
On the Complexity of Real Solving Bivariate Systems∗

[Extended abstract]

Dimitrios I. Diochnos
National University of Athens

Athens, Hellas

d.diochnos(at)di.uoa.gr

Ioannis Z. Emiris
National University of Athens

Athens, Hellas

emiris(at)di.uoa.gr

Elias P. Tsigaridas
LORIA-INRIA Lorraine

Nancy, France

elias.tsigaridas(at)loria.fr

ABSTRACT
We consider exact real solving of well-constrained, bivariate
systems of relatively prime polynomials. The main prob-
lem is to compute all common real roots in isolating inter-
val representation, and to determine their intersection mul-
tiplicities. We present three algorithms and analyze their

asymptotic bit complexity, obtaining a bound of eOB(N14)

for the purely projection-based method, and eOB(N12) for
two subresultants-based methods: these ignore polylogarith-
mic factors, and N bounds the degree and the bitsize of the

polynomials. The previous record bound was eOB(N14).
Our main tool is signed subresultant sequences, extended

to several variables by binary segmentation. We exploit ad-
vances on the complexity of univariate root isolation, and
extend them to multipoint sign evaluation, sign evaluation of
bivariate polynomials over two algebraic numbers, and real
root counting over an extension field. Our algorithms apply
to the problem of simultaneous inequalities; they also com-

pute the topology of real plane algebraic curves in eOB(N12),

whereas the previous bound was eOB(N14).
All algorithms have been implemented in maple, in con-

junction with numeric filtering. We compare them against
fgb/rs and synaps; we also consider maple libraries insulate
and top, which compute curve topology. Our software is
among the most robust, and its runtimes are within a small
constant factor, with respect to the C/C++ libraries.

Categories and Subject Descriptors: F.2.1 [Analysis of
Algorithms and Problem Complexity]; G.4 [Mathematical
software]: Algorithm design and analysis;

General Terms: Algorithms, Experimentation, Theory

Keywords: polynomial system, real algebraic number, real
solving, topology of real algebraic curve, maple

∗All authors acknowledge partial financial support by FET-
Open European Project ACS (Algorithms for complex
shapes). The third author started work on this project while
at University of Athens and INRIA Sophia-Antipolis. The
third author is also partially supported by ARC ARCADIA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’07, July 29–August 1, 2007, Waterloo, Ontario, Canada.
Copyright 2007 ACM 978-1-59593-743-8/07/0007 ...$5.00.

1. INTRODUCTION
The problem of well-constrained polynomial system solv-

ing is fundamental. However, most of the algorithms treat
the general case or consider solutions over an algebraically
closed field. We focus on real solving of bivariate polynomi-
als, in order to provide precise complexity bounds and study
different algorithms in practice. We expect to obtain faster
algorithms than in the general case. This is important in
several applications ranging from nonlinear computational
geometry to real quantifier elimination. We suppose rela-
tively prime polynomials for simplicity, but this hypothesis
is not restrictive. A question of independent interest is to
compute the topology of a plane real algebraic curve.

Our algorithms isolate all common real roots inside non-
overlapping rational rectangles, and output them as pairs
of algebraic numbers; they also determine the intersection
multiplicity per root. In this paper, OB means bit com-

plexity and eOB means that we are ignoring polylogarithmic

factors. We derive a bound of eOB(N12), whereas the pre-

vious record bound was eOB(N14) [12], see also [3], derived
from the closely related problem of computing the topology
of real plane algebraic curves, where N bounds the degree
and the bitsize of the input polynomials. This approach
depends on Thom’s encoding. We choose the isolating in-
terval representation, since it is more intuitive, it is used in
applications, and demonstrate that it supports as efficient
algorithms as other representations. In [12] it is stated that
“isolating intervals provide worst [sic] bounds”. Moreover,
it is widely believed that isolating intervals do not produce
good theoretical results. Our work suggests that isolating
intervals should be re-evaluated.

Our main tool is signed subresultant sequences (closely
related to Sturm-Habicht sequences), extended to several
variables by the technique of binary segmentation. We ex-
ploit the recent advances on univariate root isolation, which

reduced complexity by 1-3 orders of magnitude to eOB(N6)

[8, 9, 10]. This brought complexity closer to eOB(N4), which
is achieved by numerical methods [25].

In [17], 2×2 systems are solved and the multiplicities com-
puted under the assumption that a generic shear has been
obtained, based on [31]. In [34], 2 × 2 systems of bounded
degree were studied, obtained as projections of the arrange-
ment of 3D quadrics. This algorithm is a precursor of ours,
see also [11], except that matching and multiplicity compu-
tation was simpler. In [22], a subdivision algorithm is pro-
posed, exploiting the properties of the Bernstein basis, with
unknown bit complexity, and arithmetic complexity based
on the characteristics of the graphs of the polynomials. For

other approaches based on multivariate Sturm sequences the
reader may refer to e.g. [21, 26].

Determining the topology of a real algebraic plane curve

is a closely related problem. The best bound is eOB(N14) [3,
12]. In [35] three projections are used; this is implemented in
insulate, with which we make several comparisons. Work
in [15] offers an efficient implementation of resultant-based
methods. For an alternative using Gröbner bases see [6]. To
the best of our knowledge the only result in topology deter-

mination using isolating intervals is [2], where a eOB(N30)
bound is proved.

We establish a bound of eOB(N12) using the isolating in-
terval representation. It seems that the complexity in [12]

could be improved to eOB(N10) using fast multiplication al-
gorithms, fast algorithms for computations of signed sub-
resultant sequences and improved bounds for the bitsize of
the integers appearing in computations. To put our bounds
into perspective, note that the input is in OB(N3), and the
bitsize of all output isolation points for univariate solving is
eOB(N2), and this is tight.

The main contributions of this paper are the following:
Using the aggregate separation bound, we improve the com-
plexity for computing the sign of a polynomial evaluated
over all real roots of another (lem. 2.7). We establish a com-
plexity bound for bivariate sign evaluation (th. 2.14), which
helps us derive bounds for root counting in an extension
field (th. 4.1) and for the problem of simultaneous inequali-
ties (cor. 4.2). We study the complexity of bivariate polyno-
mial real solving, using three projection-based algorithms:
a straightforward grid method (th. 3.1), a specialized RUR
approach (th. 3.5), and an improvement of the latter using

fast GCD (th. 3.6). Our best bound is eOB(N12); within this
bound, we also compute the root multiplicities. Computing

the topology of a real plane algebraic curve is in eOB(N12)
(th. 4.3).

We implemented in maple a package for computations
with real algebraic numbers and for implementing our al-
gorithms. It is easy to use and integrates seminumerical
filtering to speed up computation when the roots are well-
separated. It guarantees exactness and completeness of re-
sults; moreover, the runtimes seem very encouraging. We
illustrate it by experiments against well-established C/C++
libraries fgb/rs and synaps. We also examine maple li-
braries insulate and top, which compute curve topology.
Our software is robust and effective; its runtime is within a
small constant factor w.r.t. the fastest C/C++ library.

The next section presents basic results concerning real
solving and operations on univariate polynomials. We ex-
tend the discussion to several variables, and focus on bivari-
ate polynomials. The algorithms for bivariate solving and
their analyses appear in sec. 3, followed by applications to
real-root counting, simultaneous inequalities and the topol-
ogy of curves. Our implementation and experiments appear
in sec. 5. Ancillary results and omitted proofs are found in
[7].

2. PRELIMINARIES
For f ∈ Z[y1, . . . , yk, x], dg(f) denotes its total degree,

while degx(f) denotes its degree w.r.t. x. L (f) bounds the
bitsize of the coefficients of f (including a bit for the sign).
We assume lg (dg(f)) = O(L (f)). For a ∈ Q, L (a) is the
maximum bitsize of numerator and denominator. Let M (τ)

denote the bit complexity of multiplying two integers of size
τ , and M (d, τ) the complexity of multiplying two univariate
polynomials of degrees ≤ d and coefficient bitsize ≤ τ . Using

FFT, M (τ) = eOB(τ), M (d, τ) = eOB(dτ).
Let f, g ∈ Z[x], dg(f) = p ≥ q = dg(g) and L (f) ,L (g) ≤

τ . We use rem (f, g) and quo (f, g) for the Euclidean remain-
der and quotient, respectively. The signed polynomial re-
mainder sequence of f, g is R0 = f , R1 = g, R2 = − rem (f, g),
. . . , Rk = − rem (Rk−2, Rk−1), where rem (Rk−1, Rk) = 0.
The quotient sequence contains Qi = quo (Ri, Ri+1), i =
0 . . . k − 1, and the quotient boot is (Q0, . . . , Qk−1, Rk).

Here, we consider signed subresultant sequences, which
contain polynomials similar to the polynomials in the signed
polynomial remainder sequence; see [33] for a unified ap-
proach to subresultants. They achieve better bounds on the
coefficient bitsize and have good specialization properties.
In our implementation we use Sturm-Habicht sequences, see
e.g. [13]. By SR(f, g) we denote the signed subresultant
sequence, by sr(f, g) the sequence of the principal subre-
sultant coefficients, by SQ(f, g) the corresponding quotient
boot, and by SR(f, g; a) the evaluated sequence over a ∈ Q.
If the polynomials are multivariate, then these sequences are
considered w.r.t. x, except if explicitly stated otherwise.

Proposition 2.1. [18, 19, 27] Assuming p ≥ q, SR(f, g)

is computed in eOB(p2qτ) and L (SRj(f, g)) = O(pτ). For
any f, g, their quotient boot, any polynomial in SR(f, g),

their resultant, and their gcd are computed in eOB(pqτ).

Proposition 2.2. [18, 27] Let p ≥ q. We can com-
pute SR(f, g; a), where a ∈ Q ∪ {±∞} and L (a) = σ, in
eOB(pqτ + q2σ + p2σ). If f(a) is known, then the bound

becomes eOB(pqτ + q2σ).

