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Abstract

We examine the problem of computing exactly the De-
launay graph of a set of possibly intersecting smooth
convex pseudo-circles in the Euclidean plane given in
parametric form. The diagram is constructed incre-
mentally. We focus on InCircle, under the exact
computation paradigm, and express it by a simple
polynomial system, which allows for an efficient im-
plementation by means of iterated resultants and a
factorization lemma. Finally, we present examples
with certain types of curves.

1 Introduction

Computing the Delaunay graph and its dual Voronoi
diagram of a set of input sites in the plane has been
studied extensively due to its numerous applications.
However, few works have studied exact Voronoi di-
agrams1 for curved objects. These can be critical in
applications such as assembly, and surface reconstruc-
tion. In the case of circles, the exact and efficient im-
plementation of [2] is now part of cgal [1]. There
is also vroni, a very efficient and robust implemen-
tation, which relies on floating-point computations; a
more recent implementation of which can treat (non
intersecting) line segments and circular arcs [7].

Our own previous work [4] started with the study
of non-intersecting ellipses, and proposed exact alge-
braic algorithms for all predicates required by the in-
cremental algorithm of [8]. The resultant required
had been implemented in maple, and used a different
polynomial system than the one in this paper. More-
over, some factorization properties had been observed
without proof; this is settled below to yield an optimal
method for resultant computation. In [5], the authors
proposed a certified method for InCircle, relying on
a Newton-like numerical subdivision, which exploits
the geometry of the problem and exhibits quadratic
convergence for non-intersecting ellipses.

In this paper, we extend previous results that con-
sidered only non-intersecting ellipses. We study the
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1The Voronoi diagram cannot be represented “exactly”,
since it involves algebraic numbers. On the other hand, the
dual Delaunay graph is represented exactly.
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case of smooth convex, possibly intersecting, pseudo-
circles. In this case, the bisector of two sites is a
single curve homeomorphic to the open interval (0,1)
[8, Thm.1]. We first model the definition of conflict
from [8] as a circle inclusion test. Then, we examine
the algebraic operations required for an efficient ex-
act implementation of InCircle which shows high al-
gebraic complexity dominating the overall algorithm.
Proofs are omitted for lack of space, but can be found
in [3].

Notation and preliminaries. Our input is
smooth convex closed curves given in parametric
form. An example of such a curve, the famous bean

curve is in Fig 1.1. Smoothness allows the tangent
(and normal) line at any point of the curve to be
well-defined. We denote by Ct a smooth closed con-
vex curve parametrized by t. We refer to a point
p on Ct with parameter value t̂ by pt̂, or simply by
t̂ when it is clear from context. By Ct

◦ we denote
the interior of curve Ct. Ct is a smooth convex ob-
ject (site), so that if p denotes a point in the plane,
p ∈ Ct ⇐⇒ p ∈ Ct ∪ Ct

◦. When we say that
two sites intersect, we assume that their boundaries
have at most two intersections, i.e. they form pseudo-

circles. A curve Ct is given by the map

Ct : [a, b] ∋ t 7→ (Xt(t), Yt(t)) =

„

Ft(t)

Ht(t)
,
Gt(t)

Ht(t)

«

, (1)

where Ft, Gt and Ht are polynomials in Z[t], with
degrees bounded by d, and a, b ∈ Q ∪ {±∞}. All
algorithms, predicates and the corresponding anal-
ysis are valid for any parametric curve, even when
the polynomials have different degrees, including the
case of different denominators. We assume equa-
tions (1) for simplicity. Moreover, we assume that
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Ht(t) 6= 0, t ∈ [a, b]. For simplicity we write Ft in-
stead of Ft(t) and denote its derivative with respect
to t as F ′

t . When d = 2 the curves defined are conics:
ellipses and circles are the only closed convex curves
represented.

