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ABSTRACT
We examine the problem of computing exactly the Delaunay
graph (and the dual Voronoi diagram) of a set of, possibly
intersecting, smooth convex pseudo-circles in the Euclidean
plane, given in parametric form. Pseudo-circles are (con-
vex) sites, every pair of which has at most two intersecting
points. The Delaunay graph is constructed incrementally.
Our first contribution is to propose robust end efficient al-
gorithms for all required predicates, thus generalizing our
earlier algorithms for ellipses, and we analyze their algebraic
complexity, under the exact computation paradigm. Second,
we focus on InCircle, which is the hardest predicate, and
express it by a simple sparse 5×5 polynomial system, which
allows for an efficient implementation by means of succes-
sive Sylvester resultants and a new factorization lemma. The
third contribution is our cgal-based c++ software for the
case of ellipses, which is the first exact implementation for
the problem. Our code spends about 98 sec to construct
the Delaunay graph of 128 non-intersecting ellipses, when
few degeneracies occur. It is faster than the cgal segment
Delaunay graph, when ellipses are approximated by k-gons
for k > 15.

1. INTRODUCTION
Computing the Delaunay graph, and its dual Voronoi di-

agram, of a set of sites in the plane has been studied ex-
tensively due to its links to other important questions, such
as medial axis computations, but also its numerous applica-
tions, including motion planning among obstacles, assembly,
surface reconstruction, and crystallography [3]. Our work
is also motivated by other problems besides the Delaunay
graph: The predicates examined can be used to implement
an algorithm for the convex hull of smooth convex pseudo-
circles [8], whereas some of them appear in the computation
of the visibility map among ellipses [13] 1.

1The software being developed for this problem uses our
predicates.
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Figure 1: Left: Voronoi diagram of 15 ellipses;
Right: Voronoi diagram and Delaunay graph of 10
ellipses

In contrast to most existing approaches, our work guar-
antees the exactness of the Delaunay graph. This means
that all combinatorial information is correct, namely the
definition of the graph’s edges, which, of course, have no
geometric realization. The dual Voronoi diagram involves
algebraic numbers for representing the vertices and bisector
edges: our algorithms and software handle these numbers
exactly. For instance, they can answer all point-location
queries correctly. Hence, we say that our representation of
the dual Voronoi diagram adheres to the principles of the ex-
act computation paradigm, a distinctive feature in the realm
of non-linear computational geometry. For drawing the di-
agram, our methods allow for an approximation of these
numbers with arbitrary precision, and this precision need
not be fixed in advance.

We consider smooth convex sites which intersect as pseudo-
circles, i.e. there are at most two intersection points per pair.
This is one of the hardest problems considered (and imple-
mented) under the exact computation paradigm. Thus, our
work explores the current limits of non-linear computational
geometry. Naturally, purely algebraic techniques have to be
enhanced by symbolic-numeric methods in order to arrive at
practical implementations. The validity of our approach is
illustrated by experiments with our software for the case of
non-intersecting ellipses, which demonstrate that carefully
implemented algebraic procedures incur a very reasonable
overhead. In particular, our code is faster than constructing
the Delaunay graph of closed curved objects each approxi-
mated by > 200 points roughly, or > 15 segments.

1.1 Previous work
Input sites have usually been linear objects, the hardest



cases being line segments and polygons [15, 17]; moreover,
only the latter yields an exact output. The approximation
of smooth curved objects by (non-smooth) linear or circu-
lar segments may introduce artifacts and new branches in
the Voronoi diagram, thus necessitating post-processing. It
may even yield topologically incorrect results, as explained
in [22].

The Voronoi diagram has been studied in the case of pla-
nar sites with curved boundaries [22, 2], where topological
properties are demonstrated, including the type of bisector
curves, though the predicates and their implementation are
not considered. There are works that compute the planar
Voronoi diagram approximately: In [14], curve bisectors are
traced within machine precision to compute a single Voronoi
cell of a set of rational C1-continuous parametric closed
curves. The runtime of their implementation varies between
a few seconds and a few minutes. It is briefly argued that
the method extends to exact arithmetic, but without elabo-
rating on the underlying algebraic computations or the han-
dling of degeneracies. In another work [23], the boundary
of the sites is traced with a prescribed precision, while [21]
suggests working with lower-degree approximations of bisec-
tors of curved sites. Finally, error-bounded offset approxi-
mations of planar NURBS for the case of non-intersecting
curves are considered in [24] and their implementation run-
times are withing a couple of seconds for up to three sites.
See also [19] for the Delaunay graph of circles, which main-
tains topological consistency but not geometric exactness.

Curve-curve bisectors of parametric curves are considered
in medial axis computations. In [1] the medial axis of a sim-
ply connected planar domain is computed, using a divide
and conquer algorithm. The boundary of the domain is ap-
proximated via arc-splines. The correct medial axis up to a
predefined input accuracy is computed.

Few works have studied exact Delaunay graphs for curved
objects. In the case of circles, the exact and efficient imple-
mentation of [9] is now part of cgal [4]. There is also the
very efficient and robust implementation of [15], but relies on
floating-point computations. For a more recent implementa-
tion that treats (non-intersecting) line segments and circular
arcs, see [16]. Conics were considered in [3], but only in a
purely theoretical framework. Moreover, the algebraic con-
ditions derived were not optimal, leading to a prohibitively
high algebraic complexity. In fact, the approach relied on
eigenvector computations, hence was not exact.

In [18], the authors study the properties of smooth con-
vex, possibly intersecting, pseudo-circles. They show that
the Voronoi diagram of these sites belongs to the class of
abstract Voronoi diagrams [20] and propose an incremental
algorithm that relies on certain geometric predicates.

Our own previous work [11] studied non-intersecting el-
lipses, and proposed exact symbolic algorithms for the pred-
icates required by the incremental algorithm of [18]. Pred-
icates SideOfBisector, DistanceFromBitangent were
implemented. We established a tight bound of 184 complex
tritangent circles to 3 non-intersecting ellipses. The upper
bound on the number of real circles is still open, but we have
examples with 76 real tritangent circles, when the ellipses
intersect 2. Predicate InCircle had been implemented in
maple, and used a different polynomial system than the one
in this paper. Some of its properties had been observed with-

2G. Elber first showed us such examples.

out proof; this is rectified below to yield an optimal method
for resultant computation, using a more suitable polynomial
system.

In [12], the authors proposed a certified method for In-

Circle, relying on a Newton-like numerical subdivision,
which exploited the geometry of the problem and exhibits
quadratic convergence for non-intersecting ellipses. The idea
was to filter non-degenerate configurations. Its implementa-
tion used double precision interval arithmetic library alias

3

to decide most non-degenerate configurations. In his work,
we reimplement the proposed subdivision-based method in
c++ using multi-precision floating point arithmetic. Exper-
iments with state-of-the-art generic algebraic software on
InCircle [11], and generic numeric solvers [12], imply that
our specialized c++ implementation is much more efficient,
both in the exact as well as in the certified numeric part.

1.2 Our contribution
We extend previous results, which considered only non-

intersecting ellipses, to smooth convex, possibly intersecting,
pseudo-circles. This is the hardest step towards arbitrarily
intersecting objects and requires re-working the predicates,
especially InCircle. At the same time, pseudo-circles are
quite powerful. For instance, the Voronoi diagram in free
(complementary) space of a set of arbitrarily intersecting
convex objects coincides with the diagram of appropriate
pseudo-circles [18]. We propose algorithms for all necessary
predicates and examine the algebraic operations required for
an efficient exact implementation. The analysis of the bit
complexity of the required predicates, besides its theoretical
importance, sheds light to the intrinsic complexity of com-
puting with non-linear objects in an exact way. It allows us
to bound the number of bits needed for an exact computa-
tion, to identify the time consuming parts of the algorithm,
and finally, to discover the parts where symbolic-numeric
techniques could be used to speed up the implementation.
Moreover, the (sub-quadratic) bounds that we derived for
curves of small degree are confirmed by our experiments.