When q > p, SR(f, g) is f, g,−f,−(g mod (−f)) . . . , thus
SR(f, g; a) starts with a sign variation irrespective of sign(g(a)).
If only the sign variations are needed, there is no need to

evaluate g, so prop. 2.2 yields eOB(pqτ + p2σ). Let L de-
note a list of real numbers. VAR(L) denotes the number of
(possibly modified, see e.g. [3, 13]) sign variations.

Corollary 2.3. For any f, g, VAR(SR(f, g; a)) is com-

puted in eOB(pqτ+min{p, q}2σ), provided sign(f(a)) is known.

We choose to represent a real algebraic number α ∈ Ralg

by the isolating interval representation. It includes a square-
free polynomial which vanishes on α and a (rational) interval
containing α and no other root.

Proposition 2.4. [8, 9, 10] Let f ∈ Z[x] have degree p
and bitsize τf . We compute the isolating interval represen-

tation of its real roots and their multiplicities in eOB(p6 +
p4τ 2

f). The endpoints of the isolating intervals have bitsize

O(p2 + p τf) and L (fred) = O(p+ τf).

The sign of the square-free part fred over the interval’s
endpoints is known; moreover, fred(a)fred(b) < 0.

Corollary 2.5. [3, 10] Given a real algebraic number
α ∼= (f, [a, b]), where L (a) = L (b) = O(pτf), and g ∈ Z[x],
such that dg(g) = q,L (g) = τg, we compute sign(g(α)) in

bit complexity eOB(pqmax{τf , τg}+ pmin{p, q}2τf).

Prop. 2.4 expresses the state-of-the-art in univariate root
isolation. It relies on fast computation of polynomial se-
quences and the Davenport-Mahler bound, e.g. [36]. The
following lemma, derived from Davenport-Mahler’s bound,
is crucial.

Lemma 2.6 (Aggregate separation). Given f ∈ Z[x],
the sum of the bitsize of all isolating points of the real roots
of f is O(p2 + p τf).

We present a new complexity bound on evaluating the
sign of a polynomial g(x) over a set of algebraic numbers,
which have the same defining polynomial, namely over all
real roots of f(x). It suffices to evaluate SR(f, g) over all the
isolating endpoints of f . The obvious technique, e.g. [10], is
to apply cor. 2.5 r times, where r is the number of real roots
of f . But we can do better by applying lem. 2.6:

Lemma 2.7. Let τ = max{p, τf , τg}. Assume that we
have isolated the r real roots of f and we know the signs
of f over the isolating endpoints. Then, we can compute the

sign of g over all r roots of f in eOB(p2qτ).

We discuss multivariate polynomials, using binary seg-
mentation [27]. An alternative approach could be [16]. Let
f, g ∈ (Z[y1, . . . , yk])[x] with dgx(f) = p ≥ q = dgx(g),

dgyi
(f) ≤ di and dgyi

(g) ≤ di. Let d =
Qk

i=1 di and
L (f) ,L (g) ≤ τ . The yi-degree of every polynomial in
SR(f, g), is bounded by dgyi

(res(f, g)) ≤ (p+ q)di. Thus,
the homomorphism ψ : Z[y1, . . . , yk]→ Z[y], where

y1 7→ y, y2 7→ y
(p+q)d1 , . . . , yk 7→ y

(p+q)k−1d1···dk−1 ,

allows us to decode res(ψ(f), ψ(g)) = ψ(res(f, g)) and ob-
tain res(f, g). The same holds for every polynomial in
SR(f, g). Now ψ(f), ψ(g) ∈ (Z[y])[x] have y−degree ≤ (p+
q)k−1d since, in the worst case, f or g hold a monomial such

as yd1

1 y
d2

2 . . . y
dk
k . Thus, dgy(res(ψ(f), ψ(g))) < (p+ q)kd.

Proposition 2.8. [27] We can compute SQ(f, g), any

polynomial in SR(f, g), and res(f, g) in eOB(q(p+q)k+1dτ).

Lemma 2.9. SR(f, g) is computed in eOB(q(p+q)k+2dτ).

Theorem 2.10. We can evaluate SR(f, g) at x = α, where

a ∈ Q∪{∞} and L (a) = σ, in eOB(q(p+ q)k+1dmax{τ, σ}).

Proof. Compute SQ(f, g) in eOB(q(p+q)k+1d τ) (prop. 2.8),
then evaluate it over a, using binary segmentation. For this
we need to bound the bitsize of the resulting polynomials.

The polynomials in SR(f, g) have total degree in y1, . . . , yk

bounded by (p+ q)
Pk

i=1 di and coefficient bitsize bounded
by (p+ q)τ . With respect to x, the polynomials in SR(f, g)
have degrees in O(p), so substitution x = a yields val-

ues of size eO(pσ). After the evaluation we obtain poly-
nomials in Z[y1, . . . , yk] with coefficient bitsize bounded by
max{(p+ q)τ, pσ} ≤ (p+ q) max{τ, σ}.

Consider χ : Z[y] → Z, such that y 7→ 2⌈c(p+q)max{τ,σ}⌉,
for a suitable constant c. Apply the map φ = ψ ◦ χ to
f, g. Now, L (φ(f)) ,L (φ(g)) ≤ cd(p + q)k max{τ, σ}. By

prop. 2.2, the evaluation costs eOB(q(p+q)k+1dmax{τ, σ}).

We obtain the following for f, g ∈ (Z[y])[x], such that
dgx(f) = p, dgx(g) = q, dgy(f), dgy(g) ≤ d.

Algorithm 1: sign at(F, α, β)

Input: F ∈ Z[x, y], α ∼= (A, [a1, a2]), β ∼= (B, [b1, b2])
Output: sign(F (α, β))
compute SQx(A,F)1

L1 ← SRx(A,F ; a1), V1 ← ∅2

foreach f ∈ L1 do V1 ← add(V1, sign at(f, β))3

L2 ← SRx(A,F ; a2), V2 ← ∅4

foreach f ∈ L2 do V2 ← add(V2, sign at(f, β))5

return (var(V1)− var(V2)) · sign(A′(α))6

Corollary 2.11. We compute SR(f, g) in eOB(pq(p +
q)2dτ). For any polynomial SRj(f, g) in SR(f, g), dgx(SRj(f, g)) =
O(max{p, q}), dgy(SRj(f, g)) = O(max{p, q}d), and also
L (SRj(f, g)) = O(max{p, q}τ).

Corollary 2.12. We compute SQ(f, g), any polynomial

in SR(f, g), and res(f, g) in eOB(pqmax{p, q}dτ).

Corollary 2.13. We compute SR(f, g ; a), where a ∈

Q ∪ {∞} and L (a) = σ, in eOB(pqmax{p, q}dmax{τ, σ}).
For the polynomials SRj(f, g ; a) ∈ Z[y], except for f, g, we
have dgy(SRj(f, g ; a)) = O((p+q)d) and L (SRj(f, g ; a)) =
O(max{p, q}τ + min{p, q}σ).

We now reduce the computation of the sign of F ∈ Z[x, y]
over (α, β) ∈ R2

alg to that over several points in Q2. Let
dgx(F) = dgy(F) = n1, L (F) = σ and α ∼= (A, [a1, a2]),
β ∼= (B, [b1, b2]), where A,B ∈ Z[X], dg(A) = dg(B) = n2,
L (A) = L (B) = σ. We assume n1 ≤ n2, which is relevant
below. The algorithm is alg. 1, see [30], and generalizes the
univariate case, e.g. [10, 36]. For A, resp. B, we assume
that we know their values on a1, a2, resp. b1, b2.

Theorem 2.14 (sign at). We compute the sign of poly-

nomial F (x, y) over α, β in eOB(n2
1 n

3
2 σ).

Proof. First, we compute SQx(A,F) so as to evaluate

SR(A,F) on the endpoints of α, in eOB(n2
1n

2
2σ) (cor. 2.12).

We compute SR(A,F ; a1). The first polynomial in the
sequence is A, but we already know its value on a1. This

computation costs eOB(n2
1 n

3
2 σ) by cor. 2.13 with q = n1,

p = n2, d = n1, τ = σ, and σ = n2σ, where the latter corre-
sponds to the bitsize of the endpoints. After the evaluation
we obtain a list L1, which contains O(n1) polynomials, say
f ∈ Z[y], such that dg(f) = O(n1n2). To bound the bit-
size, notice that the polynomials in SR(f, g) are of degrees
O(n1) w.r.t. x and of bitsize O(n2σ). After we evaluate on
a1, L (f) = O(n1n2σ).

For each f ∈ L1 we compute its sign over β and count
the sign variations. We could apply directly cor. 2.5, but we
can do better. If dg(f) ≥ n2 then SR(B, f) = (B, f,−B,
g = − prem (f,−B) , . . .). We start the evaluations at g:

it is computed in eOB(n2
1n

3
2σ) (prop. 2.1), dg(g) = O(n2)

and L (g) = O(n1n2σ). Thus, we evaluate SR(−B, g; a1)

in eOB(n1n
3
2σ), by cor. 2.5, with p = q = n2, τf = σ,

τ = n1n2σ. If dg(f) < n2 the complexity is dominated.
Since we perform O(n1) such evaluations, all of them cost
eOB(n2

1n
3
2σ).

We repeat for the other endpoint of α, subtract the sign
variations, and multiply by sign(A′(α)), which is known
from the process that isolated α. If the last sign in the
two sequences is alternating, then sign(F (α, β)) = 0.

