
On the asymptotic and practical complexity of

solving bivariate systems over the reals

Dimitrios I. Diochnos

University of Illinois at Chicago, USA

Ioannis Z. Emiris

National Kapodistrian University of Athens, HELLAS

Elias P. Tsigaridas

INRIA Sophia-Antipolis, FRANCE

Abstract

This paper is concerned with exact real solving of well-constrained, bivariate polynomial sys-
tems. The main problem is to isolate all common real roots in rational rectangles, and to deter-
mine their intersection multiplicities. We present three algorithms and analyze their asymptotic
bit complexity, obtaining a bound of eOB(N14) for the purely projection-based method, and
eOB(N12) for two subresultant-based methods: this notation ignores polylogarithmic factors,
where N bounds the degree, and the bitsize of the polynomials. The previous record bound was
eOB(N14).

Our main tool is signed subresultant sequences. We exploit recent advances on the complexity
of univariate root isolation, and extend them to sign evaluation of bivariate polynomials over
algebraic numbers, and real root counting for polynomials over an extension field. Our algorithms
apply to the problem of simultaneous inequalities; they also compute the topology of real plane
algebraic curves in eOB(N12), whereas the previous bound was eOB(N14).

All algorithms have been implemented in maple, in conjunction with numeric filtering. We
compare them against fgb/rs, system solvers from synaps, and maple libraries insulate and
top, which compute curve topology. Our software is among the most robust, and its runtimes
are comparable, or within a small constant factor, with respect to the C/C++ libraries.

Key words: real solving, polynomial system, complexity, maple software

Email addresses: diochnos (AT) math.uic.edu (Dimitrios I. Diochnos), emiris (AT) di.uoa.gr

(Ioannis Z. Emiris), elias.tsigaridas (AT) sophia.inria.fr (Elias P. Tsigaridas).

Preprint submitted to JSC 5 April 2010

1. Introduction

The problem of well-constrained polynomial system solving is fundamental. However,
most of the algorithms treat the general case or consider solutions over an algebraically
closed field. We focus on real solving of bivariate polynomials in order to provide precise
complexity bounds and study different algorithms in practice. We expect to obtain faster
algorithms than in the general case. This is important in several applications ranging from
nonlinear computational geometry to real quantifier elimination. We suppose relatively
prime polynomials for simplicity, but this hypothesis is not restrictive. A question of
independent interest, which we tackle, is to compute the topology of a real plane algebraic
curve.

Our algorithms isolate all common real roots inside non-overlapping rational rectan-
gles, output them as pairs of algebraic numbers, and determine the intersection multiplic-
ity per root. Algebraic numbers are represented by an isolating interval and a square-free
polynomial.

In this paper, OB means bit complexity and ÕB means that we are ignoring poly-
logarithmic factors. We derive a bound of ÕB(N12), whereas the previous record bound

was ÕB(N14) [16], see also [3], derived from the closely related problem of computing
the topology of algebraic curves, where N bounds the degree and the bitsize of the in-
put polynomials. This approach depends on Thom’s encoding. We choose the isolating
interval representation, since it is more intuitive, and is used in applications. In [16],
it is stated that “isolating intervals provide worst [sic] bounds”. It is widely believed
that isolating intervals do not produce good theoretical results. Our work suggests that
isolating intervals should be re-evaluated.

Our main tool is signed subresultant sequences (closely related to Sturm-Habicht se-
quences), extended to several variables by binary segmentation. We exploit the recent
advances on univariate root isolation, which reduced complexity by one to three orders
of magnitude, to ÕB(N6) [11, 12, 15]. This brought complexity closer to ÕB(N4), which
is achieved by numerical methods [26].

In [19], 2×2 systems are solved and the multiplicities computed under the assumption
that a generic shear has been obtained, based on [32]. In [36], 2× 2 systems of bounded
degree were studied, obtained as projections of the arrangement of 3D quadrics. This
algorithm is a precursor of ours, see also [14], except that matching and multiplicity
computation was simpler. In [23], a subdivision algorithm is proposed, exploiting the
properties of the Bernstein basis, with unknown bit complexity, and arithmetic complex-
ity based on the characteristics of the graphs of the polynomials. For other approaches
based on multivariate Sturm sequences the reader may refer to, e.g., [22, 27].

For determining the topology of a real algebraic plane curve, the best bound is
ÕB(N14) [3, 16]. In [37] three projections are used; this is implemented in insulate,
with which we make several comparisons. Work in [13] offers an efficient implementation
of resultant-based methods, whereas Gröbner bases are employed in [7]. To the best of
our knowledge, the only result for topology determination using isolating intervals is [2],

where a ÕB(N30) bound is proved.

We establish a bound of ÕB(N12) using the isolating interval representation. It seems

that the complexity in [16] could be improved to ÕB(N10) using fast multiplication algo-
rithms, fast algorithms for computations of signed subresultant sequences, and improved
bounds for the bitsize of the integers appearing in computations. To put our bounds

2

into perspective, the input size is in OB(N3), and the total bitsize of all output isolation

points for univariate solving is in ÕB(N2), and this is tight. Notice that lower bounds in
real algebraic geometry refer almost exclusively to arithmetic complexity [5].

The main contributions of this paper are the following: Using the aggregate separa-
tion bound, we improve the complexity for computing the sign of a polynomial evaluated
over all real roots of another (lem. 7). We establish a complexity bound for bivariate
sign evaluation (th. 14), which helps us derive bounds for root counting in an extension
field (lem. 21) and for the problem of simultaneous inequalities (cor. 24). We study the
complexity of bivariate polynomial real solving, using three projection-based algorithms:
a straightforward grid method (th. 15), a specialized RUR (Rational Univariate Repre-
sentation) approach (th. 19), and an improvement of the latter using fast GCD (th. 20).

Our best bound is ÕB(N12); within this bound, we also compute the root multiplicities.

Computing the topology of a real plane algebraic curve is in ÕB(N12) (th. 25).
We implemented in maple a package for computations with real algebraic numbers

and for implementing our algorithms. It is easy to use and integrates seminumerical filter-
ing to speed up computation when the roots are well-separated. It guarantees exactness
and completeness of results; moreover, the runtimes are quite encouraging. We illustrate
it by experiments against well-established C/C++ libraries fgb/rs and synaps. We also
examine maple libraries insulate and top, which compute curve topology. Our soft-
ware is among the most robust; its runtime is within a small constant factor with respect
to the fastest C/C++ library.

The next section presents basic results concerning real solving and operations on uni-
variate polynomials. We extend the discussion to several variables, and focus on bivariate
polynomials. The algorithms for bivariate solving and their analyses appear in sec. 4, fol-
lowed by applications to real-root counting, simultaneous inequalities and the topology
of curves. Our implementation and experiments appear in sec. 6.

A preliminary version of our results appeared in [9].

2. Univariate polynomials

For f ∈ Z[y1, . . . , yk, x], dg(f) denotes its total degree, while dgx(f) denotes its degree
w.r.t. x. L (f) bounds the bitsize of the coefficients of f (including a bit for the sign).
We assume lg (dg(f)) = O(L (f)). For a ∈ Q, L (a) is the maximum bitsize of numerator
and denominator. Let M (τ) denote the bit complexity of multiplying two integers of size
τ , and M (d, τ) the complexity of multiplying two univariate polynomials of degrees ≤ d

and coefficient bitsize ≤ τ . Using FFT, M (τ) = ÕB(τ) and M (d, τ) = ÕB(dτ).
Let f, g ∈ Z[x], dg(f) = p ≥ q = dg(g) and L (f) ,L (g) ≤ τ . We use rem (f, g)

and quo (f, g) for the Euclidean remainder and quotient, respectively. The signed poly-
nomial remainder sequence of f, g is R0 = f , R1 = g, R2 = − rem (f, g), . . . , Rk =
− rem (Rk−2, Rk−1), where rem (Rk−1, Rk) = 0. The quotient sequence contains Qi =
quo (Ri, Ri+1), i = 0 . . . k − 1, and the quotient boot is (Q0, . . . , Qk−1, Rk).

We consider signed subresultant sequences [3], which contain polynomials similar to
the polynomials in the signed polynomial remainder sequence; see [35] for a unified
approach to subresultants. They achieve better bounds on the coefficient bitsize and
have good specialization properties. In our implementation we use Sturm-Habicht (or
Sylvester-Habicht) sequences, see e.g. [3, 18, 20]. By SR(f, g) we denote the signed sub-
resultant sequence, by sr(f, g) the sequence of the principal subresultant coefficients, by

3

SRQ(f, g) the corresponding quotient boot. By SRj(f, g), or simply SRj if the corre-
sponding polynomials can be easily deduced from the context, we denote an element of
the sequence; similarly for srj and SRQj . Finally, by SR(f, g; a) we denote the evalu-
ated sequence over a ∈ Q. If the polynomials are multivariate, then these sequences are
considered w.r.t. x, except if explicitly stated otherwise.