Basic predicates. The insertion of a new site in
the current Voronoi diagram consists of the following:
(i) Find a conflict between an edge of the current di-
agram and the new site, or detect that the latter is
internal (hidden) in another site, in which case it does
not affect the diagram. (ii) Find the entire conflict re-

gion (the part of the Voronoi diagram that changes
due to the insertion of the new site) and update the
dual Delaunay graph. It should be noted here that
our main task is to compute an exact Delaunay graph
of the input sites (which maintains exact topology
information). Having computed an exact Delaunay
graph, allows us to approximate the edges (bisectors)
and vertices of the Voronoi diagram (the coordinates
of which are algebraic numbers) within an arbitrary
precision in order to be drawn on the screen. The ex-
act graph allows us to mark correctly the degenerate
cases, i.e., Voronoi vertices of degree > 3.

The above steps require the following predicates.
(a) SideOfBisector: given two sites Ct and Cr

and point q, determine the site closest to the point,
under the Euclidean metric, (b) DistanceFromBi-

tangent: given two sites, Ct and Cr, decide the po-
sition of a third site, Cs, with respect to the external
bitangent line of the first two, that leaves both sites on
the right, as we move from the tangency point of Ct to
the tangency point of Cr. The result of Distance-

FromBitangent is either 1 if Cs lies on the same
hyperplane as the sites Cr,Cr w.r.t. their external bi-
tangent, 0 if it is tangent to that line, but on the same
hyperplane, and -1 otherwise (cf. fig. 1.2), (c) InCir-

cle, and (d) EdgeConflictType. Some operations
require two additional primitives: (i) computing a ra-
tional point inside the convex site and (ii) determin-
ing the position between two sites, i.e., whether they
are separated. A detailed presentation of SideOf-

Bisector, DistanceFromBitangent, EdgeCon-

flictType and the primitives can be found in [3].
Predicate InCircle is presented in the next section.

Normal line. A point on the curve is denoted by
pt = (Xt, Yt). The equation of the line that supports
the normal at pt is (Nt) : (x−Xt)X

′
t +(y−Yt)Y

′
t = 0.

After substitutions and elimination of the denomina-
tors, we derive a polynomial Nt(x, y, t) ∈ Z[x, y, t];
which is linear in x and y, of degree ≤ 3d − 2 in t.

2 InCircle

We first formalize the notion of conflict, caused by the
addition of a new site [8], (see also fig. 2.1 and 2.2):

Definition 1 Given sites Ct, Cr, Cs, let Vtrs be

Ct
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t̂

r̂

ŝ

ĥ

Fig. 2.1: Lem. 2: conflict of query site Ch with ex-
ternal Voronoi disk.
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ĥ

Fig. 2.2: Lem. 3: conflict of Ch with internal Voronoi
disk; the Voronoi edges are solid, the conflict region
(edge) is dotted.

their Voronoi disk and Ch be a query site. If Vtrs is
an external Voronoi disk, then Ch is in conflict with
Vtrs, iff Vtrs is intersecting Ch

◦. If Vtrs is an internal
Voronoi disk, then Ch is in conflict with Vtrs, iff Vtrs

is included Ch
◦.

Since the Voronoi circle in expressed algebraically,
we cannot easily decide its relative position w.r.t. the
query site i.e., by counting bitangent lines. Therefore,
we model the above disk-site inclusion test as a circle-
circle inclusion test.

Lemma 2 Given convex sites Ct, Cr, Cs, let Vtrs be
an external Voronoi disk of theirs and t̂ its tangency
point on Ct. Let Ch be a query site and Bth an
external bitangent disk of Ct and Ch, tangent at t̂

(and ĥ resp.). Then Ch is in conflict with Vtrs if and
only if Bth is strictly contained in Vtrs.

Now it remains to compute the external bitangent
circle Bth. There may exist up to 6 bitangent circles,
tangent at a given t̂, for the case of ellipses [4], and
up to a constant number for arbitrary convex sites.
In [4], simple geometric tests are provided to isolate
the external bitangent circle among all bitangent cir-
cles to non-intersecting ellipses. Now, consider two
intersecting sites Ct and Cr and an external bitan-
gent circle tangent at point t̂ of Ct, then we have: (i)
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t̂ 6∈ Ct ∩Cr since it is the tangency point of an exter-
nally tangent circle, (ii) t̂ lies on the arc of Ct bounded
by the convex hull of Ct and Cr (iii) the tangent line
of Ct at t̂ intersects Cr.