To express the Voronoi circle of parametric curves, we
introduce a new 5 × 5 polynomial system, where we trade
number of equations and unknowns for polynomial degree.
Although there are no determinantal formulae, in general,
for the resultant of such a system, here we exploit their struc-
ture to find a succession of Sylvester determinants which
yields a multiple of the resultant, where the extraneous fac-
tor is known a priori. This also bounds the degree of the
algebraic numbers involved. In the case of arbitrary smooth
parametric curves, cor. 7 provides almost all the extraneous
factors of the resultant of the corresponding system. In the
case of the conics we provide the complete factorization of
the resultant (Th. 5). The technique that we used is quite
general and could be used to other problems as well.

Finally, we present an implementation4 in c++ for the
case of non-intersecting ellipses (cf. fig. 1 left and 11 left),
based on the incremental algorithm of [18], extending cgal’s
existing implementation for circles. Our software is being
extended to handle smooth convex pseudo-circles and, even-
tually, arbitrary smooth convex objects. One novelty is that
we implement all the predicates in cgal, by using certain
algebraic libraries as explained in the sequel. This is the first
implementation under the exact computation paradigm for

3http://www-sop.inria.fr/coprin/logiciels/ALIAS/
4http://www.di.uoa.gr/˜geotz/vorell/



Figure 2: Left: The Bean curve t 7→ ( 1+t2

t4+t2+1
, t(1+t2)

t4+t2+1
);

Right: Voronoi diagram of two intersecting ellipses

sites more complex than circles, and illustrates the use of
powerful algebraic techniques adapted to the underlying ge-
ometry. It spends about 98 sec for the Delaunay graph of
128 ellipses with few degeneracies. More importantly, it is
faster than cgal’s segment and point Delaunay graph, when
ellipses are approximated by 16-gons and, respectively, by
> 200 points roughly.

The rest of the paper is organized as follows. The next
section introduces notation, and examines some basic oper-
ations on the sites, whereas in section 3 we study the predi-
cates in the case of general parametric curves from a compu-
tational point of view. In section 4 we deal with InCircle,
proving certain geometric and algebraic properties leading
to its efficient implementation. Section 5 presents our im-
plementation in c++ and benchmarks to compare it against
cgal’s implementation for circles as well as for points and
polygons, concluding with future work.

2. PRELIMINARIES

2.1 Notation
Our input is smooth convex closed curves given in para-

metric form. For an example of such a curve we refer the
reader to fig. 2 left. Smoothness allows the tangent (and nor-
mal) line at any point of the curve to be well-defined. We
denote by Ct a smooth closed convex curve parametrized
by t. We refer to a point p on Ct with parameter value t̂
by pt̂, or simply by t̂, when it is clear from context. By
Ct

◦ we denote the region bounded by the curve Ct. Ct is
a smooth convex object (site), so that if p denotes a point
in the plane, p ∈ Ct ⇐⇒ p ∈ Ct ∪ Ct

◦. When two sites
intersect, we assume that their boundaries have at most two
intersections, i.e. they form pseudo-circles. A curve Ct is
given by the map

Ct : [a, b] ∋ t 7→ (Xt(t), Yt(t)) =

„

Ft(t)

Ht(t)
,
Gt(t)

Ht(t)

«

, (1)

but actual denominators can differ; we use (1) for simplicity
in our proofs.

Here Ft, Gt and Ht are polynomials in Z[t], with degrees
bounded by d and maximum coefficient bitsize bounded by
τ . Moreover, a, b ∈ Q ∪ {±∞}. All algorithms, predicates
and the corresponding analysis are valid for any parametric
curve, even when the polynomials have different degrees,
though we use (1) for simplicity. We assume that Ht(t) 6= 0,
for any t ∈ [a, b]. To simplify notation we write Ft instead
of Ft(t), and denote its derivative with respect to t as F ′

t .
When d = 2 the curves defined are conics: ellipses and circles
are the only closed convex curves represented.

In what follows OB means bit, while O means arithmetic

complexity. The eOB and eO notations mean that we ignore
(poly-)logarithmic factors. For a polynomial A =

Pd

i=1 aix
i

in Z[x], dg(A) denotes its degree. By L (A) we denote an
upper bound on the bitsize of the coefficients of A (including
a bit for the sign). For a ∈ Q, L (a) ≥ 1 is the maximum
bitsize of the numerator and the denominator. We choose
to represent real algebraic numbers, i.e. the real roots of an
integer polynomial by the so-called isolating interval repre-
sentation. For such a number α, this representation con-
sists of a square-free polynomial, say A, which vanishes on
α and a (rational) interval, say [a, b], containing α and no
other real root of A. We write α ∼= (f, [a, b]). To simplify
notation, we also assume that for any polynomial it holds
log(dg(A)) = O(L (A)).

2.2 Tangent and normal
Le pt(Xt, Yt) be a point on the curve Ct. The equation of

the tangent line at pt is (Tt) : (y − Yt)X
′
t − (x −Xt)Y

′
t = 0.

After the substitution of the rational polynomial functions
of Xt and Yt, and elimination of the denominators, we get a
polynomial in Z[x, y, t]. By abuse of notation we denote this
polynomial by Tt(x, y, t): it is linear in x, y and of degree
≤ 2d−2 in t. If the maximum bitsize of Ft, Gt, Ht is τ , then
the bitsize of Tt is ≤ 2τ + 2 log(d).

The equation of the line that supports the normal at pt

is (Nt) : (x − Xt)X
′
t + (y − Yt)Y

′
t = 0. As in the case

of the tangent, after substitutions and elimination of the
denominators we come up with a polynomial Nt(x, y, t) ∈
Z[x, y, t]; which is linear in x and y, of degree ≤ 3d − 2 in t
and of bitsize ≤ 3τ + 3 log(d).

2.3 Primitives PointInside and RelativePos
Given a curve Ct, if we consider rationals t1 6= t2 in [a, b],

where the bitsize of a and b is bounded by σ, then the point
((Xt(t1)+Xt(t2))/2, (Yt(t1)+Yt(t2))/2) belongs to Ct

◦; such
a point is p in fig. 3. The bitsize of its coordinates is O(dσ+
τ ), because Ft(t1) is of bitsize ≤ dσ + τ + log d. The bit
complexity of the primitive is dominated by the evaluations,

hence eOB(d2σ + dτ ).
Now we characterize the relative position of sites Ct, Cr,

i.e., whether they are separated, intersecting, externally or
internally tangent, or if one is contained inside the other.
The computation and characterization of all their bitangent
lines suffices, due to the following properties: (i) Ct, Cr in-
tersect as pseudo-circles iff they have at most two external
bitangent lines. (ii) If one is contained inside the other, then
there are 0 internal bitangent lines, and either 0 (boundaries
separated) or up to a constant number (boundaries tangent)
of external bitangent lines; additional computation is needed
to distinguish this case from (i). (iii) If the sites do not inter-
sect, then they have 2 internal and 2 external bitangent lines
(only one internal bitangent if they are externally tangent).
(iv) If the sites admit more than 2 external bitangent lines,
then they do not form pseudo-circles. The same technique
decides the relative position of a point and a site since, if
a point is interior to a site, there are no supporting lines
tangent to the site. Consequently, this property is used to
identify a site contained inside another, by considering a
boundary point of one of the sites. In the case of conics
(i.e., ellipses) the method of counting and characterizing the
bitangents involves solving a polynomial of degree 4.

