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Abstract

Tensor decompositions are now known to permit to estimate in a
deterministic way the parameters in a multi-linear model. Applica-
tions have been already pointed out in antenna array processing and
digital communications, among others, and are extremely attractive
provided some diversity at the receiver is available. Non iterative al-
gorithms are proposed in this paper to compute the required tensor
decomposition into a sum of rank-1 terms when some factor matri-
ces enjoy some structure, such as block-Hankel, triangular, band, etc.
The only condition is that the number of parameters characterizing the
structure of a matrix should be significantly smaller than the number
of its entries.
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1 Motivation

This contribution is motivated by the fact that there exist very few efficient
numerical algorithms for decomposing a tensor array into a sum of rank-1
terms. One can just mention the case of symmetric tensors of any order
but of dimension 2, which can be decomposed with the help of a Sylvester’s
theorem [?], or the case of third order tensors having one dimension equal
to 2, which can be handled by computing eigenvectors of a matrix pencil
[?]. Even if the case of symmetric complex tensors has been partially solved
in [?], the computational complexity is still significant, since a polynomial
system of degree 2 often needs to be solved.

Yet, practical problems are encountered where the factor matrices have
a structure, such as Toeplitz, which decreases the number of unknowns to
be computed. We show in this paper that under certain conditions, the
full decomposition can be computed almost surely within a finite number of
operations (assuming that a matrix SVD can).

The Toeplitz structure has been already exploited in several contribu-
tions, e.g. [?], to speed up the ALS algorithm. But the algorithm is still
iterative with unproved convergence. Only recently, some authors have at-
tempted to build a non-iterative algorithm [?]; however, the latter works in
three stages, and can only be applied for a single structured factor, which
must be simultaneously Toeplitz lower triangular and banded, which is rather
restrictive. It is suboptimal in the sense that the structure in incompletely
exploited, so that it has to be recovered by projection in a third stage.

Tensor decompositions are very attractive in the fields of antenna array
processing [?] and digital communications [?], when diversity is available at
the receiver. But many other application areas exist [?]. Factor matrices
appearing in the tensor decomposition can be structured [?] [?], and can
have the very particular structure of banded triangular Toeplitz if Blind
Identification of a SISO FIR channel is considered [?]. A contrario, the
algorithms developed in the present paper exploit a structure that can be
much less particular, since it is characterized by any linear space of reduced
dimension. For instance, only one of the previous features is necessary, e.g.
Toeplitz, or triangular, or banded, but not the three of them. We refer to
this decomposition as “Structured Canonical Decomposition” (SCanD).
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2 Notation

In order to ease the reading, array symbols are denoted with different fonts,
depending on the number of indices. Plain font denotes scalar numbers,
e.g. L, ai or Aij, boldface lowercases denote vectors, e.g. x, or α, boldface
uppercases denote matrices, e.g. A, or S(ℓ), and tensor arrays of order higher
than 2 are represented by bold italic letters, e.g. T, or I. In the remainder,
I will always denote the tensor array having ones on its diagonal, and zeros
everywhere else.

Tensors are objects defining maps from a product of linear spaces to
another. Once the bases of theses spaces are fixed, they are represented by
arrays of coordinates. A tensor of order d is represented by an array with
d indices. For simplicity, tensors are often (somewhat abusively) assimilated
with their array representation, as done in the present paper.

Tensor arrays are modified in a multi-linear manner when bases are
changed linearly. To make it simple, let T be a 3rd order tensor, and let
A (resp. B and C) be linear transforms acting in the first (resp. 2nd and
3rd) linear space. Then the new array representing the tensor can be written
as

T ′

ijk =
∑

ℓmn

AiℓBjmCkn Tℓmn

which can be conveniently written in a more compact form:

T
′ = (A,B,C) ·T

This way of denoting a multi-linear transformation is more and more used in
the scientific community.

Given two matrices A and B, one defines the Kronecker product:

A⊗B
def
=







A11B A12B · · ·
A21B A22B · · ·

...
...






,

If the latter matrices have the same number of columns, one also defines the
column-wise Kronecker product, often referred to as the Khatri-Rao product:

A⊙B
def
=

[

a(1)⊗b(1) a(2)⊗b(2) · · ·
]

.

