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Abstract. The study of (minimally) rigid graphs is motivated by nu-
merous applications, mostly in robotics and bioinformatics. A major
open problem concerns the number of embeddings of such graphs, up to
rigid motions, in Euclidean space. We capture embeddability by polyno-
mial systems with suitable structure, so that their mixed volume, which
bounds the number of common roots, to yield interesting upper bounds
on the number of embeddings. We focus on R

2 and R
3, where Laman

graphs and 1-skeleta of convex simplicial polyhedra, respectively, admit
inductive Henneberg constructions. We establish the first general lower
bound in R

3 of about 2.52n, where n denotes the number of vertices.
Moreover, our implementation yields upper bounds for n ≤ 10 in R

2 and
R

3, which reduce the existing gaps, and tight bounds up to n = 7 in R
3.
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1 Introduction

Rigid graphs (or frameworks) constitute an old but still active area of research
due to certain deep mathematical questions, as well as numerous applications,
e.g. mechanism theory [9, 10], and structural bioinformatics [5].

Given graph G = (V,E) and a collection of edge lengths lij ∈ R
+, for (i, j) ∈

E, a Euclidean embedding in R
d is a mapping of V to a set of points in R

d,
such that lij equals the Euclidean distance between the images of the i-th and
j-th vertices, for (i, j) ∈ E. Euclidean embeddings impose no requirements on
whether the edges cross each other or not. A graph is generically rigid in R

d iff,
for generic edge lengths, admits a finite number of embeddings in R

d, modulo
rigid motions. A graph is minimally rigid iff it is no longer rigid once any edge
is removed. In the sequel, generically minimally rigid graphs are referred to as
rigid.

A graph is called Laman iff |E| = 2|V |−3 and, additionally, all of its induced
subgraphs on k < |V | vertices have ≤ 2k − 3 edges. The Laman graphs are
precisely the rigid graphs in R

2; they also admit inductive constructions. In R
3

there is no analogous combinatorial characterization of rigid graphs, but the
1-skeleta, or edge graphs, of (convex) simplicial polyhedra are rigid in R

3, and
admit inductive constructions.



We deal with the problem of computing the maximum number of distinct
planar and spatial Euclidean embeddings of rigid graphs, up to rigid motions, as
a function of the number of vertices. To study upper bounds, we define a square
polynomial system, expressing the edge length constraints, whose real solutions
correspond precisely to the different embeddings. Here is a system expressing
embeddability in R

3, where (xi, yi, zi) are the coordinates of the i-th vertex, and
3 vertices are fixed to discard translations and rotations:



xi = ai, yi = bi, zi = ci, i = 1, 2, 3, ai, bi, ci ∈ R,
(xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2 = l2ij , (i, j) ∈ E − {(1, 2), (1, 3), (2, 3)}
(1)

All nontrivial equations are quadratic; there are 2n − 4 for Laman graphs, and
3n − 9 for 1-skeleta of simplicial polyhedra, where n is the number of vertices.
The classical Bézout bound on the number of roots equals the product of the
polynomials’ degrees, and yields 4n−2 and 8n−3, respectively.

For the planar and spatial case, the best upper bounds are
(

2n−4
n−2

)

≈ 4n−2/
√

π(n − 2)

and 2n−3

n−2

(

2n−6
n−3

)

≈ 8n−3/
(

(n− 2)
√

π(n − 3)
)

, respectively [2, 3]. In applications,
it is crucial to know the number of embeddings for small n. The main result
in this direction was to show that the Desargues (or 3-prism) graph (n = 6)
admits 24 embeddings in R

2 [3]. This led the same authors to lower bounds in
R

2: 24⌊(n−2)/4⌋ ≃ 2.21n obtained by a caterpillar graph constructed by concate-
nating copies of the Desargues graph, and 2 · 12⌊(n−3)/3⌋ ≃ 2.29n/6 obtained by
a Desargues fan 4.

Bernstein’s bound for a polynomial system exploits the sparseness of the
equations to bound the number of common roots. It is bounded by Bézout’s
bound and typically much tighter. We have implemented specialized software
that constructs all rigid graphs up to isomorphism, for small n, and computes
the respective Bernstein’s bounds. Our main contribution is twofold, besides
some straightforward upper bounds in Lemmas 2 and 7. First, we derive the
first general lower bound in R

3:

16⌊(n−3)/3⌋ ≃ 2.52n, n ≥ 9,

by designing a cyclohexane caterpillar. Second, we obtain improved upper and
lower bounds for n ≤ 10 in R

2 and R
3 (Tables 1 and 2). Moreover, we establish

tight bounds for n ≤ 7 in R
3 by appropriately formulating the polynomial sys-

tem. We apply Bernstein’s Second theorem to show that the naive polynomial
system cannot yield tight mixed volumes.

The rest of the paper is structured as follows: Section 2 discusses the case
d = 2, Section 3 presents our algebraic tools and our implementation, Section 4
deals with R

3, and we conclude with open questions.

Some results appeared in [6] in preliminary form.