There are cases where we need to compute the intersection
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Figure 3: Deciding SideOfBisector

points of sites Ct,Cr. These are solutions of the resultant
of FtHr − FrHt and GtHr − GrHt w.r.t. t. The resultant
is a polynomial in r of degree d2, after disregarding the re-
dundant factor Hd

t .

3. BASIC PREDICATES
In this section we examine the predicates for the incre-

mental algorithm of [18], the most important of which are:
SideOfBisector that is used to perform nearest neighbor
location, DistanceFromBitangent that is used to deter-
mine the existence of a Voronoi circle and also to determine
if an infinite (unbounded) edge of the current Voronoi dia-
gram will be modified, InCircle that determines if a vertex
of the current Voronoi diagram is in conflict with the newly
inserted site and shall disappear, and EdgeConflictType

which is used to determine which part of an existing edge
of the current Voronoi diagram will be modified due to the
insertion of a new site. The randomized complexity of an
insertion (in a diagram with n sites) is O(log2 n) for disjoint
sites and O(n) for intersecting or hidden sites.

Computing an exact Delaunay graph implies that we iden-
tify correctly all degenerate cases, including Voronoi circles
tangent to more than 3 sites.

The insertion of a new site consists roughly of the fol-
lowing: (i) Locate the nearest neighbor of the new site, (ii)
Find a conflict between an edge of the current diagram and
the new site, or detect that the latter is internal (hidden) in
another site, in which case it does not affect the Delaunay
graph nor the Voronoi diagram. (iii) Find the entire conflict
region, defined as that part of the Voronoi diagram which
changes due to the insertion of the new site, and update the
dual Delaunay graph. We analyze predicates SideOfBi-

sector, DistanceFromBitangent and EdgeConflict-

Type, needed for the above three steps, while predicate In-

Circle is presented separately in the next section due to its
higher complexity.

3.1 SideOfBisector
First, we recall from [18] the definition of distance. Given

a site Ct and a point q in the plane, the (signed) distance
δ(q,Ct) from q to Ct equals minx∈Ct ||q − x|| when q 6∈ Ct

and to −minx∈Ct ||q − x|| when q ∈ Ct, where || · || denotes
the Euclidean norm. The absolute value of the distance
equals the radius of the smallest circle centered at q tangent
to Ct.

Ct

Cr

Cs

Figure 4: Deciding DistanceFromBitangent

Given two sites Ct and Cr and a point q = (q1, q2) ∈ Q2,
this predicate decides which site is closest to the point. If
q 6∈ Ct and q ∈ Cr, then q is closer to Cr. For example,
in fig. 3, q′ is closer to Cr. Otherwise, if q lies outside or
inside both sites, we have to compare the distances from q
to the two curves. To find the site closest to q it suffices to
compare the (squared) lengths of segments qpt̂ and qpr̂. For
example in fig. 3 to conclude which site is closest to q, we
have to compare qpt̂ and qpr̂.

In the sequel we analyze in detail the algebraic operations
involved and their bit complexity. The goal is to compute
the (squared) lengths of the segments qpt̂ and qpr̂, in iso-
lating interval representation, and compare them. Let σ be
the bitsize of the coordinates of q, and N = max{d, σ, τ}.

To compute the (squared) length qpt̂, we need to compute
the coordinates of the point pt̂, for which we need the value
of the parameter t̂, which in turn is a real root of Nt(q1, q2, t).
The (squared) length of the segment(s) q pt̂ is

Aq(t̂) = ‖q − pt̂‖
2 = (Xt(t̂) − q1)

2 + (Yt(t̂) − q2)
2.

Polynomial Nt(q1, q2, t), belongs to Q[t], its degree is ≤ 3d−

2, and its bitsize is eO(τ + σ). We compute the isolating

interval representation of its real roots in eOB(d6 + d4τ 2 +
d4σ2), the bitsize of the endpoints of the isolating intervals
is O(d2 + dτ + dσ). For each of the real roots that we have
computed, t̂, we form the number Aq(t̂). All these numbers
belong to a single algebraic extension Q(t̂), and the smallest
of them is the squared length qpt̂, i.e. the squared distance
of q from the curve.

It remains to represent the smallest Aq(t̂) in isolating in-
terval representation. For this we exploit the fact that we
are working in the quotient ring Z[t]/Nt(q1, q2, t). The small-
est squared distance that we are looking for, is the real al-
gebraic number δ, which is the smallest positive real root
of the polynomial R ∈ Z[x], given by R(x) = Rest(x −
Aq(t), Nt(q1, q2, t)) (i.e., the resultant of the two polynomi-

als w.r.t. t). We can compute the resultant in eOB(d4 +
d3τ + d3σ) [7]. It holds that deg(R) = O(d) and L (R) =
O(d2 + dτ + dσ). We compute the isolating interval rep-

resentation δ ∼= (Rred, [0, c]) in eOB(d6 + d5τ + d5σ), where
L (c) = O(d3 + d2τ + d2σ).

We do the same for q and the other curve, and we compute

the squared distance ζ. We compare δ and ζ in eOB(d6+d5τ+

d5σ). The overall cost is eOB(N6), where N = max{d, σ, τ}.
The degree of the real algebraic numbers involved in the

predicate, is 3d − 2. For conics, this degree becomes 4, and



is optimal, as shown in [11], where it was obtained using the
pencil of two ellipses. Moreover, the complexity bound for

the case of conics is eOB(N).

3.2 DistanceFromBitangent
Consider two sites, Ct and Cr, and their CCW bitangent

line, which leaves both sites on the right hand-side, as we
move from the tangency point of Ct to the tangency point of
Cr; such a bitangent appears in fig. 4. This line divides the
plane into two halfplanes and DistanceFromBitangent

(abbreviated by DFB from now on) decides whether a third
site, Cs, lies in the same halfplane as the other two. The
realization of this predicate consists in deciding the relative
position of Cs with respect to the bitangent line.

We split the problem to two sub-problems. The first con-
sists in computing the external bitangent of interest, while
the second consists in deciding the relative position of the
third site with respect to this bitangent.

To compute all the bitangents of Ct and Cr, we consider
the polynomial that defines the equation of a tangent line
to Ct, that also crosses Cr. For the line to be tangent to
both sites, the discriminant of the corresponding polynomial
should vanish. Among the real roots of the discriminant are
the values of the parameter that correspond to the tangency
points, which in turn allow us to compute the implicit equa-
tions of the bitangent lines. We characterize the bitangents
as external or internal ones by computing their relative po-
sition w.r.t. to (rational) points inside the sites.

To decide the position of Cs w.r.t. the CCW bitangent
line, we first check if the line crosses Cs. If this is the case,
then the predicate is answered immediately, since Cs can-
not lie within the same halfplane as Ct and Cr. If this line
does not cross Cs, then to decide in which halfplane, Cs is
lying, it suffices to compute the sign of the evaluation of the
polynomials of the bitangent over an interior point of Cs.
However, we can do better, as illustrated in fig. 4. We con-
sider the tangency points of all the bitangents of Ct and Cs,
shown with circular marks in fig. 4. We can then decide the
position of Cs by the ordering of the aforementioned points
and the tangency point of the bitangent and Ct, shown with
solid circular mark in the same figure.