3. BIVARIATE REAL SOLVING
Let F,G ∈ Z[x, y], dg(F) = dg(G) = n and L (F) =
L (G) = σ. We assume relatively prime polynomials for
simplicity but this hypothesis is not restrictive because it can
be verified and if it does not hold, it can be imposed within
the same asymptotic complexity. We study algorithms and
their complexity for real solving the system F = G = 0.
The main idea is to project the roots on the x and y axes, to
compute the coordinates of the real solutions and somehow
to match them. The difference between the algorithms is
the way they match solutions.

3.1 The grid algorithm
Algorithm grid is straightforward, see also [11, 34]. We

compute the x− and y−coordinates of the real solutions,
as real roots of the resultants resx(F,G) and resy(F,G).
Then, we match them using the algorithm sign at (th. 2.14)
by testing all rectangles in this grid. The output is a list
of pairs of real algebraic numbers represented in isolating
interval representation. The algorithm also outputs rational
axis-aligned rectangles, guaranteed to contain a single root
of the system.

To the best of our knowledge, this is the first time that
the algorithm’s complexity is studied. The disadvantage
of the algorithm is that exact implementation of sign at
(alg. 1) is not efficient. However, its simplicity makes it
attractive. The algorithm requires no genericity assumption
on the input; we study a generic shear that brings the system
to generic position in order to compute the multiplicities
within the same complexity bound.

The algorithm allows the use of heuristics. In particular,
we may exploit easily computed bounds on the number of
roots, such as the Mixed Volume or count the roots with a
given abscissa α by th. 4.1.

Theorem 3.1. Isolating all real roots of system F = G =

0 using grid has complexity eOB(n14 + n13σ), provided σ =
O(n3).

Proof. First we compute the resultant of F andG w.r.t. y,

i.e. Rx. The complexity is eOB(n4σ), using cor. 2.12. Notice
that dg(Rx) = O(n2) and L (Rx) = O(nσ). We isolate its

real roots in eOB(n12 + n10σ2) (prop. 2.4) and store them in
Lx. This complexity shall be dominated. We do the same
for the y axis and store the roots in Ly.

The representation of the real algebraic numbers contains
the square-free part of Rx, or Ry . In both cases the bitsize of
the polynomial is O(n2 +nσ) [3, 10]. The isolating intervals
have endpoints of size O(n4 + n3 σ).

Let rx, resp. ry be the number of real roots of the corre-
sponding resultants. Both are bounded by O(n2). We form
all possible pairs of real algebraic numbers from Lx and Ly

and check for every such pair if both F and G vanish, using

sign at (th. 2.14). Each evaluation costs eOB(n10 + n9σ)
and we perform rx ry = O(n4) of them.

We now examine the multiplicity of a root (α, β) of the
system. Refer to [4, sec.II.6] for its definition as the expo-
nent of factor (βx−αy) in the resultant of the (homogenized)
polynomials, under certain assumptions.

The algorithm reduces to bivariate sign determination and
does not require bivariate factorization. We shall use the
resultant, since it allows for multiplicities to “project”. Pre-
vious work includes [12, 31, 35]. The sum of multiplicities

Algorithm 2: m rur (F,G)

Input: F,G ∈ Z[X,Y] in generic position
Output: The real solutions of the system F = G = 0
SR← SRy(F,G)1

/* Projections and real solving with

multiplicities */

Rx ← resy(F,G)2

Px,Mx ← solve(Rx)3

Ry ← resx(F,G)4

Py,My ← solve(Ry)5

I ← intermediate points(Py)6

/* Factorization of Rx according to sr */

K ← compute k(SR, Px)7

Q← ∅8

/* Matching the solutions */

foreach α ∈ Px do9

β ← find(α,K, Py, I)10

Q← add(Q, {α, β})11

return Q12

of all roots (α, βj) equals the multiplicity of x = α in the re-
spective resultant. It is possible to apply a shear transform
to the coordinate frame so as to ensure that different roots
project to different points on the x-axis. We determine an
adequate (horizontal) shear such that

Rt(x) = resy (F (x+ ty, y), G(x+ ty, y)) , (1)

when t 7→ t0 ∈ Z, has simple roots corresponding to the
projections of the common roots of the system F (x, y) =
G(x, y) = 0 and the degree of the polynomials remains the
same. Notice that this shear does not affect inherently mul-
tiple roots, which exist independently of the reference frame.
Rred ∈ (Z[t])[x] is the squarefree part of the resultant, as an
element of UFD (Z[t])[x], and its discriminant, with respect
to x, is ∆ ∈ Z[t]. Then t0 must be such that ∆(t0) 6= 0.

Lemma 3.2. Computing t0 ∈ Z, such that the correspond-

ing shear is sufficiently generic, has complexity eOB(n10 +
n9σ).

The idea here is to use explicit candidate values of t0
right from the start [7]. In practice, the above complexity

becomes eOB(n5σ), because a constant number of tries or
a random value will typically suffice. For an alternative
approach see [14], also [3]. It is straightforward to compute
the multiplicities of the sheared system. Then, we need to
match the latter with the roots of the original system, which
is nontrivial in practice.

Theorem 3.3. Consider the setting of th. 3.1. Having
isolated all real roots of F = G = 0, it is possible to deter-

mine their multiplicities in eOB(n12 + n11σ + n10σ2).

3.2 The m rur algorithm
m rur assumes that the polynomials are in Generic Po-

sition: different roots project to different x-coordinates and
leading coefficients w.r.t. y have no common real roots.

Proposition 3.4. [12, 3] Let F,G be co-prime polynomi-
als, in generic position. If SRj(x, y) = srj(x)y

j+srj,j−1(x)y
j−1

+ · · · + srj,0(x), and (α, β) is a real solution of the system
F = G = 0, then there exists k, such that sr0(α) = · · · =

srk−1(α) = 0, srk(α) 6= 0 and β = − 1
k

srk,k−1(α)

srk(α)
.

This expresses the ordinate of a solution in a Rational
Univariate Representation (RUR) of the abscissa. The RUR
applies to multivariate algebraic systems [28, 5, 29, 3]; it gen-
eralizes the primitive element method by Kronecker. Here
we adapt it to small-dimensional systems.

Our algorithm is similar to [14, 12]. However, their al-
gorithm computes only a RUR using prop. 3.4, so the rep-
resentation of the ordinates remains implicit. Often, this
representation is not sufficient (we can always compute the
minimal polynomial of the roots, but this is highly ineffi-
cient). We modified the algorithm [11], so that the output
includes isolating rectangles, hence the name modified-RUR
(m rur). The most important difference with [12] is that
they represent algebraic numbers by Thom’s encoding while
we use isolating intervals, which were thought of having high
theoretical complexity. We will prove that this is not the
case.

The pseudo-code of m rur is in alg. 2. We project on
the x and the y-axis; for each real solution on the x-axis we
compute its ordinate using prop. 3.4. First we compute the

sequence SR(F,G) w.r.t. y in eOB(n5 σ) (cor. 2.11).
Projection. This is similar to grid. The complexity

is dominated by real solving the resultants, i.e. eOB(n12 +
n10 σ2). Let αi, resp. βj , be the real root coordinates.

We compute rationals qj between the βj ’s in eOB(n5σ), viz.
intermediate points(Py); the qj have aggregate bitsize
O(n3 σ):

q0 < β1 < q1 < β2 < · · · < βℓ−1 < qℓ−1 < βℓ < qℓ, (2)

where ℓ ≤ 2n2. Every βj corresponds to a unique αi. The
multiplicity of αi as a root of Rx is the multiplicity of a real
solution of the system, that has it as abscissa.

Sub-algorithm compute k. In order to apply prop. 3.4,
for every αi we must compute k ∈ N∗ such the assumptions
of the theorem are fulfilled; this is possible by genericity. We
follow [23, 12] and define recursively polynomials Γj(x): Let

Φ0(x) = sr0(x)
gcd(sr0(x),sr′

0
(x))

, Φj(x) = gcd(Φj−1(x), srj(x)), and

Γj =
Φj−1(x)

Φj(x)
, for j > 0. Now sri(x) ∈ Z[x] is the principal

subresultant coefficient of SRi ∈ (Z[x])[y], and Φ0(x) is the
square-free part of Rx = sr0(x). By construction, Φ0(x) =
Q

j
Γj(x) and gcd(Γj ,Γi) = 1, if j 6= i. Hence every αi is a

root of a unique Γj and the latter switches sign at the inter-
val’s endpoints. Then, sr0(α) = sr1(α) = 0, . . . , srj(α) = 0,
srj+1(α) 6= 0; thus k = j + 1.

It holds that dg(Φ0) = O(n2) and L (Φ0) = O(n2 + nσ).
Moreover,

P

j dg(Γj) =
P

j δj = O(n2) and, by Mignotte’s

bound [20], L (Γj) = O(n2 + nσ). To compute the fac-
torization Φ0(x) =

Q

j
Γj(x) as a product of the srj(x),

we perform O(n) gcd computations of polynomials of de-

gree O(n2) and bitsize eO(n2 + nσ). Each gcd computation

costs eOB(n6 + n5 σ) (prop. 2.1) and thus the overall cost is
eOB(n7 + n6 σ).

We compute the sign of the Γj over all the O(n2) iso-
lating endpoints of the αi, which have aggregate bitsize

O(n4 +n3 σ) (lem. 2.6) in eOB(δjn
4 + δjn

3σ+ δ2j (n4 +n3σ)),
using Horner’s rule. Summing over all δj , the complexity is
eOB(n8+n7σ). Thus the overall complexity is eOB(n9+n8 σ).
Matching and algorithm find. The process takes a

real root of Rx and computes ordinate β of the correspond-
ing root of the system. For some real root α of Rx we repre-

sent the ordinate A(α) = − 1
k

srk,k−1(α)

srk(α)
= A1(α)

A2(α)
. The generic

position assumption guarantees that there is a unique βj , in
Py , such that βj = A(α), where 1 ≤ j ≤ ℓ. In order to com-

pute j we use (2): qj < A(α) = A1(α)
A2(α)

= βj < qj+1. Thus

j can be computed by binary search in O(lg ℓ) = O(lgn)
comparisons of A(α) with the qj . This is equivalent to com-
puting the sign of Bj(X) = A1(X) − qj A2(X) over α by
executing O(lgn) times, sign at(Bj , α).