4



Yet another ingredient we shall need is the operation allowing to store

a matrix in vector form, x
def
= vec{X}, and the inverse operation1, X =

Unvec{x}. To fix the ideas, let X be a I × J matrix. We choose the vec{·}
map defined by x(i−1)J+j = Xij. With this definition, we have the property
that vec{xyT} = x⊗y, for any pairs of vectors x and y, or equivalently
Unvec{x⊗y} = xyT.

Similarly, tensor arrays can be unfolded into the so-called “unfolding ma-
trices”, or “flattening matrices”. In the case of order 3 tensors, there are 3
such matrices. Given a tensor T of dimensions I × J ×K, represented by an
arry Tijk, the first unfolding matrix is defined as

T(1) =















T1::
...

Ti::
...

TI::















where Ti:: denotes the J × K matrix slice obtained by fixing the 1st index
to i in the tensor array.

Finally, on the linear space of rectangular matrices, one defines the Her-
mitean scalar product 〈A,B〉 = trace{AHB}; the latter induces the Frobe-
nius norm.

3 Structured tensor decomposition

We first define the minimal polyadic decomposition of a tensor, which will
be referred to as Canonical Decomposition (CanD)2. The definition is given
in the case of a 3rd order tensor, but it extends to any order in an obvious
manner. It can be seen as a definition of the tensor rank.

Definition 1 Let T be a tensor of order 3 and rank R. Then T can be
written as a multilinear transform of the diagonal tensor I:

T = (A,B,C) · I

1In order for the operator Unvec{·} to be unambiguously defined, the number of
columns of the output should be given as an input argument. However, for the sake of
simplicity, it shall be omitted since it will be always clear from the context.

2Note that this decomposition has been named “Parafac” in some communities, i.e.

Psychometry.
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where the factor matrices A, B and C have R columns.

Note that the tensor rank and the CanD may be defined independently of
any bases, by using the tensor product ‘⊗⊗⊗’:

T =
R

∑

p=1

a(p)⊗⊗⊗ b(p)⊗⊗⊗ c(p)

but this abstract definition will not be used herein.
In Definition ??, it is known that factor matrices are not defined in a

unique way. In fact, each of them can be post-multiplied by a permutation Π

and an invertible diagonal matrix, so that T = (AΠΛA,BΠΛB,CΠΛC) · I,
provided ΛAΛBΛC = I. The lemma below will be useful to choose the per-
mutation and scaling matrices, whenever this indetermination is still present.

Lemma 2 If a matrix N is invertible, then there exist a permutation Π

and a diagonal invertible matrix Λ such that matrix NΠΛ has ones on its
diagonal.

It is worth noting that if factor matrices are structured, full scaling inde-
terminacies may disappear, and reduce to a mere scalar scale factor (this
is what happens for Toeplitz factors, as addressed subsequently). This is a
significant advantage of the SCanD over the CanD. We shall also need the
well known results below, that we recall without proof.

Lemma 3 Let T be a tensor, whose CanD is defined in Def.??. Then its
first unfolding matrix can be written as

T(1) = (A⊙B)CT (1)

Lemma 4 Denote T(1) = UΣVH the SVD of T(1), where Σ is R × R, and
VHV = IR. Then, if A⊙B and C are full rank in (??), there always exist
R × R invertible matrices M and N such that

UΣM−1 = A⊙B and MVH = CT (2)

UN = A⊙B and N−1ΣVH = CT (3)

If one or several factor matrices appearing in the CanD are imposed
to be structured (cf. definition below), we say that we are dealing with
a “structured CanD” (SCanD). We shall be concerned by the classes of
structured matrices that form linear spaces. Let {S(ℓ), 1 ≤ ℓ ≤ IR} be an
orthonormal basis of I × R matrices. We state the following:
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Definition 5 An I × R matrix S is said to be structured if there exists an
orthonormal basis of matrices S(ℓ) such that

S =

ω(S)
∑

ℓ=1

α(ℓ)S(ℓ) (4)

where ω(S) < IR is given. Such linear spaces will be denoted A, B and C for
factor matrices A, B and C, respectively.