Proposition 1. [20, 28] Assuming p ≥ q, SR(f, g) is computed in ÕB(p2qτ) and
L (SRj(f, g)) = O(pτ). For any f, g, their quotient boot, any polynomial in SR(f, g),

their resultant, and their gcd are computed in ÕB(pqτ).

The following proposition is a slightly modified version of the one that appeared in
[20, 28].

Proposition 2. Let p ≥ q. We can compute SR(f, g; a), where a ∈ Q∪{±∞} and L (a) =

σ, in ÕB(pqτ + q2σ + p2σ). If f(a) is known, then the bound becomes ÕB(pqτ + q2σ).

Proof. Let SRq+1 = f and SRq = g. For the moment we forget SRq+1. We may assume
that SRq−1 is computed, since the cost of computing one element of SR(f, g) is the
same as that of computing SRQ(f, g) (Pr. 1) and we consider the cost of evaluating the
sequence SR(g,SRq−1) on a.

We follow Lickteig and Roy [20]. For two polynomials A,B of degree bounded byD and

bitsize bounded by L, we can compute SR(A,B; a), where L (a) ≤ L, in ÕB(M (D,L)).

In our case D = O(q) and L = O(pτ + qσ), thus the total cost is ÕB(pqτ + q2σ).
It remains to compute the evaluation SRq+1(a) = f(a). This can be done using

Horners’ scheme in ÕB(pmax{τ, pσ}). Thus, the whole procedure has complexity

ÕB(pqτ + q2σ + pmax{τ, pσ}),

where the term pτ is dominated by pqτ . 2

When q > p, SR(f, g) is f, g,−f,−(g mod (−f)) . . . , thus SR(f, g; a) starts with a
sign variation irrespective of sign(g(a)). If only the sign variations are needed, there is no

need to evaluate g, so prop. 2 yields ÕB(pqτ + p2σ). Let L denote a list of real numbers.
VAR(L) denotes the number of (possibly modified, see e.g. [3, 16, 18]) sign variations.

Corollary 3. For any f, g, VAR(SR(f, g; a)) is computed in ÕB(pqτ + min{p, q}2σ),
provided sign(f(a)) is known.

We choose to represent a real algebraic number α ∈ Ralg by the isolating interval
representation. It includes a square-free polynomial which vanishes on α and a (rational)
interval containing α and no other root. By fred we denote the square-free part of f .

Proposition 4. [11, 12, 15] Let f ∈ Z[x] have degree p and bitsize τf . We compute the

isolating interval representation of its real roots and their multiplicities in ÕB(p6 +p4τ2
f).

The endpoints of the isolating intervals have bitsize O(p2+p τf) and L (fred) = O(p+τf).

Notice that after real root isolation, the sign of the square-free part fred over the
interval’s endpoints, say [a, b] is known; moreover, fred(a)fred(b) < 0. The following
proposition takes advantage of this fact and is a refined version of similar proposition in
e.g. [3, 15].

4

Corollary 5. Given a real algebraic number α ∼= (f, [a, b]), where L (a) = L (b) =
O(pτf), and g ∈ Z[x], such that dg(g) = q and L (g) = τg, we can compute sign(g(α)) in

ÕB(pqmax{τf , τg}+ pmin{p, q}2τf).

Proof. Assume that α is not a common root of f and g in [a, b], then it is known that

sign(g(α)) = [VAR(SR(f, g; a))− VAR(SR(f, g; b))] sign(f ′(α)).

Actually the previous relation holds in a more general context, when f dominates g, see
[38] for details. Notice that sign(f ′(α)) = sign(f(b)) − sign(f(b)), which is known from
the real root isolation process.

The complexity of the operation is dominated by the computation of VAR(SR(f, g; a))
and VAR(SR(f, g; b)), i.e. we compute SRQ and evaluate it on a and b.

As explained above, there is no need to evaluate the polynomial of the largest degree,
i.e. the first (and the second if p < q) of SR(f, g) over a and b. The complexity is that of

cor. 3, i.e. ÕB(pqmax{τf , τg}+ min{p, q}2p τf). Thus the operation costs two times the
complexity of the evaluation of the sequence over the endpoints of the isolating interval.

If α is a common root of f and g, or if f and g are not relative prime, then their gcd,
which is the last non-zero polynomial in SR(f, g) is not a constant. Hence, we evaluate
SR on a and b, we check if the last polynomial is not a constant and if it changes sign
on a and b. If this is the case, then sign(g(α)) = 0. Otherwise we proceed as above. 2

Prop. 4 expresses the state-of-the-art in univariate root isolation. It relies on fast com-
putation of polynomial sequences and the Davenport-Mahler-Mignotte bound, see [8] for
the first version of this bound. The following lemma, a direct consequence of Davenport-
Mahler-Mignotte bound, is crucial.

Lemma 6 (Aggregate separation). Given f ∈ Z[x], the sum of the bitsize of all isolating
points of the real roots of f is O(p2 + p τf).

Proof. Let there be r ≤ p real roots. The isolating point, computed by a real root
isolation subdivision algorithm [11, 12, 15], between two consecutive real roots, say αj

and αj+1, is of magnitude at most 1
2 |αj−αj+1| :=

1
2∆j . Thus their product is 1

2r

∏r−1
j=1 ∆j .

Using the Davenport-Mahler-Mignotte bound, the product is bounded from below, that
is

∏
j ∆j ≥ 2−O(p2+pτf). Taking logarithms, we conclude the proof. 2

We present a new complexity bound on evaluating the sign of a polynomial g(x) over
a set of algebraic numbers, which have the same defining polynomial, namely over all
real roots of f(x). It suffices to evaluate SR(f, g) over all the isolating endpoints of f .
The obvious technique, e.g. [15], see also [3, 31], is to apply cor. 5 r times, where r is the
number of real roots of f . But we can do better by applying lem. 6:

Lemma 7. Let τ = max{p, τf , τg}. Assume that we have isolated the r real roots of f
and we know the signs of f over the isolating endpoints. Then, we can compute the sign
of g over all r roots of f in ÕB(p2qτ).

Proof. Let sj be the bitsize of the j-th endpoint, where 0 ≤ j ≤ r. The evaluation of

SR(f, g) over this endpoint, by cor. 3, costs ÕB(pqτ+min{p, q}2sj). To bound the overall

cost, we sum over all isolating points. The first summand is ÕB(p2qτ). By prop. 6, the

second summand becomes ÕB(min{p, q}2(p2 + pτf)) and is dominated. 2

5

3. Multivariate polynomials

In this section, we extend the results of the previous section to multivariate polyno-
mials, using binary segmentation [28]. Let f, g ∈ (Z[y1, . . . , yk])[x] with dgx(f) = p ≥

q = dgx(g), dgyi
(f) ≤ di and dgyi

(g) ≤ di. Let d =
∏k

i=1 di and L (f) ,L (g) ≤ τ . The
yi-degree of every polynomial in SR(f, g) is bounded by dgyi

(res(f, g)) ≤ (p + q)di.
Thus, the homomorphism ψ : Z[y1, . . . , yk]→ Z[y], where

y1 7→ y, y2 7→ y(p+q)d1 , . . . , yk 7→ y(p+q)k−1d1···dk−1 ,

allows us to decode res(ψ(f), ψ(g)) = ψ(res(f, g)) and obtain res(f, g). The same holds
for every polynomial in SR(f, g). Notice that ψ(f), ψ(g) ∈ (Z[y])[x] have y−degree less
or equal to (p+ q)k−1d since, in the worst case, f or g contains a monomial of the form
yd1

1 yd2

2 . . . ydk

k . Thus, dgy(res(ψ(f), ψ(g))) < (p+ q)kd.

Proposition 8. [28] We can compute SRQ(f, g), any polynomial in SR(f, g), and

res(f, g) w.r.t. x in ÕB(q(p+ q)k+1dτ).

Lemma 9. We can compute SR(f, g) in ÕB(q(p+ q)k+2dτ).

Proof. Every polynomial in SR(f, g) has coefficients of magnitude bounded 2c (p+q)τ ,
for a suitable constant c, assuming τ > lg(d). Consider the map χ : Z[y] 7→ Z, where
y 7→ 2⌈c (p+q)τ⌉, and let φ = ψ ◦ χ : Z[y1, y2 . . . , yk] → Z. Then L (φ(f)) ,L (φ(g)) ≤
c (p+ q)k d τ . Now apply prop. 1.