4 We have corrected the exponent of the original statement.



2 Planar embeddings of Laman graphs

Laman graphs admit inductive constructions, starting with a triangle, and fol-
lowed by a sequence of Henneberg-1 (or H1) and Hennenerg-2 steps (or H2).
Each such step adds a new vertex: H1 connects it to two existing vertices, H2

connects it to 3 existing vertices having at least one edge among them, which is
removed.We represent each Laman graph by △s4 . . . , sn, where si ∈ {1, 2}; this
is its Henneberg sequence. A Laman graph is called H1 iff it can be constructed
using only H1; otherwise it is called H2. Since two generic circles intersect in two
real points, H1 exactly doubles the maximum number of embeddings. It follows
that a H1 graph has 2n−2 embeddings.

One can easily verify that every △2 graph is isomorphic to a △1 graph and
that every △12 graph is isomorphic to a △11 graph. Consequently, all Laman
graphs with n = 4, 5 are H1 and they have 4 and 8 embeddings, respectively. For
n = 6, there are 3 possibilities: the graph is either H1, K3,3, or the Desargues
graph. Since the K3,3 graph has at most 16 embeddings [9, 10] and the Desargues
graph has 24 embeddings [3], the latter is the uppper bound. Using our software
(Section 3), we construct all Laman graphs with n = 7, . . . , 10, and compute
their respective mixed volumes, thus obtaining the following upper bounds.

Lemma 1. The maximum number of Euclidean embeddings for Laman graphs
with n = 7, . . . , 10 is 64, 128, 512 and 2048, respectively.

Table 1 summarizes our results for n ≤ 10. The lower bound for n = 9
follows from the Desargues fan. All other lower bounds follow from the fact that
H1 doubles the number of embeddings.

We now establish an upper bound, which improves upon the existing ones
when our graph contains many degree-2 vertices.

Lemma 2. Let G be a Laman graph with k ≥ 4 degree-2 vertices. Then, the
number of planar embeddings of G is bounded above by 2k−44n−k.

Proof. The removal of a degree-2 vertex cannot destroy any other degree-2 vertex
(because the remaining graph is also Laman), although it may create new ones.
Since the remaining graph has n−k vertices, the Bézout bound of its polynomial
system is equal to 4n−k and thus the number of embeddings is bounded above
by 2k−44n−k.

3 An algebraic interlude

This section introduces mixed volumes and discusses our computer-assisted proofs.
Given a polynomial f in n variables, its support is the set of exponents in

N
n corresponding to nonzero terms (or monomials). The Newton polytope of f

is the convex hull of its support and lies in R
n. Consider polytopes Pi ⊂ R

n and
λi ∈ R, λi ≥ 0, for i = 1, . . . , n. Consider the Minkowski sum λ1P1+· · ·+λnPn ∈
R

n: its (Euclidean) volume is a homogeneous polynomial of degree n in the λi.
The coefficient of λ1 · · ·λn is the mixed volume of P1, . . . , Pn. If P1 = · · · = Pn,
then the mixed volume is n! times the volume of P1. We focus on C

∗ = C−{0}.



Theorem 3. [1] Let f1 = · · · = fn = 0 be a polynomial system in n variables
with real coefficients, where the fi have fixed supports. The number of isolated
common solutions in (C∗)n is bounded above by the mixed volume of (the Newton
polytopes of) the fi. This bound is tight for generic coefficients of the fi’s.

Bernstein’s Second theorem below was used in R
2 [8]; we apply it to R

3. Given
v ∈ R

n−{0} and polynomial fi, ∂vfi is the polynomial obtained by keeping only
the terms whose exponents minimize inner product with v; its Newton polytope
is the face of the Newton polytope of fi supported by v.

Theorem 4. [1] If for all v ∈ R
n − {0} the face system ∂vf1 = . . . = ∂vfn = 0

has no solutions in (C∗)n, then the mixed volume of the fi exactly equals the
number of solutions in (C∗)n, and all solutions are isolated. Otherwise, the mixed
volume is a strict upper bound on the number of isolated solutions.

In order to bound the number of embeddings of rigid graphs, we have de-
veloped specialized software that constructs all Laman graphs and all 1-skeleta
of simplicial polyhedra with n ≤ 10. Our computational platform is SAGE 5.
We construct all graphs using the Henneberg steps, which we implemented in
Python, using SAGE’s interpreter. We classify all graphs up to isomorhism us-
ing SAGE’s interface with N.I.C.E., an open-source isomorphism check software,
keeping for each graph the Henneberg sequence with largest number H1.

For each graph we construct a system whose real solutions express all possi-
ble embeddings, using formulation (2). We bound the number of its (complex)
solutions by mixed volume. Notice that, by genericity, solutions have no zero
coordinates. For every Laman graph, to discard translations and rotations, we
assume that one edge is of unit length, aligned with an axis, with one of its
vertices at the origin. In R

3, a third vertex is also fixed in a coordinate plane.
Depending on the choice of the fixed edge, we obtain different systems hence
different mixed volumes, and we use their minimum.