Now, L (qj) = O(n4 + n3σ) and dg(A1) = dg(srk,k−1) =
O(n2), dg(A2) = dg(srk) = O(n2), L (A1) = O(nσ), L (A2) =
O(nσ). Thus dg(Bj) = O(n2) and L (Bj) = O(n4 + n3 σ).
We conclude that sign at(Bj , α) and find have complexity
eOB(n8 + n7σ) (cor. 2.5). As for the overall complexity of

the loop (Lines 9-11) the complexity is eOB(n10 +n9σ), since
it is executed O(n2) times.

Theorem 3.5. We isolate all real roots of F = G = 0, if

F , G are in generic position, by m rur in eOB(n12 + n10σ).

The generic position assumption is without loss of gener-
ality since we can always put the system in such position by
applying a shear transform; see previous section. The bitsize

of polynomials of the (sheared) system becomes eO(n + σ)
[12] and does not change the bound of th. 3.5. However,
now is raised the problem of expressing the real roots in the
original coordinate system (see also the proof of th. 3.3).

3.3 The g rur algorithm
We present an algorithm that uses some ideas from RUR

but relies on GCD computations of polynomials with co-
efficients in an extension field to achieve efficiency (hence
the name g rur). For the GCD computations we use the
algorithm (and the implementation) of [32].

The first steps are similar to the previous algorithms: We
project on the axes, we perform real solving and compute
the intermediate points on the y-axis. The complexity is
eOB(n12 + n10σ2).

For each x-coordinate, say α, we compute the square-free
part of F (α, y) and G(α, y), say F̄ and Ḡ. The complex-
ity is that of computing the gcd with the derivative. In

[32] the cost is eOB(mMND +mN2D2 +m2kD), where M
is the bitsize of the largest coefficient, N is the degree of
the largest polynomial, D is the degree of the extension, k
is the degree of the gcd, and m is the number of primes
needed. The complexity does not assume fast multiplica-
tion algorithms, thus, under this assumption, it becomes
eOB(mMND +mND +mkD).

In our case M = O(σ), N = O(n), D = O(n2), k = O(n),

and m = O(nσ). The cost is eOB(n4σ2) and since we have

to do it O(n2) times, the overall cost is eOB(n6σ2). Notice

the bitsize of the result is eOB(n+ σ) [3].
Now for each α, we compute H = gcd(F̄ , Ḡ). We have

M = O(n + σ), N = O(n), D = O(n2), k = O(n), and

m = O(n2+nσ) and so the cost of each operation is eOB(n6+

n4σ2) and overall eOB(n8 + n6σ2). The size of m comes
from Mignotte’s bound [20]. Notice that H is a square-free
polynomial in (Z[α])[y], of degree O(n) and bitsize O(n2 +
nσ), the real roots of which correspond to the real solutions
of the system with abscissa α. It should change sign only
over the intervals that contain its real roots. To check these
signs, we have to substitute y in H by the intermediate
points, thus obtaining a polynomial in Z[α], of degree O(n)
and bitsize O(n2 + nσ + nsj), where sj is the bitsize of the

j-th intermediate point.
Now, we consider this polynomial in Z[x] and evaluate it

over α. Using cor. 2.5 with p = n2, τf = n2 + nσ, q = n,

and τg = n2 + nσ + nsj , this costs eOB(n6 + n5σ + n4sj).
Summing over O(n2) points and using lem. 2.6, we obtain
eOB(n8 + n7σ). Thus, the overall complexity is eOB(n10 +
n9σ).

Theorem 3.6. We can isolate the real roots of the system

F = G = 0, using g rur in eOB(n12 + n10σ).

4. APPLICATIONS
Real root counting. We wish to count the number of

roots of F̄ = F (α, y) ∈ (Z[α])[y] in R, in (c,+∞) and in
(β,+∞). Assume α, β ∈ Ralg as above, but with L (A) ,L (B) ≤
τ and c ∈ Q, such that L (c) = λ. Moreover, let n2

1 = O(n2),
as will be the case in applications.

Theorem 4.1. We count the real roots of F̄ in (−∞,+∞),

(β,+∞) and (c,+∞), respectively, in eOB(n4
1n2σ + n5

1n2τ),
eOB(n5

1n
3
2 max{n1σ, τ}) and eOB(n4

1n2 max{n1τ, σ, λ}).

The proof uses Sturm’s theorem and the good specialization
properties of subresultants in order to switch the order of
substitution x = α and sequence computation; see [7].

Simultaneous inequalities in two variables. Let P,Q,
A1, . . . , Aℓ1 , B1, . . . , Bℓ2 , C1, . . . , Cℓ3 ∈ Z[X,Y], such that
their total degrees are bounded by n and their bitsize by
σ. We wish to compute (α, β) ∈ R2

alg such that P (α, β) =
Q(α, β) = 0 and also Ai(α, β) > 0, Bj(α, β) < 0 and
Ck(α, β) = 0, where 1 ≤ i ≤ ℓ1, 1 ≤ j ≤ ℓ2, 1 ≤ k ≤ ℓ3.
Let ℓ = ℓ1 + ℓ2 + ℓ3.

Corollary 4.2. There is an algorithm that solves the
problem of ℓ simultaneous inequalities of degree ≤ n and

bitsize ≤ σ, in eOB(ℓn12 + ℓn11σ + n10σ2).

The complexity of topology. We improve the com-
plexity of computing the topology of a real plane algebraic
curve. See [3, 12, 23] for the algorithm.

We consider the curve, in generic position, defined by
F ∈ Z[x, y], such that dg(F) = n and L (F) = σ. We com-
pute the critical points of the curve, i.e. solve F = Fy = 0

in eOB(n12 + n10σ2). Next, we compute the intermediate

points on the x axis, in eOB(n4 + n3σ) (lem. 2.6). For each
intermediate point, say qj , we need to compute the number
of branches of the curve that cross the vertical line x = qj .
This is equivalent to computing the number of real solutions
of the polynomial F (qj , y) ∈ Z[y], which has degree d and
bitsize O(nL (qj)). For this we use Sturm’s theorem and

th. 2.2 and the cost is eOB(n3L (qj)). For all qj ’s the cost is
eOB(n7 + n6σ).

For each critical point, say (α, β) we need to compute the
number of branches of the curve that cross the vertical line
x = α, and the number of them that are above y = β. The
first task corresponds to computing the number of real roots

of F (α, y), by application of th. 4.1, in eOB(n9 +n8σ), where
n1 = n, n2 = n2, and τ = n2 + nσ. Since there are O(n2)

critical values, the overall cost of the step is eOB(n11+n10σ).
Finally, we compute the number of branches that cross the

line x = α and are above y = β. We do this by th. 4.1, in
eOB(n13 + n12σ). Since there are O(n2) critical points, the

complexity is eOB(n15 + n14σ). It remains to connect the
critical points according to the information that we have for
the branches. The complexity of this step is dominated. It

now follows that the complexity of the algorithm is eOB(n15+

n14σ+n10σ2), or eOB(N15), which is worse by a factor than
[3].

We improve the complexity of the last step since m rur
computes the RUR representation of the ordinates. Thus,
instead of performing bivariate sign evaluations in order to
compute the number of branches above y = β, we can sub-
stitute the RUR representation of β and perform univariate
sign evaluations. This corresponds to computing the sign of
O(n2) polynomials of degree O(n2) and bitsize O(n4+n3σ),
over all the α’s [12]. Using lem. 2.7 for each polynomial the

cost is eOB(n10 + n9σ), and since there are eOB(n2) of them,

the total cost is eOB(n12 + n11σ).

Theorem 4.3. We compute the topology of a real plane
algebraic curve, defined by a polynomial of degree n and bit-

size σ, in eOB(n12 + n11σ + n10σ).

Thus the overall complexity of the algorithm improves
the previously known bound by a factor of N2. We assumed
generic position, since we can apply a shear to achieve this,
see sec. 3.1.

5. IMPLEMENTATION AND EXPERIMENTS
We describe our open source maple implementation1 and

illustrate its capabilities through comparative experiments.
The design is based on object oriented programming and
the generic programming paradigm in view of transferring
our implementation to C++.

The class of real algebraic numbers represents them in
isolating interval representations. We provide various al-
gorithms for computing signed polynomial remainder se-
quences; real solving univariate polynomials using Sturm’s
algorithm; computations with one and two real algebraic
numbers, such as sign evaluation, comparison; and our algo-
rithms for real solving of bivariate systems. Computations
are performed first using intervals with floating point arith-
metic and, if they fail, then an exact algorithm using rational
arithmetic is called. For GCD computations in an extension
field we use the maple package of [32]. We have not im-
plemented, yet, the optimal algorithms for computing and
evaluating polynomial remainder sequences.

Overall performance results are shown on tab. 1, averaged
over 10 iterations. Systems Ri,Mi, and Di are presented in
[11], systems Ci in [14], andWi are the Ci after swapping the
x and y variables. For the first data set, there are no timings
for insulate and top since it was not easy to modify their
code so as to deal with general polynomial systems. The
rest correspond to algebraic curves, i.e. polynomial systems
of the form f = fy = 0, that all packages can deal with.

It seems that g rur is our solver of choice since it is faster
than grid and m rur in 17 out of our 18 instances. How-
ever, this may not hold when the extension field is of high
degree. g rur yields solutions in less than a second, apart
from system C5. Overall, for total degrees ≤ 8, g rur re-
quires less than 0.4 secs to respond. As a result, g rur is
7-11 times faster than grid, and about 38 times than m rur.