To analyze the bit complexity of the algebraic operations
involved, recall that the degree of the defining polynomials
of the curves is bounded by d and the maximum coefficient
bitsize by τ . Let Tt(x, y, t) be the polynomial of the tan-
gent line to Ct. To compute the intersections of this line
with Cr, we replace x and y with Xr and Yr, from curve
Cr. After elimination of the denominators we get a poly-
nomial Ttr(t, r) ∈ Z[r, t], with total degree ≤ 3d − 2 and
L (Ttr) ≤ 3τ + 3 log(d). Moreover, the degree w.r.t. t, resp.
r, is bounded by 2d − 2, resp. d. For the line to be tan-
gent to both curves, we demand the discriminant of Ttr

w.r.t. r, Λtr ∈ Z[t], to vanish. The discriminant is com-

puted in eOB(d4τ ), and it holds that dg(Λtr) ≤ 4(d − 1)2,
and L (Λtr) = O(dτ ) [7]. The real roots of the discriminant,
say t̂, are the values of the parameter that correspond to the
points where a tangent line to Ct is also tangent to Cr. We

can isolate the real roots of Λtr(t) in eOB(d12 + d10τ 2), and
the endpoints of these intervals are of bitsize O(d4 + d3τ )
[10].

With each real root, t̂, of Λtr(t) we compute the implicit
equation of a bitangent line, which is Tt̂(x, y) = Tt(x, y, t̂) ∈
(Z[t̂])[x, y]. We characterize it as external to both curves

iff its equation yields the same sign when evaluated at an
interior point of each site. An interior point, (u1, u2), can
be computed using primitive PointInside, and the bitsize
of its coordinates is O(dσ + τ ). Hence, Tt(u1, u2, t) is of

degree ≤ 2d−2 and bitsize eO(dσ+τ ). We compute the sign

of (Tt(u1, u2, t̂)) in eOB(d6τ + d6σ) [7].
It remains to compute the position of Cs w.r.t. the CCW

external bitangent, by determining the ordering of the tan-
gency points, as mentioned earlier. The tangency points of
the bitangent depend on the real roots of Λt,r(t), while the
tangency points of all the bitangents of Ct and Cs, depend
on the real roots of Λt,s(t). Thus it suffices to compare
the real roots of these polynomials, which can be done in
eOB(d6τ + d6σ) [7].

Overall, the predicate can be decided in eOB(d12 +d10τ 2 +

d6σ), or eOB(N12), where N = max{d, σ, τ}. For conics, d =

2, so the bound depends only on τ and becomes eOB(N2).
This can be improved, using specialized algorithms for small-

degree algebraic numbers [11], to eOB(N).
We conclude this section with EdgeConflictType. It

determines the type of conflict-region (defined in [11]), and
is reduced to InCircle and DFB. It also requires the Or-

derOnBisector sub-predicate, which determines the or-
dering of the centers of bitangent disks to 2 sites on their
oriented bisector. The parametric representation allows for
easy handling of tangency points. Therefore, OrderOnBi-

sector becomes trivial, as bisector points are mapped to
the footpoints on the boundary. The next section explains
how tangency points of a Voronoi circle are represented. We
have so far examined all predicates, except for InCircle,
needed for the Delaunay graph, but also the convex hull,
of smooth convex pseudo-circles. Their bit complexity is
summarized as follows.

Lemma 1. We can decide SideOfBisector, DFB, and

the corresponding primitives in eOB(N12). In the case of

conics, the bound becomes eOB(N), where N = max{d, τ, σ}.

4. INCIRCLE
This section introduces a polynomial system for express-

ing the Voronoi circle, leading to a robust and fast imple-
mentation of our main predicate. Recall that the Voronoi
circle is centered at a Voronoi vertex whose radius equals
the distance between the vertex and the sites closest to it
(i.e., the circle is tangent to the sites). A Voronoi disk is a
disk defined by a Voronoi circle.

Given sites Ct, Cr, Cs in this order, we denote their as-
sociated Voronoi disk by Vtrs iff their tangency points on
the disk are in CCW direction. In this case, Vtrs is a CCW
Voronoi disk, and Vtsr is a CW Voronoi disk. Since the
Voronoi diagram of smooth convex pseudo-circles is an ab-
stract Voronoi diagram, given 3 sites, there may exist at
most one CCW Voronoi disk and at most one CW Voronoi
disk. Moreover, these disks may be either external (exter-
nally tangent to the sites) or internal (internally tangent).

Let us now adapt the definition of conflict from [18], (see
also fig. 6 and 7):

Definition 2. Given sites Ct, Cr, Cs, let Vtrs be their
Voronoi disk and Ch be a query site. If Vtrs is an external
Voronoi disk, then Ch is in conflict with Vtrs iff Vtrs is
intersecting Ch

◦. If Vtrs is an internal Voronoi disk, then
Ch is in conflict with Vtrs iff Vtrs is included in Ch

◦.



Given Ct, Cr, Cs, InCircle decides if a newly inserted
site Ch is in conflict with Vtrs. A degeneracy arises when Ch

is also tangent to Vtrs. Given that Vtrs exists, the predicate
is computed as follows: (i) Solve the algebraic system that
expresses the Voronoi circle. Among the solutions (which
correspond to various tritangent circles, cf. fig. 5 middle),
find Vtrs. (ii) Determine the relative position of Ch w.r.t.
Vtrs. Each step is explained in the subsections that follow.

4.1 Computing the Voronoi circle
The polynomial system expressing all circles tangent to

Ct, Cr, Cs is:

Nt(x, y, t) = Nr(x, y, r) = Ns(x, y, s) = 0
Mtr(x, y, t, r) = Mts(x, y, t, s) = 0.

(2)

The first 3 equations correspond to normals at points t, r, s
on the 3 given sites. All normals go through the Voronoi
vertex (x, y). The last two equations force (x, y) to be
equidistant from the sites: each one corresponds to the bi-
sector of the segment between two footpoints (cf. fig. 5 left).
This system was also used in [21]. Elimination of x, y from
Mtr, Nt, Nr yields the bisector of two sites w.r.t. t, r.

System (2) shall be solved over R, thus yielding a set of
solution vectors in R5. Only one solution vector corresponds
to Vtrs. There exist solution vectors with CCW orientation
of the tangency points, and solution vectors with CW orien-
tation which do not correspond to the Voronoi circle we are
looking for. They just correspond to some tritangent circle
(cf. fig. 5 middle).

4.1.1 Solving the system
The resultant of n + 1 polynomials in n variables is an

irreducible5 polynomial in the coefficients of the polynomi-
als which vanishes iff the system has a complex solution.
In particular, sparse (or toric) resultants express the exis-
tence of solutions in (C∗)n [6]. We employ vectors α =
(α1, . . . , αn) ∈ Nn, where |α| is the 1-norm and we write xα

for Πix
αi
i .

Proposition 3. We are given polynomials F0, . . . , Fn ∈
K[x1, . . . , xn] over a field K, such that Fi =

P

0≤|α|≤di
ui,αxα

is of total degree di, where 0 ≤ i ≤ n. Their resultant w.r.t.
x1, . . . , xn is homogeneous of degree d0 · · · dj−1dj+1 · · · dn in
uj,α, where 0 ≤ |α| ≤ dj , and j ∈ [0, n]. This means, for any
λ ∈ K, that Res(F0, . . . , λFj , . . . , Fn) = λd0···dj−1dj+1···dn

Res(F0, · · · , Fn). The total degree of the resultant is
Pn

j=0 d0

· · · dj−1dj+1 · · · dn.