In order to complete the computation we should recover the result from the computed
sequence, that is to apply the inverse image of φ. The cost of this computation (almost
linear w.r.t. the output) is dominated; which is always the case. 2

Theorem 10. We can evaluate SR(f, g) at x = a where a ∈ Q∪ {∞} and L (a) = σ, in

ÕB(q(p+ q)k+1dmax{τ, σ}).

Proof. First we compute SRQ(f, g) in ÕB(q(p+q)k+1d τ) (prop. 8), and then we evaluate
the sequence over a, using binary segmentation. For the latter we need to bound the
bitsize of the resulting polynomials.

The polynomials in SR(f, g) have total degree in y1, . . . , yk bounded by (p+q)
∑k

i=1 di

and coefficient bitsize bounded by (p+q)τ . With respect to x, the polynomials in SR(f, g)

have degrees in O(p), so substitution x = a yields values of size Õ(pσ). After the evalua-
tion we obtain polynomials in Z[y1, . . . , yk] with bitsize bounded by max{(p+ q)τ, pσ} ≤
(p+ q)max{τ, σ}.

Consider the map χ : Z[y] → Z, where y 7→ 2⌈c (p+q) max{τ,σ}⌉, for a suitable constant
c. Apply the map φ = ψ ◦χ to f, g. Now, L (φ(f)) ,L (φ(g)) ≤ c d (p+ q)k max{τ, σ}. By

prop. 2, the evaluation costs ÕB(q(p+ q)k+1dmax{τ, σ}). 2

We obtain the following, for bivariate f, g ∈ (Z[y])[x], such that dgx(f) = p, dgx(g) =
q, dgy(f), dgy(g) ≤ d.

Corollary 11. We compute SR(f, g) in ÕB(pq(p+q)2dτ). For any polynomial SRj(f, g)
in SR(f, g), dgx(SRj(f, g)) = O(max{p, q}), dgy(SRj(f, g)) = O(max{p, q}d), and also
L (SRj(f, g)) = O(max{p, q}τ).

6

Algorithm 1: sign at(F, α, β)

Input: F ∈ Z[x, y], α ∼= (A, [a1, a2]), β ∼= (B, [b1, b2])
Output: sign(F (α, β))
compute SRQx(A,F)1

L1 ← SRx(A,F ; a1), V1 ← ∅2

foreach f ∈ L1 do V1 ← add(V1, sign at(f, β))3

L2 ← SRx(A,F ; a2), V2 ← ∅4

foreach f ∈ L2 do V2 ← add(V2, sign at(f, β))5

return (var(V1)− var(V2)) · sign(A′(α))6

Corollary 12. We compute SRQ(f, g), any polynomial in SR(f, g), and res(f, g) in

ÕB(pqmax{p, q}dτ).

Corollary 13. We can compute SR(f, g ; a), where a ∈ Q ∪ {∞} and L (a) = σ,

in ÕB(pqmax{p, q}dmax{τ, σ}). For the polynomials SRj(f, g ; a) ∈ Z[y], except for
f, g, it holds dgy(SRj(f, g ; a)) = O((p + q)d) and L (SRj(f, g ; a)) = O(max{p, q}τ +
min{p, q}σ).

We now reduce the computation of the sign of F ∈ Z[x, y] over (α, β) ∈ R2
alg to that

over several points in Q2. Let dgx(F) = dgy(F) = n1, L (F) = σ and α ∼= (A, [a1, a2]),
β ∼= (B, [b1, b2]), where A,B ∈ Z[X], dg(A) = dg(B) = n2, L (A) = L (B) = σ. We
assume n1 ≤ n2, which is relevant below. The algorithm is alg. 1, see [31], and generalizes
the univariate case, e.g. [15, 38]. For A, resp. B, we assume that we know their values on
a1, a2, resp. b1, b2.

Theorem 14. We compute the sign of polynomial F (x, y) over α, β in ÕB(n2
1 n

3
2 σ).

Proof. First, we compute SRQx(A,F), in ÕB(n2
1n

2
2σ) (cor. 12), so as to evaluate SR(A,F)

on the endpoints of α.
We compute SRx(A,F ; a1). The first polynomial in the sequence is A and notice that

we already know its value on a1. This computation costs ÕB(n2
1 n

3
2 σ) by cor. 13 with

q = n1, p = n2, d = n1, τ = σ, and σ = n2σ, where the latter corresponds to the
bitsize of the endpoints. After the evaluation we obtain a list L1, which contains O(n1)
polynomials, say f ∈ Z[y], such that dg(f) = O(n1n2). To bound the bitsize, notice that
the polynomials in SR(f, g) are of degrees O(n1) w.r.t. x and of bitsize O(n2σ). After
we evaluate on a1, L (f) = O(n1n2σ).

For each f ∈ L1 we compute its sign over β and count the sign variations. We could
apply directly cor. 5, but we can do better. If dg(f) ≥ n2 then SR(B, f) = (B, f,−B,

g = − prem (f,−B) , . . .). We start the evaluations at g: it is computed in ÕB(n2
1n

3
2σ)

(prop. 1), dg(g) = O(n2) and L (g) = O(n1n2σ). Thus, we evaluate SR(−B, g; a1) in

ÕB(n1n
3
2σ), by cor. 5, with p = q = n2, τf = σ, τ = n1n2σ. If dg(f) < n2 the complexity

is dominated. Since we perform O(n1) such evaluations, all of them cost ÕB(n2
1n

3
2σ).

We repeat for the other endpoint of α, subtract the sign variations, and multiply by
sign(A′(α)), which is known from the process that isolated α. If the last sign in the two
sequences is alternating, then sign(F (α, β)) = 0. 2

7

Algorithm 2: grid(F,G)

Input: F,G ∈ Z[x, y]
Output: The real solutions of F = G = 0

Rx ← resy(F,G)1

Lx,Mx ← solve(Rx)2

Ry ← resx(F,G)3

Ly,My ← solve(Ry)4

Q← ∅5

foreach α ∈ Lx do6

foreach β ∈ Ly do7

if sign at(F, α, β) = 0 ∧ sign at(G,α, β) = 0 then Q← add(Q, {α, β})8

return Q9

4. Bivariate real solving

Let F,G ∈ Z[x, y], dg(F) = dg(G) = n and L (F) = L (G) = σ. We assume relatively
prime polynomials for simplicity but this hypothesis is not restrictive because it can be
verified and, if it does not hold, it can be imposed within the same asymptotic complexity.
We study the problem of real solving the system F = G = 0. The main idea is to project
the roots on their x- and y-coordinates. The difference between the algorithms is the way
they match coordinates.

4.1. The grid algorithm

Algorithm grid, is straightforward, see also [14, 36]. The pseudo-code is in alg. 2. We
compute the x- and y-coordinates of the real solutions by solving resultants resx(F,G),
resy(F,G). We match them using the algorithm sign at (th. 14) by testing all rectangles
in this grid.

To the best of our knowledge, this is the first time that the algorithm’s complexity is
studied. Its simplicity makes it attractive; however, sign at (alg. 1) is very costly. The
algorithm requires no genericity assumption on the input; we study a generic shear that
brings the system to generic position in order to compute the multiplicities within the
same complexity bound. The algorithm allows the use of heuristics, such as bounding
the number of roots, e.g. Mixed Volume, or counting the roots with given abscissa by
lem. 21.

Theorem 15. Isolating all real roots of system F = G = 0 using grid has complexity
ÕB(n14 + n13σ), provided σ = O(n3); or in ÕB(N14), where N = max{n, σ}.

Proof. We compute resultant Rx of F,G w.r.t. y (line 1 in alg. 2). The complexity

is ÕB(n4σ), using cor. 12, with p = q = d = n and τ = σ. Notice that dg(Rx) =

O(n2), L (Rx) = O(nσ). We isolate its real roots in ÕB(n12 +n10σ2) (prop. 4) and store
them in Lx. This complexity shall be dominated. We do the same for the y-axis (lines 3
and 4 in alg. 2) and store the roots in Ly.

8

The representation of the algebraic numbers contains the square-free part of Rx or Ry,
which has the bitsize O(n2 +nσ) [3, 15]. The isolating intervals have endpoints of bitsize
O(n4 +n3 σ). Let rx, ry be the number of real roots of the corresponding resultant, both
in O(n2). For every pair of algebraic numbers from Lx and Ly, we test whether F,G

vanish using sign at (th. 14 and alg. 1). Each test costs ÕB(n10 +n9σ) and we perform
rx ry = O(n4) of them. 2

We now examine the multiplicity of a root (α, β) of the system. Refer to [4, sec.II.6]
for its definition as the exponent of factor (βx − αy) in the resultant of the (homoge-
nized) polynomials, under certain assumptions. Previous work includes [16, 32, 37]. Our
algorithm reduces to bivariate sign determination and does not require bivariate factor-
ization. The sum of multiplicities of all roots (α, βj) equals the multiplicity of x = α in
the respective resultant. We apply a shear transform so as to ensure that different roots
project to different points on the x-axis.