1www.di.uoa.gr/~erga/soft/SLV index.html

sy
st

e
m

deg

s
o
lu

t
io

n
s Average Time (msecs)

BIVARIATE SOLVING TOPOLOGY
this paper (SLV)

FGb/Rs
Synaps

Insulate
Top

f g grid m rur g rur sturm subdiv newmac 60 500
R1 3 4 2 5 9 5 26 2 2 5 − − −
R2 3 1 1 66 21 36 24 1 1 1 − − −
R3 3 1 1 1 2 1 22 1 2 1 − − −
M1 3 3 4 87 72 10 25 2 1 2 − − −
M2 4 2 3 4 5 4 24 1 289 2 − − −
M3 6 3 5 803 782 110 30 230 5, 058 7 − − −
M4 9 10 2 218 389 210 158 90 3 447 − − −
D1 4 5 1 6 12 6 28 2 5 8 − − −
D2 2 2 4 667 147 128 26 21 1 2 − − −
C1 7 6 6 1, 896 954 222 93 479 170, 265 39 524 409 1, 367
C2 4 3 6 177 234 18 27 12 23 4 28 36 115
C3 8 7 13 580 1, 815 75 54 23 214 25 327 693 2, 829
C4 8 7 17 5, 903 80, 650 370 138 3, 495 217 190 1, 589 1, 624 6, 435
C5 16 15 17 > 20′ 60, 832 3, 877 4, 044 > 20′ 6, 345 346 179, 182 91, 993 180, 917
W1 7 6 9 2, 293 2, 115 247 92 954 55, 040 39 517 419 1, 350
W2 4 3 5 367 283 114 29 20 224 3 27 20 60
W3 8 7 13 518 2, 333 24 56 32 285 25 309 525 1, 588
W4 8 7 17 5, 410 77, 207 280 148 4, 086 280 207 1, 579 1, 458 4, 830

Table 1: Performance averages over 10 runs in maple 9.5 on a 2GHz AMD64@3K+ processor with 1GB RAM.

One reason is that the sheared systems that m rur solves
are dense and of increased bitsize.

Among our algorithms, grid and m rur benefit the most
from filtering. g rur gains only a factor of 1.1-2. grid gains
a factor of 2-5. In m rur we use one more filtering heuristic
technique: after computing the intermediate points on the y-
axis, we perform refining with [1] (up to 20 times on systems
with high degree) on the intervals of the candidate solutions
along the x-axis. Recall that m rur binary-searches for so-
lutions along the y-axis. Of course the refinement must not
be excessive since this will increase the bitsize of the coef-
ficients and as a result lead to costlier operations in case
where filtering techniques fail. This has been very efficient
in practice, resulting on average an additional speedup of
2.2-3.4; overall filtering improves m rur by a factor of 7-11.

If a polynomial system did not comply with the generic
position criterion required by m rur, we deterministically
tested a value for the required shear; in all cases our first
candidate (t = 3) worked. This is relatively inexpensive on
systems with polynomials of degree ≤ 5. For systems with
polynomials of higher degree, in some cases the determinis-
tic shear computation is more expensive than real solving.
Hence, a random shear is more efficient in general, as sug-
gested also by the asymptotic analysis.

We tested fgb/rs2 [29], which performs exact real solving
using Gröbner bases and RUR, through its maple interface.
It should be underlined that communication with maple
increases the runtimes. g rur is faster in 8 out of the 18
instances, including the difficult system C5. Lastly, we ex-
amined 3 synaps3 solvers: sturm is a naive implementation
of grid [11]; subdiv implements [22], and is based on Bern-
stein basis and double arithmetic. It needs an intial box
for computing the real solutions of the system and in all

2http://www-spaces.lip6.fr/index.html
3http://www-sop.inria.fr/galaad/logiciels/synaps/

the cases we used [−10, 10] × [−10, 10]. newmac [24], is a
general purpose solver based on computations of generalized
eigenvectors using lapack, which computes all complex so-
lutions. sturm is faster than our maple implementation.
subdiv and newmac are in general fast solvers.

We also tested other maple implementations: insulate
is a package that implements [35] for computing the topol-
ogy of real algebraic curves, and top implements [14]. We
tried to modify the packages so as to stop them as soon as
they compute the real solutions of the corresponding bivari-
ate system. Both packages were kindly provided to us by
their authors. top has an additional parameter that sets
the initial precision (digits). A very low initial precision or
a very high one results in inaccuracy or performance loss;
but there is no easy way for choosing a good value. Hence,
we followed [15] and recorded its performance on initial val-
ues of 60 and 500 digits. Compared to g rur, insulate is
2-46 times slower when the total degree is ≥ 6. On the other
hand, top is slower than g rur 1.7-23 times when the total
degree is ≥ 6 and the curves have many critical points.

We underline that we do not consider experiments as com-
petition, but a crucial step for improving existing software.
Moreover, it is very difficult to compare different packages,
since in most cases they are made for different needs. In
addition, accurate timing in maple is hard, since it is a
general purpose package and a lot of overhead is added to
its function calls. For example this is the case for fgb/rs.

Our implementations and insulate have demonstrated
the most robust behaviour, not only by replying within our
specified time limits, but also no errors were generated dur-
ing their execution.4 In the case of fgb/rs, some errors
regarding the communication of the application with the
maple kernel occurred; i.e. successive calls of the rs isolate

4Sto issac version prepei na mpei to keimeno pou den einai
gia journal.

phase of the interval
median mean

std
algorithm min max dev

g
r
id

projections 00.00 00.53 00.04 00.08 00.13
univ. solving 02.05 99.75 07.08 26.77 35.88
biv. solving 00.19 97.93 96.18 73.03 36.04
sorting 00.00 01.13 00.06 00.12 00.26

m
r
u
r

projection 00.00 00.75 00.06 00.14 00.23
univ. solving 00.18 91.37 15.55 17.47 20.79
StHa seq. 00.08 38.23 01.17 05.80 09.91
inter. points 00.00 03.23 00.09 00.32 00.75
filter x-cand 00.68 72.84 26.68 23.81 21.93
compute K 00.09 34.37 02.04 07.06 10.21
biv. solving 01.77 98.32 51.17 45.41 28.71

g
r
u
r

projections 00.02 03.89 00.23 00.48 00.88
univ. solving 07.99 99.37 39.83 41.68 25.52
inter. points 00.02 03.81 00.54 01.11 01.28
rational biv. 00.07 57.07 14.83 15.89 19.81
Ralg biv. 00.00 91.72 65.30 40.53 36.89
sorting 00.00 01.50 00.22 00.32 00.43

Table 2: Statistics on the performance from [7].

function in a for loop, especially on the difficult system C5.
sturm failed to reply within our time limits for C5. As
for newmac and subdiv, some numerical errors are intro-
duced since the former is based on lapack and the latter
on floating point arithmetic. These solvers fail to compute
the correct number of real solutions in many cases. Finally,
sturm’ s inefficiency, in some experiments, is basically due
to the lack of modular algorithms for computing resultants.

grid and m rur demonstrate a high fluctuation in run-
times, compared, e.g. to the stability of newmac or fgb/rs.
The latter spends a lot of time on Gröbner bases. The rest
of the solvers demonstrate a similar fluctuation, especially
those that are based on maple.

To summarize, we believe that the implementation of our
algorithms give very encouraging results, at least for poly-
nomial systems of moderate degree.

The time that each algorithm spends on the various steps
is on tab. 2 as percentages of the overall computing times
in tab. 1. Projections shows the time for the computa-
tion of the resultants, Univ. Solving for real solving the
resultants, and Sorting for sorting solutions. In grid’s
and m rur’s case, biv. solving corresponds to matching.
In g rur’s case timings for matching are divided between
rational biv. and Ralg biv.; the first refers to when at
least one of the co-ordinates is a rational number, while
the latter indicates timings when both co-ordinates are not
rational. Inter. points refers to computation of the in-
termediate points between resultant roots along the y-axis.
StHa seq. refers to the computation of the StHa sequence.
Filter x-cand shows the time for additional filtering. Compute
K reflects the time for sub-algorithm compute-k.

In a nutshell, grid spends more than 73% of its time
in matching. Recall that this percent includes the applica-
tion of filters. m rur spends about 45-50% of its time in
matching and about 24-27% in the pre-computation filter-
ing technique. g rur spends 55-80% of its time in matching,
including gcd computations in an extension field.

Acknowledgements. We acknowledge discussions with
B. Mourrain, thank J-P. Pavone for his help with synaps,

and the anonymous referees for their comments. The third
author thanks F. Rouillier for various comments.

6. REFERENCES
[1] J. Abbott. Quadratic interval refinement for real

roots. In ISSAC 2006, poster presentation.
http://www.dima.unige.it/ abbott/.

[2] D. Arnon and S. McCallum. A polynomial time
algorithm for the topological type of a real algebraic
curve. JSC, 5:213–236, 1988.

[3] S. Basu, R. Pollack, and M-F.Roy. Algorithms in Real
Algebraic Geometry, volume 10 of Algorithms and
Computation in Mathematics. Springer-Verlag, 2nd
edition, 2006.

[4] E. Brieskorn and H. Knörrer. Plane Algebraic Curves.
Birkhäuser, Basel, 1986.

[5] J. Canny. Some algebraic and geometric computations
in PSPACE. In Proc. STOC, pages 460–467, 1988.

[6] F. Cazals, J.-C. Faugère, M. Pouget, and F. Rouillier.
The implicit structure of ridges of a smooth
parametric surface. Comput. Aided Geom. Des.,
23(7):582–598, 2006.

[7] D. I. Diochnos, I. Z. Emiris, and E. P. Tsigaridas. On
the complexity of real solving bivariate systems.
Research Report 6116, INRIA, 02 2007.
https://hal.inria.fr/inria-00129309.