Lemma 4. Let f(x) = T 2anxn +Tan−1x
n−1+

Pn−2
i=0 aix

i

and g(x) = T 2bnxn + Tbn−1x
n−1 +

Pn−2
i=0 bix

i. Then the
resultant of f and g w.r.t. x is a multiple of T 4.

It is impossible to compute the resultant of 5 arbitrary
polynomials as a determinant, so we apply successive Sylvester
determinants, i.e., optimal resultant formulae for n = 1.
This typically produces extraneous factors but, by exploit-
ing the fact that some polynomials are linear, and that none
contains all variables, we shall provide the complete factor-
ization of the computed polynomial; we focus on conics for
simplicity, but our approach holds for any parametric curve.
We denote by Π(t) the resultant of (2) when eliminating all

5Irreducibility occurs for generic coefficients; otherwise, re-
sultants can be factorized.

variables except t: it is, generally, an irreducible univariate
polynomial and vanishes at the values of t that correspond
to the complex tritangent circles. Recall that the curves are
defined by (1).

Theorem 5. If Π(t) is the resultant of (2) as above, then
Resxy(R1, R2, Nt) = Π(t)H40

t (GtH
′
t −G′

tHt)
36, where, R1 =

Resr(Mtr, Nr), R2 = Ress(Mts, Ns) and the degree of Π is
184.

Proof. All polynomials belong to Z[x, y, t, r, s]: we shall
eliminate x, y, r, s to obtain the univariate resultant in Z[t].
Polynomials Nt, Nr, and Ns are of total degree 5, linear in
x, y and of degree 4 in the parameter. Polynomials Mtr and
Mts are of total degree 9, linear in x and y and of degree 4
in the parameters. First, we eliminate r from Mtr and Nr:

R1(x, y, t) = Resr(Mtr(x, y, t, r),Nr(x, y, r)).

It is of total degree 22, of degree 6 in x, in y, and in x, y,
and 16 in t. We do the same for Mts, Ns and obtain:

R2(x, y, t) = Ress(Mts(x, y, t, s), Ns(x, y, s)),

which follows the same degree pattern. It remains to com-
pute the final polynomial in Z[t]:

R3(t) = Resx,y(R1(x, y, t), R2(x, y, t),Nt(x, y, t)).

Let us write Nt = D(t)y + A(t)x + C(t), where D(t) =
Ht(GtH

′
t − G′

tHt) of degree 4. To compute R3, we shall
solve Nt for y and substitute in R1, R2. This introduces
denominators, eliminated by multiplying by D(t)6. Then,
we can take the Sylvester resultant w.r.t. x. During these
operations we apply prop. 3 as follows:

Resxy(D6 R1, D
6 R2, y + Ax+C

D
) =

D36D36Resxy(R1, R2, y + Ax+C
D

) =
= D36Resxy(R1, R2, D(y + Ax+C

D
)) = D36R3.

(3)

From prop. 3, the degree of the resultant w.r.t. t is 16(6 ·
1)+16(6·1)+4(6·6) = 336. The previous discussion suggests
that (Ht(GtH

′
t−G′

tHt))
36, the leading coefficient of y in Nt,

appears as an extra factor.
Moreover, after substitution of y in R1 and R2, we obtain

polynomials of the form H2
t c6x

6 + Htc5x
5 + c4x

4 + c3x
3 +

. . . + c0. From lemma 4, it follows that the resultant of two
such polynomials contains H4

t as a factor. Therefore, the
degree of Π is 336 − 4 · 36 − 2 · 4 = 184.

The above theorem provides an upper bound of 184 com-
plex tritangent circles to 3 conics. Numeric examples show
that the bound is tight. This bound was also obtained in [11]
using a different system. Now, we describe the factorization
for arbitrary degree curves based on prop. 3,

Corollary 6. We are given R0, R1, R2 ∈ K[x, y], where
the total degree of R1 and R2 is n in x, in y, and in x and
y together, and R0 = Dy + Ax + C, where AD 6= 0, then

Resx(Resy(R0, R1), Resy(R0, R2)) = Dn2

Resxy(R0, R1, R2).

Corollary 7. The degree of the resultant of (2) for gen-
eral parametric curves, as in (1), is bounded by

(3d − 2)(5d − 2)(9d − 2),

after dividing out the factor of (Ht(GtH
′
t − G′

tHt))
(5d−2)2 .



Nt

Nr

Ns

Mtr

Mts

t̂

r̂

ŝ
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A more careful analysis may exploit term cancellations to
yield a tighter bound.

If we solve the resultant of system (2), we obtain one co-
ordinate of the solution vectors (in isolating interval repre-
sentation). There are methods to obtain the other variables,
too. For instance, plugging a value of t in the bisector equa-
tion of sites Ct and Cr allows us to find the corresponding
value for r (see section 4.2 for how to choose the appropriate
r-solution).

Moreover, having obtained the resultant allows us to de-
tect degenerate configurations, i.e., all 4 sites being tangent
to the same Voronoi disk. Consider the triplets Ct, Cr, Cs

and Ct, Cr, Ch. Let Π1(t), Π2(t) be the resultants of (2)
for these triplets respectively. If the triplets admit an iden-
tical Voronoi circle, then gcd(Π1, Π2) 6= 1. Conversely, if
gcd(Π1, Π2) 6= 1, the triplets may have an identical solution
vector (which can be verified by looking at the other coor-
dinates, in a way analogous to the one presented in [11]).

4.1.2 Choosing the proper solution
In this subsection we consider the question of choosing,

among all solutions of the polynomial system corresponding
to the tangency points (t̂, r̂, ŝ) of a tritangent circle, the one
that corresponds to Voronoi circle Vtrs.

First, we eliminate irrelevant solutions. Consider the tan-
gency points pt̂, pr̂, pŝ for a solution triplet t̂, r̂, ŝ. The
tangency points corresponding to Vtrs satisfy CCW(pt̂, pr̂,
pŝ) and we disregard the rest of the solution vectors.

Now we distinguish an external and an internal tritangent
circle from the rest of the tritangent circles. The tangency
points define the former iff the tangent line of the Voronoi
circle at each tangency point separates its adjacent site from
the other two tangency points, see fig. 5 left. Even if the tan-
gent line intersects the other sites (not shown in the exam-
ple), the tangency points are still separated. Checking that
the tangency points correspond to an internal circle can be
performed by applying lemma 11 (cf. section 4.2.2). Note
that in this case, an argument symmetric to the external
case (i.e., the internal tritangent circle is such that all three
tangency points are on the same side of the tangent line as

the site, and inside the site) does not apply, due to the fact
that the internal tritangent circle may be “locally” inside the
curve, but not “globally” (i.e., the dotted circle of fig.5 top
right).

4.2 Deciding conflict
Since the Voronoi circle is expressed algebraically, it is not

clear how to decide its relative position w.r.t. the query site,
i.e., by primitive RelativePos. Therefore, we model the
disk inclusion test of definition 2 as a circle inclusion test.

4.2.1 Conflict with external Voronoi disk
The following can be obtained from property 5.1 [12], see

fig. 6.

Lemma 8. Given convex sites Ct, Cr, Cs, let Vtrs be an
external Voronoi disk of theirs and t̂ its tangency point on
Ct. Let Ch be a query site. If t̂ ∈ Ch, then Ch is in conflict
with Vtrs (by definition). Otherwise, let Bth be an external

bitangent disk of Ct and Ch, tangent at t̂ (and ĥ resp.).
Then Ch is in conflict with Vtrs iff Bth is strictly contained
in Vtrs.