The above conditions have been used to com-
pute an external bitangent circle in the case of non-
intersecting ellipses [4] when the tangent line at
the given tangency point intersects the other ellipse,
which is always the case when the two sites intersect.
Therefore the geometric tests of [4] can be also ap-
plied to pseudo-circles. These tests yield an arc on
the second site Cr that contains the tangency point
of the externally tangent circle.

Intersecting sites may also admit an internally tri-
tangent Voronoi circle. In this case InCircle can be
answered by the following lemma:

Lemma 3 Given sites Ct, Cr, Cs, let Vtrs be their
internal Voronoi disk, and t̂ its tangency point on Ct.
Let Ch be a query site and Bth an internal bitangent
disk of Ct and Ch, tangent at t̂ (and ĥ resp.). Then
Ch is in conflict with Vtrs if and only if Vtrs is strictly
contained in Bth.

Note that if t̂ 6∈ Ch, then Ch is not in conflict with
Vtrs which can be used as an additional test in the
implementation to quickly answer some cases.

Let us now identify an internal bitangent circle
(among all bitangent circles). First, we observe that
if an internal bitangent circle at point t̂ of Ct exists,
then t̂ ∈ Ct ∩Cr and r̂ ∈ Ct ∩Cr (the converse may
not necessarily be true).

Lemma 4 Given intersecting sites Ct and Cr, con-
sider their bitangent circle Btr at points t̂ and r̂ re-
spectively with t̂, r̂ ∈ Ct ∩ Cr. Then Btr is an inter-
nal bitangent circle if and only if Btr has the smallest
radius among all bitangent circles of Ct and Cr tan-
gent at t̂, and the radius of Btr is bounded by the
radius of curvature of Ct at t̂ and the radius of the
self-bitangent circle of Ct at t̂.

In an implementation, the curvature constraint can
be forced by comparing with the evolute point [6].

Expressing the Voronoi circle. First, we con-
sider the question of choosing, among all solutions of
the polynomial system, the one corresponding to the
Voronoi circle. The polynomial system expressing all
circles tangent to Ct, Cr, Cs is:

Nt(x, y, t) = Nr(x, y, r) = Ns(x, y, s) = 0

Mtr(x, y, t, r) = Mts(x, y, t, s) = 0. (2)

The first 3 equations correspond to normals at points
t, r, s on the 3 given sites. All normals go through the
Voronoi vertex (x, y). The last two equations force
(x, y) to be equidistant from the sites: each corre-
sponds to the bisector of the segment between two

footpoints. This system was also used in [9]. Notice
that elimination of x, y from Mtr, Nt, Nr yields the
bisector of two sites with respect to t, r.

A Voronoi circle is either externally or internally
tritangent and its tangency points on Ct, Cr, Cs re-
spectively have a CW or CCW orientation. Given a
CCW orientation of the sites, either (t, r, s) or (t, s, r),
we wish to identify the solution of the system that
corresponds to that circle. First, we check if such a
Voronoi circle exists. This is a generalization of the
Existence sub-predicate of [2] to pseudo-circles. It
can be performed for an external Voronoi circle with-
out solving system (2) as follows: Sites Ct, Cr, Cs ad-
mit an external CCW Voronoi circle, iff there are at
least two negative results of DistanceFromBitan-

gent evaluated at triplets (Ct, Cr, Cs), (Cr, Cs, Ct)
and (Cs, Ct, Cr) in this cyclic order (proof by enu-
meration). Checking that Ct, Cr, Cs admit an inter-
nal CCW Voronoi circle is more complex: First, we
compute their intersection, which must be nonempty.
Then, their intersection must have a CCW sequence
of arcs on its boundary. Finally, we have to verify
that system (2) has a solution corresponding to the
Voronoi circle.

Solving system (2) over the reals, yields a set of
solution vectors in R5. Only one solution vector con-
tains the Voronoi vertex and the corresponding tan-
gency points. There exist solution vectors with CW
orientation, but also with CCW orientation which do
not correspond to the Voronoi circle we are looking
for, but to some other tritangent circle. At this point,
we already know that an external Voronoi circle (with
CCW orientation) exists, or that an internal Voronoi
circle might exist. To eliminate irrelevant solutions,
consider the tangency points pt̂, pr̂, pŝ for a solution
triplet t̂, r̂, ŝ. The tangency points corresponding to
the Voronoi circle satisfy CCW(pt̂, pr̂, pŝ).