4.1.1. Deterministic shear
We determine an adequate (horizontal) shear such that

Rt(x) = resy (F (x+ ty, y), G(x+ ty, y)) , (1)

has simple roots corresponding to the projections of the common roots of the system
F (x, y) = G(x, y) = 0, when t 7→ t0 ∈ Z, and the degree of the polynomials remains the
same. Notice that this shear does not affect inherently multiple roots, which exist inde-
pendently of the reference frame. Rred ∈ (Z[t])[x] is the squarefree part of the resultant,
as an element of UFD (Z[t])[x], and its discriminant, with respect to x, is ∆ ∈ Z[t]. Then
t0 must be such that ∆(t0) 6= 0.

Lemma 16. Computing t0 ∈ Z, such that the corresponding shear is sufficiently generic,
has complexity ÕB(n10 + n9σ).

Proof. Suppose t0 is such that the degree does not change. It suffices to find, among n4

integer numbers, one that does not make ∆ vanish; note that all candidate values are of
bitsize O(log n).

We perform the substitution (x, y) 7→ (x+ty, y) to F and G and compute the resultant

w.r.t. y in ÕB(n5σ), which lies in Z[t, x], of degree O(n2) and bitsize Õ(dσ) (prop. 8).
We consider this polynomial as univariate in x and compute its square-free part, and
then the discriminant of its square-free part. Both operations cost ÕB(n10 + n9σ) and

the discriminant is a polynomial in Z[t] of degree O(n4) and bitsize Õ(d4 +d3σ) (cor. 12).

We can evaluate the discriminant over all the first n4 positive integers, in ÕB(n8+n3σ),
using the multipoint evaluation algorithm, see, e.g., [34], Among these integers, there is
at least one that is not a root of the discriminant. 2

The idea here is to use explicit candidate values of t0 right from the start. In prac-
tice, the above complexity becomes ÕB(n5σ), because a constant number of tries or a
random value will typically suffice. For an alternative approach, see [17], and [3]. It is
straightforward to compute the multiplicities of the sheared system. Then, we need to
match the latter with the roots of the original system, which is nontrivial in practice.

Theorem 17. Consider the setting of th. 15. Having isolated all real roots of F = G = 0,
it is possible to determine their multiplicities in ÕB(n12 + n11σ + n10σ2).

9

Algorithm 3: m rur (F,G)

Input: F,G ∈ Z[X,Y] in generic position
Output: The real solutions of the system F = G = 0
SR← SRy(F,G)1

/* Projections and real solving with multiplicities */

Rx ← resy(F,G)2

Px,Mx ← solve(Rx)3

Ry ← resx(F,G)4

Py,My ← solve(Ry)5

I ← intermediate points(Py)6

/* Factorization of Rx according to sr */

K ← compute k(SR, Px)7

Q← ∅8

/* Matching the solutions */

foreach α ∈ Px do9

β ← find(α,K, Py , I)10

Q← add(Q, {α, β})11

return Q12

Proof. By the previous lemma, t ∈ Z is determined, with L (t) = O(log n), in ÕB(n10 +

n9σ). Using this value, we isolate all the real roots of Rt(x), defined in (1), and determine

their multiplicities in ÕB(n12 + n10σ2) (prop. 4). Let ρj ≃ (Rt(x), [rj , r
′
j]) be the real

roots, for j = 0, . . . , r − 1.

By assumption, we have already isolated the roots of the system, denoted by (αi, βi) ∈
[ai, a

′
i]× [bi, b

′
i], where ai, a

′
i, bi, b

′
i ∈ Q for i = 0, . . . , r− 1. It remains to match each pair

(αi, βi) to a unique ρj by determining function φ : {0, . . . , r − 1} → {0, . . . , r − 1}, such

that φ(i) = j iff (ρj , βi) ∈ R2
alg is a root of the sheared system and αi = ρj + tβi.

Let [ci, c
′
i] = [ai, a

′
i] − t[bi, b

′
i] ∈ Q2. These intervals may be overlapping. Since the

endpoints have bitsize O(n4 + n3σ), the intervals [ci, c
′
i] are sorted in ÕB(n6 + n5σ).

The same complexity bounds the operation of merging this interval list with the list

of intervals [rj , r
′
j]. If there exist more than one [ci, c

′
i] overlapping with some [rj , r

′
j],

some subdivision steps are required so that the intervals reach the bitsize of sj, where

2sj bounds the separation distance associated to the j-th root. By prop. 6,
∑

i si =

O(n4 + n3σ).

Our analysis resembles that of [15] for proving prop. 4. The total number of steps is

O(
∑

i si) = O(n4 + n3σ), each requiring an evaluation of R(x) over an endpoint of size

≤ si. This evaluation costs ÕB(n4si), leading to an overall cost of ÕB(n8 + n7σ) per

level of the tree of subdivisions. Hence, the overall complexity is bounded by ÕB(n12 +

n11σ + n10σ2). 2

4.2. The m rur algorithm

m rur assumes that the polynomials are in Generic Position: different roots project

to different x-coordinates and leading coefficients w.r.t. y have no common real roots.

10

Proposition 18. [3, 16] Let F,G be co-prime polynomials, in generic position. If SRj(x, y) =
srj(x)y

j + srj,j−1(x)y
j−1 + · · · + srj,0(x), and (α, β) is a real solution of the system

F = G = 0, then there exists k, such that sr0(α) = · · · = srk−1(α) = 0, srk(α) 6= 0 and

β = − 1
k

srk,k−1(α)
srk(α) .

This expresses the ordinate of a solution in a Rational Univariate Representation
(RUR) of the abscissa. The RUR applies to multivariate algebraic systems [3, 6, 29, 30]
by generalizing the primitive-element method by Kronecker. Here we adapt it to small-
dimensional systems.

Our algorithm is similar to [16, 17]. However, their algorithm computes only a RUR
using prop. 18, so the representation of the ordinates remains implicit. Often, this repre-
sentation is not sufficient (we can always compute the minimal polynomial of the roots,
but this is highly inefficient). We modified the algorithm [14], so that the output includes
isolating rectangles, hence the name modified-RUR (m rur). The most important dif-
ference with [16] is that they represent algebraic numbers by Thom’s encoding while we
use isolating intervals, which were thought of having high theoretical complexity.

The pseudo-code of m rur is in alg. 3. We project on the x and the y-axis; for each
real solution on the x-axis we compute its ordinate using prop. 18. First we compute the
sequence SR(F,G) w.r.t. y in ÕB(n5 σ) (cor. 11).

Projection. This is similar to grid. The complexity is dominated by real solving the
resultants, i.e. ÕB(n12 + n10 σ2). Let αi, resp. βj , be the real root coordinates. We

compute rationals qj between the βj ’s in ÕB(n5σ), viz. intermediate points(Py); the
qj have aggregate bitsize O(n3 σ) (lem. 6):

q0 < β1 < q1 < β2 < · · · < βℓ−1 < qℓ−1 < βℓ < qℓ, (2)

where ℓ ≤ 2n2. Every βj corresponds to a unique αi. The multiplicity of αi as a root of
Rx is the multiplicity of a real solution of the system, that has it as abscissa.

Sub-algorithm compute k. In order to apply prop. 18, for every αi we must compute
k ∈ N∗ such that the assumptions of the theorem are fulfilled; this is possible by genericity.

We follow [16, 25] and define recursively polynomials Γj(x): Let Φ0(x) = sr0(x)
gcd(sr0(x),sr′

0
(x)) ,

Φj(x) = gcd(Φj−1(x), srj(x)), and Γj =
Φj−1(x)
Φj(x) , for j > 0. Now sri(x) ∈ Z[x] is the

principal subresultant coefficient of SRi ∈ (Z[x])[y], and Φ0(x) is the square-free part of
Rx = sr0(x). By construction, Φ0(x) =

∏
j Γj(x) and gcd(Γj ,Γi) = 1, if j 6= i. Hence

every αi is a root of a unique Γj and the latter switches sign at the interval’s endpoints.
Then, sr0(α) = sr1(α) = 0, . . . , srj(α) = 0, srj+1(α) 6= 0; thus k = j + 1.