The check for inclusion is performed by comparing the
corresponding radii, which can be done simply by compar-
ing the coordinates of the center, since the circles share a
common tangency point. Note that in case Bth does not
exist (i.e., t̂ does not lie in the interior of the convex hull of
Ct and Ch), Ch is not in conflict with Vtrs. Now it remains
to compute the external bitangent circle Bth. There may
exist up to 6 bitangent circles, tangent at a given t̂, for the
case of ellipses [11], and up to a constant number for arbi-
trary smooth convex sites. In [11], simple geometric tests
are provided to isolate the external bitangent circle among
all bitangent circles to non-intersecting ellipses that also ap-
ply to general convex sites. For completeness we provide the
corresponding lemma, omitting the proof.

Consider two sites Ct and Cr and a point t̂ on Ct, where
t̂ 6∈ Cr and t lies in the interior of the convex hull of Ct

and Cr. Then there exist two tangent lines to Cr passing
through t̂. Let r1, r2 be the points where they touch Cr.
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Figure 6: Lem. 8: conflict of query site Ch with
external Voronoi disk

The chord r1r2 separates Cr into two arcs, of which the arc
on the same side as t̂ called a visible arc.

Lemma 9. Consider the tangent line ǫ of Ct at point t̂. If
ǫ does not intersect Cr, then only the visible arc of t̂ contains
the tangency point of the external bitangent circle. Other-
wise, this tangency point is contained in the arc whose end-
points are: the intersection of ǫ with Cr and the endpoint of
the visible arc which lies on the opposite side of Ct w.r.t. ǫ.

Note that lemma 9 also holds when intersecting sites Ct and
Cr admit an external bitangent circle tangent at point t̂ of
Ct (cf. fig. 5 bottom right). This is because (i) t̂ 6∈ Ct ∩ Cr

since it is the tangency point of an externally tangent circle,
(ii) t̂ lies on the arc of Ct bounded by the convex hull of Ct

and Cr (iii) the tangent line of Ct at t̂ intersects Cr.
Overall, it is always possible to obtain an arc on Cr that

contains the tangency point of the externally tangent circle,
and answer the predicate by applying lemma 8.

Lastly, let us note that with some configurations, it is
possible to determine the conflict immediately by looking at
the ordering of the tangency points of the Voronoi circles
of Ct, Cr, Cs and Ct, Cr, Ch. This is due to the fact that
the radii of the external bitangent circles, as one external
bitangent line is deforming to the other, are monotonically
decreasing and increasing [11, Lemma 6].

4.2.2 Conflict with internal Voronoi disk
Intersecting sites may also admit an internally tritangent

Voronoi circle. In this case InCircle can be answered by
the following lemma:

Lemma 10. Given sites Ct, Cr, Cs, let Vtrs be their in-
ternal Voronoi disk, and t̂ its tangency point on Ct. Let Ch

be a query site. If t̂ 6∈ Ch, then Ch is not in conflict with
Vtrs (by definition). Otherwise, let Bth be an internal bitan-

gent disk of Ct and Ch, tangent at t̂ (resp. ĥ). Then Ch is
in conflict with Vtrs iff Vtrs is strictly contained in Bth.

Proof. See fig. 7. (⇐). If Vtrs is strictly contained in
Bth, then it lies in the interior of Bth, except point t̂. This
means that Vtrs ∈ Ch

◦, as Bth and Vtrs share the common
tangency point t̂ and both circles are internally tangent to
Ct. Thus, according to def. 2, Vtrs is in conflict with Ch.
(⇒). If Ch is in conflict with Vtrs, then Vtrs ∈ Ch

◦. Circles
Bth and Vtrs have in common the tangency point t̂ and since
Bth touches Ch (at ĥ), Vtrs is strictly contained in Bth.

Ct

Cr
Cs

Ch

t̂

r̂

ŝ

ĥ

Figure 7: Lem. 10: conflict of Ch with internal
Voronoi disk; the Voronoi edges are solid, the con-
flict region (edge) is dotted

Let us now identify an internal bitangent circle (among
all bitangent circles). First, we observe that if an internal
bitangent circle at point t̂ of Ct exists, then t̂ ∈ Ct∩Cr and
r̂ ∈ Ct ∩ Cr (the converse may not be necessarily true).

Lemma 11. Given intersecting sites Ct and Cr, consider
their bitangent circle Btr at points t̂ and r̂ respectively with
t̂, r̂ ∈ Ct ∩ Cr. Then Btr is an internal bitangent circle iff
Btr has the smallest radius among all bitangent circles of
Ct and Cr tangent at t̂, and the radius of Btr is bounded
by the radius of curvature of Ct at t̂ and the radius of the
self-bitangent circle of Ct at t̂.

Proof. (⇐). Let Btr be an internal bitangent circle
which means that Btr ∈ Ct. Then the radius of Btr is
smaller than the radius of curvature of Ct at t̂, since the
circle is inside Ct around t̂ [5]. Moreover, since Btr does
not cross Ct, its radius is no greater than that of the self-
bitangent circle of Ct at t̂ (that’s the distance from t̂ to its
corresponding point on the medial axis of Ct). Now assume
that there exists another circle B′

tr internal to Ct and tan-
gent at t̂ with radius smaller than that of Btr. Then B′

tr does
not have any common points with Cr since Btr is internally
tangent to Cr. Therefore Btr has the smallest radius among
all bitangent circles of Ct and Cr tangent at t̂.
(⇒). Let Btr have the smallest radius among all bitangent
circles tangent at t̂, not greater than the radius of curva-
ture of Ct at t̂, neither than the radius of the self-bitangent
circle of Ct at t̂. Then locally (around t̂) Btr is inside Ct.
Also, (globally) Btr does not cross Ct, thus Btr ∈ Ct. Since
t̂ ∈ Ct∩Cr it follows that Btr is internally tangent to Cr.

The above lemma completes lemma 10 when internal bitan-
gent circle Bth does not exist. In that case the corresponding
circle with radius equal to the radius of curvature or that of
the self-bitangent circle is considered instead of Bth. In an
implementation, the curvature constraint can be forced by
comparing with the evolute point [14]. The self-bitangent
circles can be computed by considering the bisector of a
curve and itself, then by computing the (self-)bitangent cir-
cles and finally choosing the one with the smallest radius
(in case of identical self-bitangent circle we can consider the
evolute point).

4.3 Existence



In some cases, it is required to know whether the CCW
Voronoi circle Vtrs exists or not. This is a generalization of
Existence of [9] to pseudo-circles.

There is a straightforward way to determine if Vtrs exists.
Solve the algebraic system and look for Vtrs. If it is not
found, then we may conclude that Vtrs does not exist. How-
ever, in some cases one can check the existence of Vtrs in an
easier way, avoiding solving the system. Moreover, we shall
be able to determine its type (i.e., external or internal).

If one site is contained in another one (hidden), Vtrs can-
not exist. Thus, we assume that there are no hidden sites.

Observe that DFB is a special case of InCircle, where
the CCW bitangent line is an infinite CCW Voronoi cir-
cle. Geometrically, a conflict of this type means that the
insertion of Cs into the Voronoi diagram will invalidate part
of the bisector of Ct and Cr. In this case, the predicate
evaluates to negative, i.e., DFB(Ct,Cr,Cs) < 0, otherwise
DFB(Ct, Cr,Cs) ≥ 0.