[8] Z. Du, V. Sharma, and C. K. Yap. Amortized bound
for root isolation via Sturm sequences. In D. Wang and
L. Zhi, editors, Int. Workshop on Symbolic Numeric
Computing, pages 81–93, Beijing, China, 2005.

[9] A. Eigenwillig, V. Sharma, and C. K. Yap. Almost
tight recursion tree bounds for the descartes method.
In ISSAC, pages 71–78, New York, NY, USA, 2006.
ACM Press.

[10] I. Z. Emiris, B. Mourrain, and E. P. Tsigaridas. Real
Algebraic Numbers: Complexity Analysis and
Experimentation. In P. Hertling, C. Hoffmann,
W. Luther, and N. Revol, editors, Reliable
Implementations of Real Number Algorithms: Theory
and Practice, LNCS (to appear). Springer Verlag,
2007. also available in www.inria.fr/rrrt/rr-5897.html.

[11] I. Z. Emiris and E. P. Tsigaridas. Real solving of
bivariate polynomial systems. In V. Ganzha and
E. Mayr, editors, Proc. Computer Algebra in Scientific
Computing (CASC), volume 3718 of LNCS, pages
150–161. Springer, 2005.

[12] L. González-Vega and M. El Kahoui. An improved
upper complexity bound for the topology computation
of a real algebraic plane curve. J. Complexity,
12(4):527–544, 1996.

[13] L. González-Vega, H. Lombardi, T. Recio, and M.-F.
Roy. Sturm-Habicht Sequence. In ISSAC, pages
136–146, 1989.

[14] L. Gonzalez-Vega and I. Necula. Efficient topology
determination of implicitly defined algebraic plane
curves. Computer Aided Geometric Design,
19(9):719–743, Dec. 2002.

[15] M. Kerber. Analysis of real algebraic plane curves.
Diploma thesis, MPI Saarbrücken, 2006.

[16] J. Klose. Binary segmentation for multivariate
polynomials. J. Complexity, 11(3):330–343, 1995.

[17] K. Ko, T. Sakkalis, and N. Patrikalakis. Resolution of
multiple roots of nonlinear polynomial systems. Int. J.
of Shape Modeling, 11(1):121–147, 2005.

[18] T. Lickteig and M.-F. Roy. Sylvester-Habicht
Sequences and Fast Cauchy Index Computation. JSC,
31(3):315–341, 2001.

[19] H. Lombardi, M.-F. Roy, and M. Safey El Din. New
Structure Theorem for Subresultants. JSC,
29(4-5):663–689, 2000.

[20] M. Mignotte and D. Stefanescu. Polynomials: An
algorithmic approach. Springer, 1999.

[21] P. Milne. On the solution of a set of polynomial
equations. In B. Donald, D. Kapur, and J. Mundy,
editors, Symbolic and Numerical Computation for
Artificial Intelligence, pages 89–102. Academic Press,
1992.

[22] B. Mourrain and J.-P. Pavone. Subdivision methods
for solving polynomial equations. Technical Report
RR-5658, INRIA Sophia-Antipolis, 2005.

[23] B. Mourrain, S. Pion, S. Schmitt, J.-P. Técourt,
E. Tsigaridas, and N. Wolpert. Algebraic issues in
computational geometry. In J.-D. Boissonnat and
M. Teillaud, editors, Effective Computational
Geometry for Curves and Surfaces, pages 117–155.
Springer-Verlag, 2006.

[24] B. Mourrain and P. Trébuchet. Solving projective
complete intersection faster. In C. Traverso, editor,
Proc. Intern. Symp. on Symbolic and Algebraic
Computation, pages 231–238. New-York, ACM Press.,
2000.

[25] V. Pan. Univariate polynomials: Nearly optimal
algorithms for numerical factorization and rootfinding.
JSC, 33(5):701–733, 2002.

[26] P. Pedersen, M.-F. Roy, and A. Szpirglas. Counting
real zeros in the multivariate case. In F. Eyssette and
A. Galligo, editors, Computational Algebraic
Geometry, volume 109 of Progress in Mathematics,
pages 203–224. Birkhäuser, Boston, 1993.

[27] D. Reischert. Asymptotically fast computation of
subresultants. In ISSAC, pages 233–240, 1997.

[28] J. Renegar. On the worst-case arithmetic complexity
of approximating zeros of systems of polynomials.
SIAM J. Computing, 18:350–370, 1989.

[29] F. Rouillier. Solving zero-dimensional systems through
the rational univariate representation. J. of AAECC,
9(5):433–461, 1999.

[30] T. Sakkalis. Signs of algebraic numbers. Computers
and Mathematics, pages 131–134, 1989.

[31] T. Sakkalis and R. Farouki. Singular points of
algebraic curves. JSC, 9(4):405–421, 1990.

[32] M. van Hoeij and M. Monagan. A modular GCD
algorithm over number fields presented with multiple
extensions. In ISSAC, pages 109–116, July 2002.

[33] J. von zur Gathen and T. Lücking. Subresultants
revisited. TCS, 1-3(297):199–239, 2003.

[34] N. Wolpert. An Exact and Efficient Approach for
Computing a Cell in an Arrangement of Quadrics.
PhD thesis, MPI fuer Informatik, Oct. 2002.

[35] N. Wolpert and R. Seidel. On the Exact Computation
of the Topology of Real Algebraic Curves. In SoCG,
pages 107–115. ACM, 2005.

[36] C. Yap. Fundamental Problems of Algorithmic
Algebra. Oxford University Press, New York, 2000.

APPENDIX

A. ALGORITHMS AND COMPLEXITY

A.1 Univariate Polynomials

Proof of lem. 2.2. Let SRq+1 = f and SRq = g. For
the moment we forget SRq+1. We may assume that SRq−1

is computed, since the cost of computing one element of SR
is the same as that of computing SQ(f, g) (Pr. 2.1).

We follow Lickteig and Roy [18]. For two polynomials
A,B of degree bounded by D and bit size bounded by L, we

can compute SR(A,B)(a), where L (a) ≤ L, in eOB(M (D,L)).
In our case D = O(q) and L = O(pτ + qσ), thus the total

costs is eOB(pqτ + q2σ).
It remains to compute the evaluation SRq+1(a) = f(a).

This can be done using Horners’ scheme in eOB(pmax{τ, pσ}).
Thus, the whole procedure has complexity

eOB(pqτ + q
2
σ + pmax{τ, pσ}),

where the term pτ is dominated by pqτ .

Proof of cor. 2.5. Assume that α is not a common
root of f and g in [a, b], then it is known that

sign g(α) = [VAR(SR(f, g; a))−VAR(SR(f, g; b))] sign(f ′(α)).

Actually the previous relation holds in a more general con-
text, when f dominates g, see [36] for details. Notice that
sign(f ′(α)) = sign(f(b)) − sign(f(b)), which is known from
the real root isolation process.

The complexity of the operation is dominated by the com-
putation of VAR(SR(f, g; a)) and VAR(SR(f, g;b)), i.e. we
compute SQ and evaluate it on a and b.

As explained above, there is no need to evaluate the poly-
nomial of the biggest degree, i.e the first (and the second
if p < q) of SR(f, g) over a and b. Thus the complexity is
that of cor. 2.3, viz.

eOB(pqmax{τf , τg}+ min{p, q}2p τf)

Thus the complexity of the operation is two times the com-
plexity of the evaluation of the sequence over the endpoints
of the isolating interval.

If α is a common root of f and g, or if f and g are not
relative prime, then their gcd, which is the last non-zero
polynomial in SR(f, g) is not a constant. Hence, we evaluate
SR on a and b, we check if the last polynomial is not a
constant and if it changes sign on a and b. If this is the case,
then sign(g(α)) = 0. Otherwise we proceed as above.

Proof of lem. 2.6. Let there be r ≤ p real roots. The
isolating point between two consecutive real roots αj , αj+1

is of magnitude at most 1
2
|αj − αj+1| :=

1
2
∆j . Thus their

product is 1
2r

Q

j
∆j . Using the Davenport-Mahler bound,

Q

j ∆j ≥ 2−O(p2+pτf) and we take logarithms.

Proof of lem. 2.7. Let sj be the bitsize of the j-th end-
point, where 0 ≤ j ≤ r. The evaluation of SR(f, g) over this

endpoint, by cor. 2.3, costs eOB(pqτ+min{p, q}2sj). To com-
pute the overall cost, we should sum over all the isolating

points. The first summand is eOB(p2qτ). By pr. 2.6, the

second summand becomes eOB(min{p, q}2(p2 + pτf)) and is
dominated.

A.2 Multivariate polynomials

Proof of lem. 2.9. Every polynomial in SR(f, g) has

coefficients of magnitude bounded 2c(p+q)τ , for a suitable
constant c, assuming τ > lg(d). Consider the map χ :

Z[y] 7→ Z, such that y 7→ 2⌈c(p+q)τ⌉, and let φ = ψ ◦ χ :
Z[y1, y2 . . . , yk] → Z. Then L (φ(f)) ,L (φ(g)) ≤ c (p +
q)k d τ . Now apply pr. 2.1.

A.2.1 Real root counting
Let F ∈ Z[x, y], such that dgx(F) = dgy(F) = n1 and
L (F) = σ. Let α, β ∈ Ralg, such that α = (A, [a1, a2]) and
β = (B, [b1, b2]), where dg(A),dg(B) = n2,L (A) ,L (B) ≤
τ and c ∈ Q, such that L (c) = λ. Moreover, assume that
n2

1 = O(n2). We want to count the number of real roots of
F̄ = F (α, y) ∈ (Z(α))[y] in (−∞,+∞), in (c,+∞) and in
(β,+∞).

We may assume that the leading coefficient of F̄ is nonzero.
This is w.l.o.g. since we can easily check it, and/or we can
use the good specialization properties of the subresultants
[18, 13, 12].