It holds that dg(Φ0) = O(n2) and L (Φ0) = O(n2 + nσ). Moreover,
∑

j dg(Γj) =∑
j δj = O(n2) and, by Mignotte’s bound [21], L (Γj) = O(n2 + nσ). To compute the

factorization Φ0(x) =
∏

j Γj(x) as a product of the srj(x), we perform O(n) gcd compu-

tations of polynomials of degree O(n2) and bitsize Õ(n2 + nσ). Each gcd computation

costs ÕB(n6 + n5 σ) (prop. 1) and thus the overall cost is ÕB(n7 + n6 σ).
We compute the sign of the Γj over all the O(n2) isolating endpoints of the αi, which

have aggregate bitsize O(n4 + n3 σ) (lem. 6) in ÕB(δjn
4 + δjn

3σ + δ2j (n4 + n3σ)), using

Horner’s rule. Summing over all δj , the complexity is ÕB(n8 + n7σ). Thus the overall

complexity is ÕB(n9 + n8 σ).

11

Matching and algorithm find. The process takes a real root of Rx and computes the
ordinate β of the corresponding root of the system. For some real root α of Rx we

represent the ordinate A(α) = − 1
k

srk,k−1(α)
srk(α) = A1(α)

A2(α) . The generic position assumption

guarantees that there is a unique βj , in Py, such that βj = A(α), where 1 ≤ j ≤ ℓ. In

order to compute j we use (2): qj < A(α) = A1(α)
A2(α) = βj < qj+1. Thus j can be computed

by binary search in O(lg ℓ) = O(lg n) comparisons of A(α) with the qj . This is equivalent
to computing the sign of Bj(X) = A1(X)− qj A2(X) over α by executing O(lg n) times,
sign at(Bj , α).

Now, L (qj) = O(n4 + n3σ) and dg(A1) = dg(srk,k−1) = O(n2), dg(A2) = dg(srk) =
O(n2), L (A1) = O(nσ), L (A2) = O(nσ). Thus dg(Bj) = O(n2) and L (Bj) = O(n4 +

n3 σ). We conclude that sign at(Bj , α) and find have complexity ÕB(n8+n7σ) (cor. 5).

As for the overall complexity of the loop (Lines 9-11) the complexity is ÕB(n10 + n9σ),
since it is executed O(n2) times.

Theorem 19. We isolate all real roots of F = G = 0, if F , G are in generic position, by
m rur in ÕB(n12 + n10σ2); or in ÕB(N12), where N = max{n, σ}.

The generic position assumption is without loss of generality since we can always put
the system in such position by applying a shear transform; see sec. 4.1.1 and also [3, 16].

The bitsize of polynomials of the (sheared) system becomes Õ(n+ σ) [16] and does not
change the bound of th. 19. However, now is raised the problem of expressing the real
roots in the original coordinate system (see the proof of th. 17).

4.3. The g rur algorithm

In this section we present an algorithm that uses some ideas from m rur but also
relies on GCD computations of polynomials with coefficients in an extension field to
achieve efficiency (hence the name g rur). The pseudo-code of g rur is in alg. 4. For
GCD computations with polynomials with coefficients in an extension field we use the
algorithm, and the maple implementation, of van Hoeij and Monagan [33].

The first steps are similar to the previous algorithms: We project on the axes, we
perform real solving and compute the intermediate points on the y-axis. The complexity
is ÕB(n12 + n10σ2).

For each x-coordinate, say α, we compute the square-free part of F (α, y) and G(α, y),
say F̄ and Ḡ. The complexity is that of computing the gcd with the derivative. In [33] the

cost is ÕB(mMND+mN2D2 +m2kD), where M is the bitsize of the largest coefficient,
N is the degree of the largest polynomial, D is the degree of the extension, k is the
degree of the gcd, and m is the number of primes needed. This bound does not assume
fast multiplication algorithms, thus, under this assumption, it becomes ÕB(mMND +
mND +mkD).

In our case M = O(σ), N = O(n), D = O(n2), k = O(n), and m = O(nσ). The cost

is ÕB(n4σ2) and since we repeat it O(n2) times, the overall cost is ÕB(n6σ2). Notice the

bitsize of the result is ÕB(n+ σ) [3].
Now for each α, we compute H = gcd(F̄ , Ḡ). We have M = O(n+σ), N = O(n), D =

O(n2), k = O(n), and m = O(n2 + nσ), so the cost of each operation is ÕB(n6 + n4σ2)

and overall ÕB(n8 + n6σ2). The size of m comes from Mignotte’s bound [21]. H is a
square-free polynomial in (Z[α])[y], of degree O(n) and bitsize O(n2 + nσ), whose real

12

Algorithm 4: g rur (F,G)

Input: F,G ∈ Z[x, y]
Output: The real solutions of the system F = G = 0
/* Projections and real solving with multiplicities */

Rx ← resy(F,G)1

Px,Mx ← solve(Rx)2

Ry ← resx(F,G)3

Py,My ← solve(Ry)4

/* I contains the rationals q1 < q2 < · · · < q|I| */

I ← intermediate points(Py)5

Q←− ∅6

foreach α ∈ Px do7

F̄ ←− SquareFreePart(F (α, y))8

Ḡ←− SquareFreePart(G(α, y))9

H ←− gcd(F̄ , Ḡ) ∈ (Z[α])[y]10

for j ← 1 to |I| − 1 do11

if H(α, qj) ·H(α, qj+1) < 0 then12

/* Py[j] indicates the j−th element of Py */

Q← add(Q, {α, Py[j]})13

return Q14

roots correspond to the real solutions of the system with abscissa α. The crux of the
method is that H changes sign only over the intervals that contain its real roots. To check
these signs, it suffices to substitute y in H by the intermediate points, thus obtaining a
polynomial in Z[α], of degree O(n) and bitsize O(n2 + nσ+ nsj), where sj is the bitsize
of the j-th intermediate point.

Now, we consider this polynomial in Z[x] and evaluate it over α. Using cor. 5 with

p = n2, τf = n2 + nσ, q = n, and τg = n2 + nσ + nsj , this costs ÕB(n6 + n5σ + n4sj).

Summing over O(n2) points and using lem. 6, we obtain ÕB(n8 +n7σ). Thus, the overall

complexity is ÕB(n10 + n9σ).

Theorem 20. We can isolate the real roots of the system F = G = 0, using g rur in
ÕB(n12 + n10σ2); or ÕB(N12), where N = max{n, σ}.

5. Applications

5.1. Real root counting

Let F ∈ Z[x, y], such that dgx(F) = dgy(F) = n1 and L (F) = σ. Let α, β ∈ Ralg, such
that α ∼= (A, [a1, a2]) and β ∼= (B, [b1, b2]), where dg(A), dg(B) = n2,L (A) ,L (B) ≤ τ

and c ∈ Q, such that L (c) = λ. Moreover, assume that n2
1 = O(n2), as is the case in

applications. We want to count the number of real roots of F̄ = F (α, y) ∈ (Z(α))[y] in
(−∞,+∞), in (c,+∞) and in (β,+∞). We may assume that the leading coefficient of
F̄ is nonzero. This is w.l.o.g. since we can easily check it, and/or we can use the good
specialization properties of the subresultants [16, 18, 20].

13

Using Sturm’s theorem, e.g. [3, 38], the number of real roots of F̄ is VAR(SR(F̄ , F̄y;−∞))−
VAR(SR(F̄ , F̄y; +∞)). Hence, we have to compute the sequence SR(F̄ , F̄y) w.r.t. y, and
evaluate it on ±∞ or, equivalently, to compute the signs of the principal subresultant co-
efficients, which lie in Z(α). This procedure is equivalent, due to the good specialization
properties of subresultants [3, 18], to computing the principal subresultant coefficients of
SR(F, Fy), which are polynomials in Z[x], and to evaluate them over α. In other words,
the good specialization properties assure us that we can compute a nominal sequence by
considering the bivariate polynomials, and then perform the substitution x = α.

The sequence sr of the principal subresultant coefficients can be computed in ÕB(n4
1σ),

using cor. 12 with p = q = d = n1, and τ = σ. Now, sr contains O(n1) polynomials in
Z[x], each of degreeO(n2

1) and bitsize O(n1σ). We compute the sign of each one evaluated
over α in

ÕB(n2
1n2 max{τ, n1σ} + n2 min{n2

1, n2}
2τ)

using cor. 5 with p = n2, q = n2
1, τf = τ , and τg = n1σ. This proves the following:

Lemma 21. We count the number of real roots of F̄ = F (α, y) in ÕB(n4
1n2σ + n5

1n2τ).

In order to count the real roots of F̄ in (β,+∞), we use again Sturm’s theorem. The
complexity of the computation is dominated by the cost of computing VAR(SR(F̄ , F̄y;β)),
which is equivalent to computing SR(F, Fy) w.r.t. to y, which contains bivariate poly-
nomials, and to compute their signs over (α, β). The cost of computing SR(F, Fy) is

ÕB(n5
1σ) using cor. 11 with p = q = d = n1, and τ = σ. The sequence contains O(n1)

polynomials in Z[x, y] of degrees O(n1) and O(n2
1), w.r.t. x and y respectively, and bitsize

O(n1σ). We compute the sign of each over (α, β) in ÕB(n4
1n

3
2 max{n1σ, τ}) (th. 14). This

proves the following:

Lemma 22. We count the number of real roots of F̄ in (β,+∞) in ÕB(n5
1n

3
2 max{n1σ, τ}).