Lemma 12. Given sites Ct, Cr, Cs, let κ be the number
of conflicts of DFB, when evaluated at triplets (Ct, Cr, Cs),
(Cr, Cs, Ct) and (Cs, Ct, Cr). Then (i) If κ < 2 then Vtrs

does not exist. (ii) If κ ≥ 2 then: (a) If Ct ∩ Cr ∩ Cs 6= ∅
and there exists a [t, r, s] sequence of arcs on its boundary
(i.e., a CCW sequence of arcs respectively belonging to Ct,
Cr and Cs), then either Vtrs is internal or it does not exist.
(b) Otherwise, Vtrs exists and is external.

Proof. (i) Case κ < 2. Without loss of generality we as-
sume that DFB(Ct,Cr,Cs) ≥ 0 and DFB(Cs,Ct,Cr) ≥ 0.
If Ct∩Cs = ∅ (cf. fig. 8 left), then Ct,Cr,Cs do not admit an
external tritangent circle touching them in this order. Since
they have no common intersection, an internal tritangent
circle does not exist either. Therefore Vtrs does not exist.
If Ct ∩ Cs 6= ∅ (fig. 8 top right), then, given all possible
positions of Cs, there cannot be an intersection of all three
sites with a [t, r, s] sequence of arcs on its boundary, since
Cs would have to not intersect the CW external bitangent
of Ct and Cr when it is not possible, or it would have to
intersect some site more than twice. Therefore, an internal
Vtrs does not exist. With similar arguments we show that
neither does an external Vtrs exist.

(ii) Case κ ≥ 2. Without loss of generality we may assume
that DFB(Ct,Cr,Cs) < 0 and DFB(Cs,Ct,Cr) < 0. (a)
Case Ct ∩ Cr ∩ Cs 6= ∅ and there exists a [t, r, s] sequence
of arcs. Vtrs cannot be external, since in this case it would
either be DFB(Cr,Ct,Cs) < 0 (i.e., Cs intersecting the CW
bitangent line of Ct and Cr), or Cs would have to intersect
some site more than twice. Therefore, if Vtrs exists it should
be internal. In fact, an internal tritangent circle does not
exist iff each (internal) maximal disk of of Cs (tangent at
some point of the s-arc) is contained in Ct

◦ ∪ Cr
◦ (this is

related to the medial axis location operation described in
[18]). (b) If Ct∩Cr∩Cs = ∅ then Vtrs cannot be internal. It
follows (cf. fig. 8 left) that Vtrs exists and is external. Finally,
if the intersection is nonempty and a [t, r, s] sequence of arcs
does not exist, then with arguments symmetric to case (ii,a)
we are left only with the case that Vtrs exists and it can only
be external (cf. fig. 8 bottom right).

5. IMPLEMENTATION & EXPERIMENTS
This section describes our efficient and exact implemen-

tation for non-intersecting ellipses in the plane (fig. 1 left),
which is now being extended to handle pseudo-circles (fig. 2

Ct
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Cr

Ct

Cr
Cs

Ct

Cr

Cs

Figure 8: Ct ∩ Cr = ∅ (left), or Ct ∩ Cr 6= ∅ (right).
Red sites: κ < 2, Green sites: κ ≥ 2

right), or sites fully contained in other ones (fig. 1 right),
based on the aforementioned algorithms. Our code is based
on the existing cgal Apollonius package for the combina-
torial part of the algorithm. Since cgal follows the generic
programming paradigm, the main issue was to implement
the predicates for ellipses, generalizing the circular sites de-
veloped for the Apollonius diagram.

For the required algebraic operations, we relied on synaps
6,

an algebraic library which features state-of-the-art imple-
mentations for real solving, used to solve the degree-184
univariate polynomials.

We have implemented polynomial interpolation to com-
pute the resultant of system (2). To speed up the implemen-
tation, we use ntl

7 which is an open source c++ library pro-
viding asymptotically fast algorithms for polynomial GCD
and Sylvester resultants. We apply thm. 5 to eliminate the
extraneous factors at each evaluation, hence obtaining the
optimal-degree polynomial at the reconstruction phase with
the optimal number of 185 evaluations.

For InCircle, we have incorporated the subdivision method
of [12], using interval arithmetic provided by synaps and
multi-precision floating point numbers by mpfr

8; thus we
no longer rely on alias. This is a filter, which answers
InCircle before full precision is achieved at non-degenerate
cases, especially when looking for the external Voronoi circle;
however, its convergence for arbitrary intersecting smooth
curves may no longer be quadratic. When the mpfr pre-
cision is not enough, we fall back to the exact algebraic
method. At the heart of the subdivision method we have
implemented a univariate interval Newton solver, which han-
dles polynomials with interval coefficients, thus allowing us
to quickly solve multivariate equations by plugging in inter-
val approximations of each variable.

The subdivision algorithm can approximate the tangency
points that correspond to the Voronoi circle with arbitrar-
ily high precision, hence it is used as a filter. The use of
resultant allows us to determine if there exists a degenerate
Voronoi circle, tangent to 4 sites, since it can provide us with
the true separation bound (for more details see [12]). This
holds in all computations in the sense that we perform“diffi-

6http://www-sop.inria.fr/galaad/synaps/
7http://www.shoup.net/ntl/
8http://www.mpfr.org/
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cult” algebraic operations using interval arithmetic. During
an algebraic computation with interval arithmetic, degen-
eracies or near-degeneracies lead to uncertain sign evalua-
tions. Then, the resultant provides us with the necessary
information in order to decide (increasing our precision by
a constant number of bits, but significantly less than having
to go up to the theoretical separation bound).

Lastly, we implemented a visualization algorithm for the
bisector of two ellipses. Since the implicit equation has a
total degree of 28 in Cartesian space, we trace the equivalent
implicit curve in parametric space, which is of degree 12;
however, this routine is subject to further optimization.

Overall, our software design, is generic so as to distinguish
the geometry from the algebra part. This is important when
connecting to the algebraic libraries, as described above, but
also in order to use alternative libraries. In fact, our code
is able to use any algebraic library as long as certain inter-
face requirements are satisfied. Currently, we are also using
cgal’s Algebraic Kernel which provides univariate real solv-
ing, multivariate polynomial handling and resultant compu-
tation via interpolation.

Now, we present various experimental results. All run-
times are obtained on a Pentium-4 2.6 GHz machine with
1.5GB of RAM, unless otherwise specified.

We have measured the performance of SideOfBisector,
DFB and InCircle with varying bitsize. Left fig. 9 cor-
responds to ellipses with randomly perturbed parameters
(axes, rotation and center of ellipses) by adding / subtract-
ing 10−e, with varying e, to small (10-bit) random input
parameters; this forces the polynomials computed during
each predicate evaluation to have coefficients of large bit-
size, since the coefficients depend on the input parameters
(axes, rotation, center). All runtimes appear to grow sub-
quadratically in e, which is expected since SideOfBisec-

tor, DFB have constant arithmetic complexity and InCir-

cle is handled by the subdivision algorithm with quadratic
convergence, hence computes τ bits in O(log(τ )) operations.
In case of degeneracies, the runtime of InCircle is domi-
nated by the resultant computation, shown in middle fig. 9.
The sub-quadratic behavior of the first two predicates agrees
with the theoretical complexity bound derived in lemma 1.