Now we distinguish an external and an internal tri-
tangent circle from the rest of the tritangent circles.
The tangency points define the former iff the tangent
line of the Voronoi circle at each tangency point sep-
arates its adjacent site from the other two tangency
points. Even if the tangent line intersects the other
sites, the tangency points are still separated. Check-
ing that the tangency points correspond to an internal
circle can be performed by applying lemma 4. Finally,
before proceeding with algebraic analysis, it has to be
noted that in an implementation, the certified algo-
rithm of [5] can be adapted in order to speed up the
operations.

We examine system (2) targeting an efficient algo-
rithm for its solution. In general, the resultant of n+1
polynomials in n variables is an irreducible2 polyno-
mial in the coefficients of the polynomials which van-

2Irreducibility occurs for generic coefficients. Below, certain
resultants are factorized, because the given polynomials do not
have generic coefficients.
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ishes precisely when the system has a complex solu-
tion. Since it is impossible to compute the resultant
of 5 general polynomials as a determinant, we com-
pute it by successive Sylvester determinants, which
are optimal formulae for the resultant when n = 1.
This method typically produces extraneous factors
but, by exploiting the fact that some of the polyno-
mials are linear, and that none contains all variables,
we shall be able to predict all such factors. The fol-
lowing theorem, whose proof is in [3], provides the
factorization of the resultant, in the case of conics.

Theorem 5 We assume the resultant of
(2) is nonzero and denote it by Π. Then,
Resxy(R1, R2, Nt) = Π(t)H40

t (GtH
′
t − G′

tHt)
36,

where, R1 = Resr(Mtr, Nr), R2 = Ress(Mts, Ns), and
Π is of degree 184.

Corollary 6 We are given R0, R1, R2 ∈ K[x, y],
where the total degree of R1 and R2 is n in x, in y,
and in x and y together, and R0 = Dy+Ax+C, where
AD 6= 0, then Resx(Resy(R0, R1),Resy(R0, R2)) =

Dn2

Resxy(R0, R1, R2).

It follows that the degree of the resultant of (2) for
general parametric curves, as in (1), is bounded by
(3d− 2)(5d− 2)(9d− 2), after dividing out the factor

of (Ht(GtH
′
t−G′

tHt))
(5d−2)2 . A more careful analysis

may exploit cancellations to yield a tighter bound.

3 Conclusion

We conclude this paper by applying the proposed al-
gorithms for the resultant on various types of curves.
Results are summarized in table 1. The first column
shows the type of curve, the second its degree, the
third the time in sec, the fourth the degree of the
resultant and the last column shows the (non-tight)
bound of our general formula. All experiments were
run on a P4 2.4GHz.

First, we took the bean curve of fig. 1.1 and applied
simple affine transformations yielding very small (5-
bit) coefficients. Then, we computed the resultant of
such triplets. The long runtimes indicate that work-
ing with high-degree curves might be non-practical.
We additionally considered the case of three random
conics with small (10-bit) coefficients. Note that in
this case (d = 2) we have a tight bound of 184, while
the general formula yields 512.

As a future work we may extend this approach
to working with piecewise smooth polynomial curves.
The critical part is to determine the “piece” of the
function where one applies the algebraic predicate.
This may be achieved by a numeric technique, as the
one in [5], which determines the involved pieces in
the case of InCircle. We need similar methods for
the other predicates too. The tangency points of the
Voronoi circle lie on such polynomial pieces and the

Curves d time resultant d bound

Beans 4 570.0 2632 6120
Conics 2 8.5 184 512
B-splines 3 9.9 404 2275
B-splines 2 0.7 93 512

Table 1: Examples with various curves

resultant formulation is simpler because there are no
denominators. We have applied the resultant com-
putation on polynomial branches of degree two and
three (B-splines), with small 5-bit coefficients. The
runtime is less than 1 sec for d = 2 and less than 10
sec when d = 3. Therefore, an efficient exact imple-
mentation is still possible and we can benefit from the
increased flexibility that piecewise functions offer.
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