By a more involved analysis, taking into account the difference in the degrees of the
bivariate polynomials, we can gain a factor. We omit it for reasons of simplicity. Finally,
in order to count the real roots of F̄ in (c,+∞), it suffices to evaluate the sequence
SR(F, Fy) w.r.t. y on c, thus obtaining polynomials in Z[x], and compute their signs
over α.

The cost of the evaluation SR(F, Fy ; c) is ÕB(n4
1 max{σ, λ}), using cor. 13 with p =

q = d = n1, τ = σ and σ = λ. The evaluated sequence contains O(n1) polynomials in
Z[x], of degree O(n2

1) and bitsize O(n1 max{σ, λ}). The sign of each one evaluated over
α can be compute in

ÕB(n2
1n2 max{τ, n1σ, n1λ}+ n4

1n2τ),

using cor. 5 with p = n2, q = n2
1, τf = τ and τg = n1 max{σ, λ}. This leads to the

following:

Lemma 23. We count the number of real roots of F̄ in (c,+∞) in ÕB(n4
1n2 max{n1τ, σ, λ}).

5.2. Simultaneous inequalities in two variables

Let P,Q, A1, . . . , Aℓ1 , B1, . . . , Bℓ2 , C1, . . . , Cℓ3 ∈ Z[X,Y], such that their total degrees
are bounded by n and their bitsize by σ. We wish to compute (α, β) ∈ R2

alg such that
P (α, β) = Q(α, β) = 0 and also Ai(α, β) > 0, Bj(α, β) < 0 and Ck(α, β) = 0, where
1 ≤ i ≤ ℓ1, 1 ≤ j ≤ ℓ2, 1 ≤ k ≤ ℓ3. Let ℓ = ℓ1 + ℓ2 + ℓ3.

14

Corollary 24. There is an algorithm that solves the problem of ℓ simultaneous inequal-
ities of degree ≤ n and bitsize ≤ σ, in ÕB(ℓn12 + ℓn11σ + n10σ2).

Proof. Initially we compute the isolating interval representation of the real roots of P =
Q = 0 in ÕB(n12 +n10σ2), using grur solve. There are O(n2) real solutions, which are
represented in isolating interval representation, with polynomials of degrees O(n2) and
bitsize O(n2 + nσ).

For each real solution, say (α, β), for each polynomial Ai, Bj , Ck we compute the
signs of sign(Ai(α, β)), sign (Bi(α, β)) and sign (Ci(α, β)). Each sign evaluation costs

ÕB(n10 + n9σ), using th. 14 with n1 = n, n2 = n2 and σ = n2 + nσ. In the worst case

we need n2 of them, hence, the cost for all sign evaluations is ÕB(ℓn12 + ℓ n11 σ). 2

5.3. The complexity of topology

In this section we consider the problem of computing the topology of a real plane
algebraic curve, and improve upon its asymptotic complexity. The reader may refer to,
e.g., [3, 16, 25], for the details of the algorithm.

We consider the curve in generic position (sec. 4.1.1), defined by F ∈ Z[x, y], such
that dg(F) = n and L (F) = σ. We compute the critical points of the curve, i.e. solve

F = Fy = 0 in ÕB(n12 + n10σ2), where Fy is the derivative of F w.r.t y. Next, we

compute the intermediate points on the x axis, in ÕB(n4 + n3σ) (lem. 6). For each
intermediate point, say qj , we need to compute the number of branches of the curve
that cross the vertical line x = qj . This is equivalent to computing the number of real
solutions of the polynomial F (qj , y) ∈ Z[y], which has degree d and bitsize O(nL (qj)).

For this we use Sturm’s theorem and th. 2 and the cost is ÕB(n3L (qj)). For all qj ’s the

cost is ÕB(n7 + n6σ).
For each critical point, say (α, β) we need to compute the number of branches of

the curve that cross the vertical line x = α, and the number of them that are above
y = β. The first task corresponds to computing the number of real roots of F (α, y), by

application of lem. 21, in ÕB(n9 +n8σ), where n1 = n, n2 = n2, and τ = n2 + nσ. Since

there are O(n2) critical values, the overall cost of the step is ÕB(n11 + n10σ).
Finally, we compute the number of branches that cross the line x = α and are above

y = β in ÕB(n13+n12σ), by lem. 22. Since there are O(n2) critical points, the complexity

is ÕB(n15 +n14σ). It remains to connect the critical points according to the information
that we have for the branches. The complexity of this step is dominated. It now follows
that the complexity of the algorithm is ÕB(n15 + n14σ + n10σ2), or ÕB(N15), which is
worse by a factor than [3].

We improve the complexity of the last step since m rur computes the RUR represen-
tation of the ordinates. Thus, instead of performing bivariate sign evaluations in order to
compute the number of branches above y = β, we can substitute the RUR representation
of β and perform univariate sign evaluations. This corresponds to computing the sign of
O(n2) polynomials of degree O(n2) and bitsize O(n4 + n3σ), over all the α’s [16]. Using

lem. 7 for each polynomial the cost is ÕB(n10 + n9σ), and since there are ÕB(n2) of

them, the total cost is ÕB(n12 + n11σ).

Theorem 25. We compute the topology of a real plane algebraic curve, defined by a
polynomial of degree n and bitsize σ, in ÕB(n12 + n11σ + n10σ2), or ÕB(N12), where
N = max{n, σ}.

15

Thus the overall complexity of the algorithm improves the previously known bound
by a factor of N2. We assumed generic position, since we can apply a shear to achieve
this, see sec. 4.1.

6. Implementation and Experiments

This section describes our open source maple implementation 1 and illustrates its
capabilities through comparative experiments. Refer to [10] for its usage and further
details. Our design is object oriented and uses generic programming in view of transferring
the implementation to C++ in the future.

We provide algorithms for signed polynomial remainder sequences, real solving of
univariate polynomials using Sturm’s algorithm, computations with one and two real al-
gebraic numbers, such as sign evaluation and comparison and, of course, solving bivariate
systems.

6.1. Our solvers

The performance of all algorithms is averaged over 10 executions on a maple 9.5
console using a 2GHz AMD64@3K+ processor with 1GB RAM. The polynomial systems
tested are given in [10]: systems Ri,Mi, Di are from [14], the Ci are from [17], and Wi, i =
1, . . . , 4, follow from Cis after swapping x, y. The latter are of the form f = ∂f

∂y
= 0. For

gcd computations in a (single) extension field, the package of [33] is used. The optimal
algorithms for computing and evaluating polynomial remainder sequences have not yet
been implemented.

Our main results are reported in table 1. g rur is the solver of choice since it is faster
than grid and m rur in 17 out of the 18 instances. However, this may not hold when
the extension field is of high degree. g rur yields solutions in < 1 sec, apart from C5.
For total degree ≤ 8, g rur requires < 0.4 sec. On average, g rur is 7-11 times faster
than grid, and about 38 times faster than m rur. The inefficiency of m rur is due to
the fact that it solves sheared systems which are dense and of increased bitsize; it also
computes multiplicities. Finally, grid reaches a stack limit with the default maple stack
size (8, 192 KB) when solving C5. Even when we multiplied stack size by 10, grid did
not terminate within 20 min.

Whenever we refer to the speedup we imply the fraction of runtimes. g rur can be
up to 21.58 times faster than grid with an average speedup of around 7.27 among the
input systems (excluding C5). With respect to m rur, g rur can be up to 275.74 times
faster, with an average speedup of 38.01.

Filtering has been used. For this, two instances of isolating intervals are stored; one for
filtering, another for exact computation. Probably, the most significant filtering technique
is interval arithmetic. When computing the sign of a polynomial evaluated at a real
algebraic number, the first attempt is via interval arithmetic, applied along with [1].
When this fails, and one wants to compare algebraic numbers or perform univariate
sign at, then the gcd of two polynomials is computed.