We used an Intel Core2, at 2.4GHz, with 2GB of RAM. We tested more that
20, 000 graphs, computed the mixed volume of more than 40, 000 systems, taking
a total time of about 2 days. Tables 1 and 2 summarize our results.

4 Spatial embeddings of 1-skeleta of simplicial polyhedra

This section extends the previous results to 1-skeleta of (convex) simplicial poly-
hedra, which are rigid in R

3 [7]. For such a graph (V,E), we have |E| = 3|V |− 6
and all of the induced subgraphs on k < |V | vertices have ≤ 3k − 6 edges.

Consider any k+2 vertices forming a cycle with ≥ k−1 diagonals, k ≥ 1. The
extended Henneberg-k step (or Hk), k = 1, 2, 3, corresponds to adding a vertex,
connecting it to the k +2 vertices, and removing k−1 diagonals among them. A
graph is the 1-skeleton of a simplicial polyhedron in R

3 iff it has a construction
starting with the 3-simplex, followed by any sequence of H1,H2,H3 [4].

5 http://www.sagemath.org/



Since 3 spheres intersect generically in two points, H1 exactly doubles the
maximum number of embeddings. In order to discard translations and rotations,
we fix a (triangular) facet of the polytope; we choose wlog the first 3 vertices and
obtain system (1) of dimension 3n. Let v = (0, 0, 0, 0, 0, 0, 0, 0, 0,−1, . . . ,−1) ∈
R

3n, the face system is:

{

xi = ai, yi = bi, zi = ci, i = 1, 2, 3, ai, bi, ci ∈ R,
(xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2 = 0, (i, j) ∈ E, i, j 6∈ {1, 2, 3},
x2

i + y2

i + z2

i = 0, (i, j) ∈ E : i /∈ {1, 2, 3}, j ∈ {1, 2, 3}.

This system has (a1, b1, c1, . . . , a3, b3, c3, 1, 1, γ
√

2, . . . , 1, 1, γ
√

2) ∈ (C∗)3n as a
solution, where γ = ±

√
−1. According to Theorem 4, the mixed volume is not

a tight bound on the number of solutions in (C∗)3n. This was also observed, for
R

2, in [8]. To remove spurious solutions let wi = x2
i + y2

i + z2
i , for i = 1, . . . , n.

This yields an equivalent system, with lower mixed volume, which will be used
in our computations:

8

<

:

xi = ai, yi = bi, zi = ci, i = 1, 2, 3,
wi = x2

i + y2

i + z2

i , i = 1, . . . , n,
wi + wj − 2xixj − 2yiyj − 2zizj = l2ij , (i, j) ∈ E − {(1, 2), (1, 3), (2, 3)}.

(2)

For n = 4, the only simplicial polytope is the 3-simplex, which has 2 embed-
dings. For n = 5, there is a unique 1-skeleton of a simplicial polyhedron [4], and
it is obtained from the 3-simplex by H1, hence it has exactly 4 embeddings.

Lemma 5. The 1-skeleton of a simplicial polyhedron for n = 6 has at most 16
embeddings and this is tight.

Proof. There are two non-isomorphic graphs G1, G2 [4]. The mixed volumes
are 8 and 16. G2 is the graph of the cyclohexane, which admits 16 different
embeddings [5]. To see this, the cyclohexane is a 6-cycle with known lengths
between vertices at distance 1 (adjacent) and 2. Alternatively, G2 corresponds to
a Stewart platform parallel robot with 16 configurations, where triangles define
the platform and base, and 6 lenghts link the triangles in a jigsaw shape.

Theorem 6. There exist edge lengths for which the cyclohexane caterpillar con-
struction has 16⌊(n−3)/3⌋ ≃ 2.52n embeddings, for n ≥ 9.

Proof. We glue copies of cyclohexanes sharing a common triangle, each adding 3
vertices. The final graph is the 1-skeleton of a simplicial polytope, and we apply
Lemma 5.

Table 2 summarizes our results for n ≤ 10. The upper bounds for n =
7, . . . , 10 are computed by our software. The lower bound for n = 9 is from The-
orem 6. All other lower bounds are obtained by considering a H1 construction.
Lastly, we state without proof a result similar to Lemma 2.

Lemma 7. Let G be the 1-skeleton of a simplicial polyhedron with k ≥ 9 degree-
3 vertices. The number of embeddings of G is bounded above by 2k−98n−k.



n = 3 4 5 6 7 8 9 10

lower 2 4 8 24 48 96 288 576

upper 2 4 8 24 64 128 512 2048

Table 1. Bounds for Laman graphs.

n = 4 5 6 7 8 9 10

lower 2 4 16 32 64 256 512

upper 2 4 16 32 160 640 2560

Table 2. Bounds for 1-skeleta of simplicial
polyhedra.

5 Further work

The most important and oldest problem in rigidity theory is the combinatorial
characterization of rigid graphs in R

3. Since we deal with Henneberg construc-
tions, it is important to determine the effect of each step on the number of
embeddings: H1 doubles their number; we conjecture that H2 multiplies it by
≤ 4 and H3 by ≤ 8, but these may not always be tight. Our conjecture has been
verified for small n.
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