Using Sturm’s theorem, e.g. [3, 36], the number of real
roots of F̄ is VAR(SR(F̄ , F̄y;−∞)) − VAR(SR(F̄ , F̄y ; +∞)).
Hence, we have to compute the sequence SR(F̄ , F̄y) w.r.t.
y, and evaluate it on ±∞, or equivalently to compute the
signs of the principal subresultant coefficients, which lie in
Z(α).

The above procedure is equivalent, due to the good spe-
cialization properties of subresultants [3, 13], to that of com-
puting the principal subresultant coefficients of SR(F, Fy),
which are polynomials in Z[x], and to evaluate them over
α. In other words the good specialization properties assure
us that we can compute a nominal sequence by considering
the bivariate polynomials, and then perform the substitu-
tion x = α.

The sequence, sr, of the principal subresultant coefficients

can be computed in eOB(n4
1σ), using cor. 2.12 with p = q =

d = n1, and τ = σ. The sequence sr, contains O(n1) poly-
nomials in Z[x], each of degree O(n2

1) and bitsize O(n1σ).
We compute the sign of each one evaluated over α in

eOB(n2
1n2 max{τ, n1σ}+ n2 min{n2

1, n2}
2
τ)

using cor. 2.5 with p = n2, q = n2
1, τf = τ , and τg = n1σ.

This proves the following:

Lemma A.1. We count the number of real roots of F̄ in
eOB(n4

1n2σ + n5
1n2τ).

In order to compute the number of real roots of F̄ in
(β,+∞), we use again Sturm’s theorem. The complexity
of the computation is dominated by the cost of comput-
ing VAR(SR(F̄ , F̄y;β)), which is equivalent to computing
SR(F, Fy) w.r.t. to y, which contains bivariate polyno-
mials, and to compute their signs over (α, β). The cost

of computing SR(F, Fy) is eOB(n5
1σ) using cor. 2.11 with

p = q = d = n1, and τ = σ. The sequence contains O(n1)
polynomials in Z[x, y] of degrees O(n1) and O(n2

1), w.r.t.
x and y respectively, and bitsize O(n1σ). We can com-
pute the sign of each of them evaluated it over (α, β) in

Algorithm 3: grid(F,G)

Input: F,G ∈ Z[x, y]
Output: The real solutions of F = G = 0

Rx ← resy(F,G)1

Lx,Mx ← solve(Rx)2

Ry ← resx(F,G)3

Ly ,My ← solve(Ry)4

Q← ∅5

foreach α ∈ Lx do6

foreach β ∈ Ly do7

if sign at(F, α, β) = 0 ∧ sign at(G,α, β) = 08

then Q← add(Q, {α, β})

return Q9

eOB(n4
1n

3
2 max{n1σ, τ}) (th. 2.14). This proves the follow-

ing:

Lemma A.2. We can count the number of real roots of F̄

in (β,+∞) in eOB(n5
1n

3
2 max{n1σ, τ}).

By a more involved analysis, taking into account the dif-
ference in the degrees of the bivariate polynomials, we can
gain a factor. We omit it for reasons of simplicity.

Finally, in order to count the real roots of F̄ in (c,+∞),
it suffices to evaluate the sequence SR(F, Fy) w.r.t. y on c,
thus obtaining polynomials in Z[x] and compute the signs
of these polynomials evaluated over α.

The cost of the evaluation SR(F, Fy; c) is eOB(n4
1 max{σ, λ}),

using cor. 2.13 with p = q = d = n1, τ = σ and σ = λ. The
evaluated sequence contains O(n1) polynomials in Z[x], of
degree O(n2

1) and bitsize O(n1 max{σ, λ}). The sign of each
one evaluated over α can be compute in

eOB(n2
1n2 max{τ, n1σ, n1λ}+ n

4
1n2τ),

using cor. 2.5 with p = n2, q = n2
1, τf = τ and τg =

n1 max{σ, λ}. This leads to the following:

Lemma A.3. We can count the number of real roots of F̄

in (c,+∞) in eOB(n4
1n2 max{n1τ, σ, λ}).

A.3 Bivariate real solving

Proof of lem. 3.2. Suppose t0 is such that the degree
does not change. It suffices to find, among n4 integer num-
bers, one that does not make ∆ vanish; note that all candi-
date values are of bitsize O(log n).

We perform the substitution (x, y) 7→ (x+ ty,y) to F and

G and we compute the resultant w.r.t. y in eOB(n5σ), which

is a polynomial in Z[t, x], of degree O(n2) and bitsize eO(dσ).
We consider this polynomial as univariate in x and we com-
pute first its square-free part, and then the discriminant of

its square-free part. Both operations cost eOB(n10 + n9σ)
and the discriminant is a polynomial in Z[t] of degree O(n4)

and bitsize eO(d4 + d3σ).
We can evaluate the discriminant over all the first n4 pos-

itive integers, in eOB(n8 + n3σ), using the multipoint evalu-
ation algorithm. Among these integers, there is at least one
that is not a root of the discriminant.

Proof of th. 3.3. By the previous lemma, t ∈ Z is de-

termined, with L (t) = O(log n), in eOB(n10 + n9σ). Us-
ing this value, we isolate all the real roots of Rt(x), defined

in (1), and determine their multiplicities in eOB(n12+n10σ2).
Let ρj ≃ (Rt(x), [rj , r

′
j]) be the real roots, for j = 0, . . . , r−

1.
By assumption, we have already isolated the roots of the

system, denoted by (αi, βi) ∈ [ai, a
′
i]×[bi, b

′
i], where ai, a

′
i, bi, b

′
i ∈

Q for i = 0, . . . , r−1. It remains to match each pair (αi, βi)
to a unique ρj by determining function φ : {0, . . . , r− 1} →
{0, . . . , r− 1}, such that φ(i) = j iff (ρj, βi) ∈ R2

alg is a root
of the sheared system and αi = ρj + tβi.

Let [ci, c
′
i] = [ai, a

′
i]−t[bi, b

′
i] ∈ Q2. These intervals may be

overlapping. Since the endpoints have bitsize O(n4 + n3σ),

the intervals [ci, c
′
i] are sorted in eOB(n6 + n5σ). The same

complexity bounds the operation of merging this interval
list with the list of intervals [rj , r

′
j]. If there exist more than

one [ci, c
′
i] overlapping with some [rj , r

′
j], some subdivision

steps are required so that the intervals reach the bitsize of
sj , where 2sj bounds the separation distance associated to
the j-th root. By pr. 2.6,

P

i si = O(n4 + n3σ).
Our analysis resembles that of [10] for proving pr. 2.4.

The total number of steps is O(
P

i
si) = O(n4 + n3σ), each

requiring an evaluation of R(x) over a endpoint of size ≤

si. This evaluation costs eOB(n4si), leading to an overall

cost of eOB(n8 + n7σ) per level of the tree of subdivisions.

Hence the overall complexity is bounded by eOB(n12+n11σ+
n10σ2).

A.4 Applications

Proof of cor. 4.2. Initially we compute the isolating
interval representation of the real roots of P = Q = 0 in
eOB(n12 + n10σ2), using grur solve. There are O(n2) real
solutions, which are represented in isolating interval rep-
resentation, with polynomials of degrees O(n2) and bitsize
O(n2 + nσ).

For each real solution, say (α, β), for each polynomial Ai,
Bj , Ck we compute the signs of sign(Ai(α, β)), sign (Bi(α, β))

and sign (Ci(α, β)). Each sign evaluation costs eOB(n10 +
n9σ), using th. 2.14 with n1 = n, n2 = n2 and σ = n2 +nσ.
In the worst case we need n2 of them, hence, the cost for all

sign evaluations is eOB(ℓn12 + ℓ n11 σ).

B. EXPERIMENTS

System R1:

f = 1 + 2x− 2x2
y − 5xy + x

2 + 3x2
y

g = 2 + 6x− 6x2
y − 11xy + 4x2 + 5x3

y

System R2:

f = x
3 + 3x2 + 3x− y2 + 2y − 2

g = 2x+ y − 3

System R3:

f = x
3 − 3x2 − 3xy + 6x+ y

3 − 3y2 + 6y − 5

g = x+ y − 2

System M1:

f = y
2 − x2 + x

3

g = y
2 − x3 + 2x2 − x

SLV
GRID MRUR GRUR

S
y
st

e
m

P
ro

je
c
ti

o
n
s

U
n
iv

a
ri

a
te

B
iv

a
ri

a
te

P
ro

je
c
ti

o
n
s

U
n
iv

a
ri

a
te

S
tH

a
S
e
q
u
e
n
c
e

In
te

rm
.

P
o
in

ts

F
il
te

ri
n
g

o
n

x
-a

x
is

C
o
m

p
u
te

K

F
IN

D
(B

iv
.

S
o
l.
)

P
ro

je
c
ti

o
n
s

U
n
iv

a
ri

a
te

In
te

rm
.

