,
2003.

[14] Rs. Real roots of systems with a finite number of
complex solutions. http://fgbrs.lip6.fr/

[15] R. Wein and E. Fogel The new design of CGAL’s
arrangement package. Technical report, Tel-Aviv
University, 2005. http://www.cs.tau.ac.il/~wein/
publications/pdfs/Arr_new_design.pdf

4