Filtering helps most with m rur, especially when we compute multiplicities. With this
solver, one more filter is used: the intervals of candidate x-solutions are refined by [1] so

1 www.di.uoa.gr/~erga/soft/SLV index.html

16

phase of the interval
median mean

std

algorithm min max dev

g
r
id

projections 00.00 00.53 00.04 00.08 00.13

univ. solving 02.05 99.75 07.08 26.77 35.88

biv. solving 00.19 97.93 96.18 73.03 36.04

sorting 00.00 01.13 00.06 00.12 00.26

m
r
u
r

projection 00.00 00.75 00.06 00.14 00.23

univ. solving 00.18 91.37 15.55 17.47 20.79

StHa seq. 00.08 38.23 01.17 05.80 09.91

inter. points 00.00 03.23 00.09 00.32 00.75

filter x-cand 00.68 72.84 26.68 23.81 21.93

compute K 00.09 34.37 02.04 07.06 10.21

biv. solving 01.77 98.32 51.17 45.41 28.71

g
r
u
r

projections 00.02 03.89 00.23 00.48 00.88

univ. solving 07.99 99.37 39.83 41.68 25.52

inter. points 00.02 03.81 00.54 01.11 01.28

rational biv. 00.07 57.07 14.83 15.89 19.81

Ralgbiv. 00.00 91.72 65.30 40.53 36.89

sorting 00.00 01.50 00.22 00.32 00.43

(a) Statistics on slv’s sub-algorithms.

sys
deg Ralg Avg Time (msec)

f g sols grid m rur g rur

R1 3 4 2 6 9 6

R2 3 1 1 66 21 36

R3 3 1 1 1 2 1

M1 3 3 4 183 72 45

M2 4 2 3 4 5 4

M3 6 3 5 4, 871 782 393

M4 9 10 2 339 389 199

D1 4 5 1 6 12 6

D2 2 2 4 567 147 126

C1 7 6 6 1, 702 954 247

C2 4 3 6 400 234 99

C3 8 7 13 669 1, 815 152

C4 8 7 17 7, 492 80, 650 474

C5 16 15 17 > 20′ 60, 832 6, 367

W1 7 6 9 3, 406 2, 115 393

W2 4 3 5 1, 008 283 193

W3 8 7 13 1, 769 2, 333 230

W4 8 7 17 5, 783 77, 207 709

(b) Performance of our solvers when com-
puting multiplicities.

Fig. 1. Statistics

as to help the interval arithmetic filters inside find. If the above fails, we switch to exact
computation via Sturm sequences, using the initial endpoints since they have smaller
bitsize. In grid’s case, filtering provided an average speedup of 1.51, where C5 has been
excluded. With g rur, we have on average a speedup of 1.08. This is expected since
g rur relies heavily on gcd’s and factoring.

Fig. 1(a) shows the runtime breakdown corresponding to the various stages of each
algorithm: Projections shows the time for computing resultants, Univ.Solving for solv-
ing them, and Sorting for sorting solutions. In grid’s and m rur’s case, biv.solving
corresponds to matching. In g rur’s case, matching is divided between rational biv and
Ralg biv; the first refers to when at least one of the co-ordinates is rational. Inter.points
refers to computing intermediate points between resultant roots along the y-axis. StHa
seq refers to computing the StHa sequence. Filter x-cand shows the time for addi-
tional filtering. Compute K reflects the time for sub-algorithm compute-k. In a nutshell,
grid spends more than 73% of its time in matching. Recall that this percent includes
the application of filters and does not take into account C5. m rur spends 45-50% of its
time in matching and 24-27% in filtering. g rur spends 55-80% of its time in matching,
including gcd computations in an extension field.

In order to compute multiplicities, the initial systems were sheared whenever it was
necessary, based on the algorithm presented in sec. 4.1.1. Overall results are shown in

17

Fig. 1(b). grid’s high complexity starts to become apparent. Overall, g rur is fastest
and terminates within ≤ 1 sec. It can be up to 15.81 times faster than grid with an
average speedup of around 5.26. With respect to m rur, this time g rur can be up to
170.15 times faster, with an average speedup of around 18.77 among all input polynomial
systems. m rur can be up to 6.23 times faster than grid, yielding an average speedup
of 1.71. A detailed table in [10] gives us the runtime decomposition of each algorithm in
its major subroutines. Results are similar to sec. 6.1, except that g rur spends 68-80%
of its time in matching, including gcd’s. In absence of excessive factoring g rur spends
significantly more time in bivariate solving.

6.2. Other software

fgb/rs 2 [30] performs exact real solving using Gröbner bases and RUR, through
its maple interface; additional tuning might offer 20-30% efficiency increase. Three
synaps 3 solvers have been tested: sturm is a naive implementation of grid [14]; subdiv
implements [23], using the Bernstein basis and double arithmetic. It needs an initial box
and [−10, 10] × [−10, 10] was used. newmac [24] is a general purpose solver based on
eigenvectors using lapack, which computes all complex solutions.

maple implementations: insulate implements [37] for computing the topology of real
algebraic curves, and top implements [17]. Both packages were kindly provided by their
authors. We tried to modify the packages so as to stop as soon as they compute the real
solutions of the corresponding bivariate system. It was not easy to modify insulate and
top to deal with general systems, so they were not executed on the first data set. top
has a parameter that sets the initial precision (decimal digits). There is no easy way for
choosing a good value. Hence, recorded its performance on initial values of 60 and 500
digits.

Experiments are not considered as competition, but as a crucial step for improving
existing software. It is very difficult to compare different packages, since in most cases
they are made for different needs. In addition, accurate timing in maple is hard, since it
is a general purpose package and a lot of overhead is added to its function calls. Lastly,
the amount of experiments is not very large in order to draw safe conclusions.

Overall performance results are shown on table 1. In cases where the solvers failed to
find the correct number of real solutions we indicate so with *. Note that in newmac’s
column an additional step is required to distinguish the real solutions among the complex
ones. In the sequel we refer only to g rur, since it is our faster implementation.

g rur is faster than fgb/rs in 8 out of the 18 instances, including C5. The speedup
factor ranges from 0.2 to 22 with an average of 2.62.

As for the three solvers from synaps, g rur is faster than sturm in 6 out of the 18
instances, but it behaves worse usually in systems that are solved in < 100 msecs, because
sturm is implemented in C++. As the dimension of the polynomial systems increases,
g rur outperforms sturm and the latter’s lack of fast algorithms for computing resul-
tants becomes more evident. Overall, an average speedup of 2.2 is achieved. Compared
with subdiv, g rur is faster in half of the instances and similarly to the previous case
is slower on systems solved in < 400 msecs. On average, g rur achieves a speedup of
62.92 which is the result of the problematic behavior of subdiv in C1 and W1. If these

2 http://www-spaces.lip6.fr/index.html
3 http://www-sop.inria.fr/galaad/logiciels/synaps/

18

sy
st

e
m deg

s
o
lu

t
io

n
s Average Time (msecs)

BIVARIATE SOLVING TOPOLOGY

slv
fgb/rs

synaps
ins

top

f g grid m rur g rur sturm subdiv newmac 60 500

R1 3 4 2 5 9 5 26 2 2 5 − − −

R2 3 1 1 66 21 36 24 1 1 1 − − −

R3 3 1 1 1 2 1 22 1 2 1 − − −

M1 3 3 4 87 72 10 25 2 1 2 − − −

M2 4 2 3 4 5 4 24 1 289∗ 2 − − −

M3 6 3 5 803 782 110 30 230 5, 058∗ 7 − − −

M4 9 10 2 218 389 210 158 90 3∗ 447 − − −

D1 4 5 1 6 12 6 28 2 5 8 − − −

D2 2 2 4 667 147 128 26 21 1∗ 2 − − −

C1 7 6 6 1, 896 954 222 93 479 170, 265∗ 39 524 409 1, 367

C2 4 3 6 177 234 18 27 12 23∗ 4 28 36 115

C3 8 7 13 580 1, 815 75 54 23 214∗ 25 327 693 2, 829

C4 8 7 17 5, 903 80, 650 370 138 3, 495 217∗ 190∗ 1, 589 1, 624 6, 435

C5 16 15 17 > 20′ 60, 832 3, 877 4, 044 > 20′ 6, 345∗ 346∗ 179, 182 91, 993 180, 917

W1 7 6 9 2, 293 2, 115 247 92 954 55, 040∗ 39 517 419 1, 350

W2 4 3 5 367 283 114 29 20 224∗ 3 27 20 60

W3 8 7 13 518 2, 333 24 56 32 285∗ 25 309 525 1, 588

W4 8 7 17 5, 410 77, 207 280 148 4, 086 280∗ 207∗ 1, 579 1, 458 4, 830

Table 1. Performance of our solvers and other tested software.

systems are omitted, then the speedup is 8.93 on average. newmac is slower than g rur

in M4, D1 and W3 and comparable in R1 and R3. This time the average speedup of our

implementation is 0.53. There are cases where newmac may not compute some of the

real solutions.

Finally, concerning the other maple software, insulate is slower than g rur in all

systems but W2, thus our solver achieves an average speedup of 8.85. Compared to top

with 60, resp. 500, digits, g rur is faster in all systems but W2, yielding an average

speedup of 7.79, resp. 22.64. Moreover, as the dimension of the polynomial systems

increases, it becomes more efficient.