P
o
in

ts

R
a
ti

o
n
a
l
B

iv
a
ri

a
te

R
a

lg
B

iv
a
ri

a
te

R1 0.47 25.83 73.40 0.00 25.79 14.66 0.56 0.56 14.29 44.16 0.30 45.97 1.09 52.39 0.00
R2 0.08 38.31 61.59 0.00 14.03 0.57 0.19 74.50 3.79 6.92 0.05 6.54 0.11 0.21 93.10
R3 1.47 60.29 37.75 0.13 30.17 17.21 0.86 2.92 22.99 25.71 0.70 40.68 2.93 55.56 0.05
M1 0.00 12.29 87.63 0.06 23.99 1.73 0.17 31.09 3.40 39.56 0.03 25.15 0.40 5.76 68.58
M2 0.57 44.01 53.90 0.05 25.08 6.85 1.05 1.87 24.53 40.57 3.69 37.28 3.75 52.00 0.07
M3 0.02 5.17 94.79 0.05 8.10 0.14 0.05 69.20 1.16 21.30 0.01 13.26 0.19 0.32 86.21
M4 0.03 99.78 0.18 0.39 91.00 0.47 0.00 0.70 4.85 2.58 0.27 99.16 0.03 0.54 0.00
D1 0.06 99.11 0.89 0.07 37.77 10.76 0.20 23.71 22.61 4.88 1.22 81.30 0.54 16.95 0.00
D2 0.01 14.63 85.35 0.00 20.68 0.41 0.16 47.36 2.50 28.90 0.02 18.00 0.20 0.10 81.64
C1 0.06 3.97 95.97 0.19 5.93 2.50 0.00 40.69 2.35 48.35 0.05 18.40 0.15 2.56 78.80
C2 0.00 9.35 90.61 0.11 12.48 0.38 0.10 17.67 2.62 66.63 0.03 22.41 0.31 2.33 74.83
C3 0.04 12.79 86.98 0.05 2.23 1.25 0.00 34.44 1.72 60.32 0.04 21.05 0.12 10.73 67.87
C4 0.27 5.04 94.67 0.22 2.59 1.01 0.01 20.98 1.46 73.74 0.27 26.14 0.10 2.39 70.99
C5 0.71 0.66 98.63 1.67 2.87 46.88 0.00 9.16 1.88 37.54 4.01 13.52 0.01 0.27 82.18
W1 0.06 5.18 94.74 0.08 4.00 1.18 0.02 37.28 1.69 55.75 0.03 16.84 0.10 1.66 81.17
W2 0.00 9.55 90.44 0.01 12.15 0.26 0.20 26.79 1.96 58.63 0.03 17.94 0.39 0.80 80.58
W3 0.07 2.36 97.55 0.04 2.48 1.04 0.00 32.67 1.62 62.14 0.05 13.49 0.15 6.56 79.63
W4 0.01 2.82 97.15 0.02 3.13 1.62 0.02 21.56 1.50 72.14 0.01 19.41 0.11 1.65 78.66
W5 0.15 0.58 99.27 0.43 1.87 48.16 0.00 8.84 2.26 38.44 1.14 12.17 0.01 0.22 86.45

Table 3: Analyzing the percent of time required for various procedures in each algorithm. The table above
presents the values in the sheared case (whenever it was necessary).

System M2:

f = x
4 − 2x2

y + y
2 + y

4 − y3

g = y − 2x2

System M3:

f = x
6 + 3x4

y
2 + 3x2

y
4 + y

6 − 4x2
y
2

g = y
2 − x2 + x

3

System M4:

f = x
9 − y9 − 1

g = x
10 + y

10 − 1

System D1:

f = x
4 − y4 − 1

g = x
5 + y

5 − 1

System D2:

f = −312960 − 2640x2 − 4800xy − 2880y2 + 58080x + 58560y

g = −584640 − 20880x2 + 1740xy + 1740y + 274920x − 59160y

System C1:

f = (x3 + x− 1− xy + 3y − 3y2 + y
3)

(x4 + 2x2
y
2 − 4x2 − y2 + y

4)

g = diff(f, y)

System C2:

f = y
4 − 6y2

x+ x
2 − 4x2

y
2 + 24x3

g = diff(f, y)

System C3:

f = ((x− 1)2 + y
2 − 2)((x+ 1)2 + y

2 − 2)

((x− 1)2 + (y + 2)2 − 2)((x+ 1)2 + (y + 2)2 − 2)

g = diff(f, y)

System C4:

f = (x2 − 2x− 1 + y
2)(x2 + 2x− 1 + y

2)

(x2 − 2x+ 3 + y
2 + 4y)

(100000x2 + 200000x + 299999 + 100000y2 + 400000y)

g = diff(f, y)

System C5:

f = (x4 + 4x3 + 6x2 + 4x+ y
4 + 4y3 + 6y2 + 4y)

(x4 + 4x3 + 6x2 + 4x+ y
4 − 4y3 + 6y2 − 4y)

(x4 − 4x3 + 6x2 − 4x+ y
4 + 4y3 + 6y2 + 4y)

(100000x4 − 400000x3 + 600000x2 − 400000x

−1 + 100000y4 − 400000y3 + 600000y2 − 400000y)

g = diff(f, y)

System W1:

f = (x3 + x− 1− yx+ 3y − 3y2 + y
3)

(x4 + 2y2
x

2 − 4x2 − y2 + y
4)

g = diff(f, y)

System W2:

f = y
4 − 6y2

x+ x
2 − 4x2

y
2 + 24x3

g = diff(f, y)

System W3:

f = (x2 − 2x− 1 + y
2)(x2 + 2x− 1 + y

2)

(x2 − 2x+ 3 + y
2 + 4y)(x2 + 2x+ 3 + y

2 + 4y)

g = diff(f, y)

System W4:

f = (x2 − 2x− 1 + y
2)(x2 + 2x− 1 + y

2)

(x2 − 2x+ 3 + y
2 + 4y)

(100000x2 + 200000x + 299999 + 100000y2 + 400000y)

g = diff(f, y)

System W5:

f = (x4 + 4x3 + 6x2 + 4x+ y
4 + 4y3 + 6y2 + 4y)

(x4 + 4x3 + 6x2 + 4x+ y
4 − 4y3 + 6y2 − 4y)

(x4 − 4x3 + 6x2 − 4x+ y
4 + 4y3 + 6y2 + 4y)

(100000x4 − 400000x3 + 600000x2 − 400000x

−1 + 100000y4 − 400000y3 + 600000y2 − 400000y)

g = diff(f, y)

C. SAMPLE USAGE
Our library requires a definition for variable LIBPATH which

should point on the appropriate path where the source code
is stored in your system. On the following, we assume
that our library is located under /opt/AlgebraicLibs/SLV/.
The following is an example for univariate solving:

> LIBPATH := "/opt/AlgebraicLibs/SLV/":
> read cat (LIBPATH, "system.mpl"):

> f := 3*x^3 - x^2 - 6*x + 2:
> sols := SLV:-solveUnivariate(f):
> SLV:-display_1 (sols);

< x^2-2, [-93/64, -45/32], -1.414213568 >
< 3*x-1, [1/3, 1/3], 1/3 >

< x^2-2, [45/32, 93/64], 1.414213568 >

Note, that the multiplicities of the roots do not appear, al-
though they have been computed. Instead, the third argu-
ment of each component in the printed list is an approxi-
mation of the root. However, whenever possible we provide
rational representation of the root.

The following is an example for bivariate solving, where
the second root lies in Z2:

> LIBPATH := "/opt/AlgebraicLibs/SLV/":
> read cat (LIBPATH, "system.mpl"):
> f := 1+2*x+x^2*y-5*x*y+x^2:

> g := 2*x+y-3:
> bivsols := SLV:-solveGRID (f, g):

> SLV:-display_2 (bivsols);
< 2*x^2-12*x+1, [3, 7], 5.915475965 > ,
< x^2+6*x-25, [-2263/256, -35/4], -8.830718995 >

< x-1, [1, 1], 1 > , < x-1, [1, 1], 1 >

< 2*x^2-12*x+1, [3/64, 3/32], .8452400565e-1 > ,

< x^2+6*x-25, [23179/8192, 2899/1024], 2.830943108 >

Again, just like in the case of univariate solving, the third
argument that is printed on the component that describes
each algebraic number is an approximation of the number
and not the multiplicity of the root. Similarly, one could
have used one of the other solvers on the above example by
referring to their names, i.e. call the solvers with one of the
following commands:

> bivsols := SLV:-solveMRUR (f, g):
> bivsols := SLV:-solveGRUR (f, g):

For those interested in the numerical values or rough ap-
proximations of the solutions one can get the appropriate
output via display float 1 and display float 2 proce-
dures. Hence, for the above examples we have:

> SLV:-display_float_1 (sols);
< -1.4142136 >

< 0.3333333 >
< 1.4142136 >

> SLV:-display_float_2 (bivsols);
[5.9154759, -8.8309519,]
[1.0000000, 1.0000000,]

[0.0845241, 2.8309519,]

Consider the list sols of Ralg numbers that was returned
in the univariate case above; the following are examples on
the usage of the signAt function provided by our Filtered
Kernel5:

> FK:-signAt(2*x + 3, sols[1]);
1

> FK:-signAt(x^2*y + 2, sols[3], sols[1]);
-1

Our class on Polynomial Remainder Sequences6 exports
functions allowing the computation of Subresultant and Sturm-
Habicht sequences. Let f, g ∈ Z[x, y], then you can use any
of the following commands in order to compute the desired
PRS:

L := PRS:-StHa (f, g, y):
L := PRS:-StHaByDet (f, g, y):

L := PRS:-subresPRS (f, g, y):
L := PRS:-SubResByDet (f, g, y):

PrintPRS is used for viewing the PRS. For example, let
f, g be those from the example on Bivariate Solving above:

> L := PRS:-subresPRS (f, g, y):
> PRS:-PrintPRS(L);

/ 2 \ 2

\x - 5 x/ y + 1 + 2 x + x
y + 2 x - 3

3 2
2 x - 14 x + 13 x - 1

Finally, the variance of the above sequence evaluated at
(1, 0) can be computed by:

> G := PRS:-Eval (L, 1, 0);

G := [4, -1, 0]
> PRS:-var(G);

1

5Located in file: FK.mpl
6Located in file: PRS.mpl

	Introduction
	Preliminaries
	Bivariate real solving
	The grid algorithm
	The m_rur algorithm
	The g_rur algorithm

	Applications
	Implementation and experiments
	REFERENCES -9pt
	Algorithms and complexity
	Univariate Polynomials
	Multivariate polynomials
	Real root counting

	Bivariate real solving
	Applications

	Experiments
	Sample Usage