Finally, we measured the time needed for the subdivision
algorithm to reach a precision of 2−b, using mpfr floats, in
right fig. 9. This (multi-precision) version currently lacks
some optimizations making it about 2 times slower than the
one using alias, when standard floating point precision (53-
bit) is employed. This precision is achieved in about 0.2 sec,
and 1 sec suffices for almost 2000 bits of precision, whereas

the 24k-bit approximation needs about 0.5 min. This shows
that the theoretical separation bound of several million bits
[11] cannot be achieved efficiently, hence the usefulness of
resultant-based methods. On the other hand, resultants,
even with 10-bit input coefficients can be about 70 times
slower than the subdivision algorithm using the standard
floating point precision of 2−53. In short, both methods
have to be combined for a robust and fast solution.

The overall time for the construction of the Delaunay
graph (and the structure representing its dual diagram) is
shown in right fig. 10 (solid line). It takes, for instance,
98 sec to compute the exact Delaunay graph of 128 non-
intersecting ellipses. More importantly, it is about linear in
the number of sites for up to this number of non-intersecting
ellipses.

5.1 Comparing with point approximations
An alternative way to solve problems with curved sites is

to approximate them by simpler objects such as polygons
or even sets of points. However, a good approximation may
require a large number of input sites.

Each ellipse is approximated by a constant number of k
points taken uniformly on its boundary (just like the vertices
of the polygons in fig. 11, right). These points have rational
coordinates, as they are obtained using (1).

Using GNU rational arithmetic (Gmpq in cgal), we com-
pare against 3 variations of the incremental algorithm of
cgal for the Delaunay triangulation: (i) without filtering,9

(ii) with filtering, (iii) with filtering and improved nearest
neighbor location. Points are inserted in CCW order for each
ellipse, so the Delaunay face of the lastly inserted point is
given as a hint for the insertion routine.

Our own implementation for ellipses uses Gmpq but no
filtering, except for InCircle that uses a subdivision-based
method. However, the latter also uses some slower exact
computations which could be accelerated further.

Left fig. 10 presents results concerning 32 ellipses, with
k varying from 8 to 320. We see that the Delaunay graph
computation of 32 ellipses is faster for variations (i),(ii),(iii)
of the Delaunay triangulation of points for k ≥ 120, k ≥ 160
and k ≥ 240 respectively. The corresponding Delaunay tri-
angulations have 3840, 5120 and 7680 vertices respectively.
There are Delaunay edges corresponding to pairs of points

9Filtering is a technique where the predicates are answered
using double arithmetic, falling back to slower exact arith-
metic only when the filter fails to produce an answer. This
implies that there is some mechanism of determining that
the outcome of the filter is correct or not.
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Figure 10: Delaunay graph of: 32 ellipses vs point approximations with increasing number of points per
ellipse (left), 32 polygons with increasing number of edges (middle), polygons and ellipses (right)

Figure 11: Left: Voronoi diagram of 16 ellipses.
Right: Voronoi diagram of 16 20-gons approximat-
ing each ellipse (320 segments in total)

on the same ellipse (with dual Voronoi edges in the ellipses’
interior). These should be discarded which induces an ex-
tra overhead not measured. This is also true for all but one
Delaunay edge between neighboring ellipses.

5.2 Comparing with polygonal approximations
We compare against the cgal package for the segment

Delaunay graph (and the dual Voronoi diagram) [17], which
is followed by the removal of edges between consecutive seg-
ments on the same ellipse.

We replaced each ellipse (fig.11 left) by a 20-gon (fig.11
right). Right fig. 10 shows the time for the incremental
construction of the Voronoi diagram of polygons by cgal

(dashed line) compared to that of ellipses (solid line) when
the number of sites varies from 4 to 128. The cost of an
insertion is roughly O(log2 k) [17, 18], where k is the number
of already inserted sites. Care has been taken to perform
smartly the nearest neighbor queries. In particular, since
each segment is added in CCW order around each ellipse,
a probable nearest neighbor is the lastly inserted segment.
This is given as a hint to the insertion routine. The segment
Delaunay implementation measured uses Gmpq arithmetic
and no filtering. We didn’t count the time required for the
deletion of artificial edges. Interestingly, the Delaunay graph
of polygons is slower with > 15 segments per ellipse.

Middle fig. 10 shows the required time to construct the
Delaunay graph of 32 ellipses (solid line) and that of 32
polygons approximating each ellipse with a varying number
of edges (dotted line). As the number of edges per ellipse in-
creases, the squared-logarithmic cost per insertion becomes
non-negligible. The Delaunay graph of polygons is faster
only for approximations of < 16 edges per ellipse.

5.3 Restriction to circles
We performed experiments on circles per predicate, jux-

taposing our software and the cgal package for the Delau-
nay graph, equivalently the Apollonius (Voronoi) diagram,
of circles, on a 1.83 GHz Core2 Duo with 1GB RAM. The
inputs were: (i) degenerate: instances with a moving query
circle; (ii) near degenerate: like (i), but the the input is
perturbed randomly by ±10−e, e ∈ {2, 4, 6}; (iii) random:
centers uniformly distributed in a predefined interval.

Runtime increases almost linearly with bitsize for all pred-
icates. This is more evident in (ii), because both approaches
rely on algorithms of constant arithmetic complexity, which
do not depend on how close to degeneracy the configura-
tion lies. Both implementations behave almost identically
on dataset (i) and (ii) e = 2, since bitsize is the same, and
neither approach depends on separation bounds.

It seems that our implementation is up to 2 orders of
magnitude slower that the dedicated one, when we restrict
to circles. The difference of performance is not surprising,
since the case of circles reduces to computations with real
algebraic numbers of degree 2. The best performance occurs
for DFB, because both approaches follow an algorithm with
the same algebraic complexity. The worst performance is
observed, as expected, for InCircle, which, in the case of
circles, has been optimized.

5.4 Experiments with general parametric curves
While our c++ implementation covers only ellipses for

now, we have applied the proposed approach for the resul-
tant computation on various types of curves using maple.
Some preliminary results are summarized in table 1. The
first column shows the type of curve, the second its degree,
the third the time in sec, the fourth the degree of the re-
sultant and the last column shows the (non-tight) bound of
our general formula from corollary 7.

First, we took the bean curve of left fig. 2 and applied
simple affine transformations yielding very small (5-bit) co-
efficients. We computed the resultant of such triplets. The
long runtimes indicate that working with high-degree curves
requires very efficient implementations in order to be practi-
cal. We additionally considered the case of 3 random conics
with small (10-bit) coefficients. In this case where d = 2, we
have a tight bound of 184, while the general formula yields
512. We also tested the resultant computation on polyno-
mial branches of degree 2 and 3 (B-splines), with very small
(5-bit) coefficients. The runtime is less than 1 sec for d = 2
and less than 10 sec when d = 3. These experiments indicate



Curves d time resultant bound

Beans 4 530.00 2632 6120
Conics 2 7.90 184 512

B-splines 3 9.20 404 2275

B-splines 2 0.65 93 512

Table 1: Resultant degree for various curves

that an efficient exact implementation may still be possible
for larger bitsizes, and we can benefit from the increased
flexibility that piecewise functions offer (with a trade-off be-
tween the total number of non-linear objects and the com-
plexity of the algebraic operations).

6. FUTURE WORK
We can adjust our algorithms for the predicates so as to

compute the Delaunay graph (or the convex hull) of convex
sites with richer parametric representation, such as piece-
wise smooth parametric curves (NURBS). The main issue
is to identify efficiently the curve, or piece, which matters,
and to apply the current predicates. This can be achieved
fast by numerical certified methods, such as our subdivision
algorithm for the case of InCircle.
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