Acknowledgments. The authors thank the anonynous referees for their comments.

All authors acknowledge partial support by IST Programme of the EU as a Shared-

cost RTD (FET Open) Project under Contract No IST-006413-2 (ACS - Algorithms for

Complex Shapes). The third author is also partially supported by contract ANR-06-

BLAN-0074 ”Decotes”.

19

References

[1] J. Abbott. Quadratic interval refinement for real roots. In Proc. ACM
Int. Symp. on Symbolic & Algebraic Comput., 2006. (Poster presentation),
http://www.dima.unige.it/ ˜abbott/.

[2] D. Arnon and S. McCallum. A polynomial time algorithm for the topological type
of a real algebraic curve. J. Symbolic Computation, 5:213–236, 1988.

[3] S. Basu, R. Pollack, and M-F.Roy. Algorithms in Real Algebraic Geometry, volume 10
of Algorithms and Computation in Mathematics. Springer-Verlag, 2nd edition, 2006.

[4] E. Brieskorn and H. Knörrer. Plane Algebraic Curves. Birkhäuser, Basel, 1986.
[5] P. Bürgisser, M. Clausen, and M.A. Shokrollahi. Algebraic complexity theory, volume

315 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin,
1997.

[6] J. Canny. Some algebraic and geometric computations in PSPACE. In Proc. ACM
Symp. Theory of Computing, pages 460–467, 1988.

[7] F. Cazals, J.-C. Faugère, M. Pouget, and F. Rouillier. The implicit structure of
ridges of a smooth parametric surface. Comput. Aided Geom. Des., 23(7):582–598,
2006.

[8] J. H. Davenport. Cylindrical algebraic decomposition. Technical Report 88–
10, School of Mathematical Sciences, University of Bath, England, available at:
http://www.bath.ac.uk/masjhd/, 1988.

[9] D. I. Diochnos, I. Z. Emiris, and E. P. Tsigaridas. On the complexity of real solving
bivariate systems. In C. W. Brown, editor, Proc. ACM Int. Symp. on Symbolic &
Algebraic Comput., pages 127–134, Waterloo, Canada, 2007.

[10] D. I. Diochnos, I. Z. Emiris, and E. P. Tsigaridas. On the complexity of real solv-
ing bivariate systems. RR 6116, INRIA, February 2007. https://hal.inria.fr/inria-
00129309.

[11] Z. Du, V. Sharma, and C. K. Yap. Amortized bound for root isolation via Sturm
sequences. In D. Wang and L. Zhi, editors, Int. Workshop on Symbolic Numeric
Computing, pages 113–129, School of Science, Beihang University, Beijing, China,
2005. Birkhauser.

[12] A. Eigenwillig, V. Sharma, and C. K. Yap. Almost tight recursion tree bounds for
the Descartes method. In Proc. ACM Int. Symp. on Symbolic & Algebraic Comput.,
pages 71–78, New York, NY, USA, 2006. ACM Press.

[13] A. Eigenwillig, M. Kerber, and N. Wolpert. Fast and exact geometric analysis of real
algebraic plane curves. In C. W. Brown, editor, Proc. ACM Int. Symp. on Symbolic
& Algebraic Comput., pages 151–158, Waterloo, Canada, 2007.

[14] I. Z. Emiris and E. P. Tsigaridas. Real solving of bivariate polynomial systems. In
V. Ganzha and E. Mayr, editors, Proc. Computer Algebra in Scientific Computing
(CASC), volume 3718 of LNCS, pages 150–161. Springer, 2005.

[15] I. Z. Emiris, B. Mourrain, and E. P. Tsigaridas. Real Algebraic Numbers: Complex-
ity Analysis and Experimentation. In P. Hertling, C. Hoffmann, W. Luther, and
N. Revol, editors, Reliable Implementations of Real Number Algorithms: Theory and
Practice, volume 5045 of LNCS, pages 57–82. Springer Verlag, 2008. Also available
in www.inria.fr/rrrt/rr-5897.html.

[16] L. González-Vega and M. El Kahoui. An improved upper complexity bound for the
topology computation of a real algebraic plane curve. J. Complexity, 12(4):527–544,
1996.

20

[17] L. González-Vega and I. Necula. Efficient topology determination of implicitly de-
fined algebraic plane curves. Computer Aided Geometric Design, 19(9):719–743,
December 2002.

[18] L. González-Vega, H. Lombardi, T. Recio, and M-F. Roy. Sturm-Habicht Sequence.
In Proc. ACM Int. Symp. on Symbolic & Algebraic Comput., pages 136–146, 1989.

[19] K.H. Ko, T. Sakkalis, and N.M. Patrikalakis. Resolution of multiple roots of nonlin-
ear polynomial systems. International J. of Shape Modeling, 11(1):121–147, 2005.

[20] T. Lickteig and M-F. Roy. Sylvester-Habicht Sequences and Fast Cauchy Index
Computation. J. Symb. Comput., 31(3):315–341, 2001.

[21] M. Mignotte and D. Ştefănescu. Polynomials: An algorithmic approach. Springer,
1999.

[22] P.S. Milne. On the solution of a set of polynomial equations. In B. Donald, D. Kapur,
and J. Mundy, editors, Symbolic and Numerical Computation for Artificial Intelli-
gence, pages 89–102. Academic Press, 1992.

[23] B. Mourrain and J-P. Pavone. Subdivision methods for solving polynomial
equations. Technical Report RR-5658, INRIA Sophia-Antipolis, 2005. URL
www.inria.fr/rrrt/rr-5658.html.

[24] B. Mourrain and Ph. Trébuchet. Solving projective complete intersection faster.
In Proc. ACM Int. Symp. on Symbolic & Algebraic Comput., pages 231–238. ACM
Press, New York, 2000.

[25] B. Mourrain, S. Pion, S. Schmitt, J.-P. Técourt, E. Tsigaridas, and N. Wolpert.
Algebraic issues in computational geometry. In J.-D. Boissonnat and M. Teillaud,
editors, Effective Computational Geometry for Curves and Surfaces, pages 117–155.
Springer-Verlag, Mathematics and Visualization, 2006.

[26] V.Y. Pan. Univariate polynomials: Nearly optimal algorithms for numerical factor-
ization and rootfinding. J. Symbolic Computation, 33(5):701–733, 2002.

[27] P. Pedersen, M-F. Roy, and A. Szpirglas. Counting real zeros in the multivariate
case. In F. Eyssette and A. Galligo, editors, Computational Algebraic Geometry,
volume 109 of Progress in Mathematics, pages 203–224. Birkhäuser, Boston, 1993.
(Proc. MEGA ’92, Nice).

[28] D. Reischert. Asymptotically fast computation of subresultants. In ISSAC, pages
233–240, 1997.

[29] J. Renegar. On the worst-case arithmetic complexity of approximating zeros of
systems of polynomials. SIAM J. Computing, 18:350–370, 1989.

[30] F. Rouillier. Solving zero-dimensional systems through the rational univariate repre-
sentation. Journal of Applicable Algebra in Engineering, Communication and Com-
puting, 9(5):433–461, 1999.

[31] T. Sakkalis. Signs of algebraic numbers. Computers and Mathematics, pages 131–
134, 1989.

[32] T. Sakkalis and R. Farouki. Singular points of algebraic curves. J. Symb. Comput.,
9(4):405–421, 1990.

[33] M. van Hoeij and M. Monagan. A modular GCD algorithm over number fields
presented with multiple extensions. In ISSAC, pages 109–116, July 2002.

[34] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge Univ.
Press, Cambridge, U.K., 2nd edition, 2003.

[35] J. von zur Gathen and T. Lücking. Subresultants revisited. Theor. Comput. Sci.,
1-3(297):199–239, 2003.

21

www.inria.fr/rrrt/rr-5658.html

[36] N. Wolpert. An Exact and Efficient Approach for Computing a Cell in an Arrange-
ment of Quadrics. PhD thesis, MPI fuer Informatik, October 2002.

[37] N. Wolpert and R. Seidel. On the Exact Computation of the Topology of Real Al-
gebraic Curves. In Symposium of Computational Geometry. ACM, 2005. to appear.

[38] C.K. Yap. Fundamental Problems of Algorithmic Algebra. Oxford University Press,
New York, 2000.

22

	Introduction
	Univariate polynomials
	Multivariate polynomials
	Bivariate real solving
	The grid algorithm
	The m_rur algorithm
	The g_rur algorithm

	Applications
	Real root counting
	Simultaneous inequalities in two variables
	The complexity of topology

	Implementation and Experiments
	Our solvers
	Other software