For instance, strictly lower triangular matrices are structured in the above
sense, as well as Toeplitz or Hankel matrices, skew-symmetric matrices, and
certain band matrices. Assume only matrix C is structured in (??); then we
have:

Lemma 6 If the linear space C is stable by post-multiplication by invertible
diagonal matrices, then matrix M defined in Lemma ?? can be imposed to
have ones on its diagonal. Otherwise, one can always impose Mr1 = 1, or
γ(r) = 1 for some r.

Proof. From equation (??), it is clear that pre-multiplication of CT by
ΛΠT implies pre-multiplication of M by the same factor. Then by Lemma
??, one can choose scaling matrix Λ and permutation Π so that Diag{M} =
I. Now when CΠΛ does not always belong to C, such a choice is not possible.
But a scalar scale factor always subsists in (??), such that any non-zero entry
of M can be set to 1, and there is at least one in the 1st column. Another
choice consists of using this scale factor to impose a nonzero parameter in
the right hand side of (??) to be equal to 1, e.g. γ(1) = 1.

With a similar reasoning one can state the following

Lemma 7 If both A and B are structured in (??), but not C, one can always
impose either M11 = 1, or α(1) = 1 = β(1).

4 Non-iterative solutions

In this section, results allowing to deflate the SCanD to matrix SVD’s will
be stated.
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Proposition 8 Let T be a tensor of dimensions I ×J ×K and rank R > 1,
admitting the SCanD below:

T = (A,B,C) · I.

where matrix C is structured (according to Def. ??) with ω(C) ≤ K2/4.
Then, the calculation of the three matrix factors may be achieved generi-
cally by solving a linear system followed by R matrix rank-1 approximations,
provided the rank of T is not too large, namely

R2 − KR + ω(C) − 1 ≤ 0 (5)

Proof. Since C is structured, it can be written as C =
∑ω(C)

ℓ=1 γ(ℓ)C(ℓ)
where matrices C(ℓ) are known. Since T is of rank R > 1, C is nonzero,
and from Lemma ??, we may set γ(1) = 1. Then from Lemma ??, matrix
M must satisfy:

MVH = C(1) +

ω(C)
∑

ℓ=2

γ(ℓ)C(ℓ)T, (6)

This linear system contains KR equations and R2 + ω(C) − 1 unknowns,
γ(k) and Mij. Since it has more equations than unknowns, according to our
assumptions, it generically admits one solution. In fact, the condition ω(C) ≤
K2/4 ensures that inequality (??) admits a non empty set of solutions for R.
We have thus obtained matrices M, and C.

On the other hand, we have from (??) that F
def
= UΣM−1 = A⊙B. The

last operation remaining to perform is the calculation of matrices A and B,
which can be done in a standard way column by column. For doing this, one
notices that the rth column of matrix F, f(r), is ideally equal to a(r)⊗b(r),
whose matrix unvectorization form is a(r)b(r)T. So estimates of columns
a(r) and b(r) of A and B can indeed be obtained by computing the best
rank-1 approximate of matrix Unvec{f(r)}.

Proposition 9 Let T be a tensor of dimensions I×J×K and rank R, admit-
ting the SCanD: T = (A,B,C) · I, where matrices A and B are structured,
possibly with different structures, with ω(A)ω(B) ≤ I2J2/4. Then, the cal-
culation of the three matrix factors may be achieved generically by solving
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a linear system followed by one matrix rank-1 approximation, provided the
rank of T satisfies the necessary condition:

R2 − IJ R + ω(A)ω(B) − 1 ≤ 0. (7)

Proof. Since matrices A and B are structured, we have

UN =

ω(A)
∑

i=1

ω(B)
∑

j=1

α(i) β(j) (A(i)⊙B(j)) (8)

which contains IJR equations, using the notation of (??). System (??) can
be seen as a linear system of IJR equations in the ω(A)ω(B) unknowns

X(i, j)
def
= αiβj. Next, from Lemma ??, if we choose to impose N11 = 1, we

also have R2 − 1 unknowns Nij. Note that if spaces A and B are stable
by diagonal scaling, we impose instead Diag{N} = I, and we have R2 − R
remaining unknowns; but let’s concentrate on the less favorable case N11 = 1.

Hence, linear system (??) contains IJR equations in R2 − 1 + ω(A)ω(B)
unknowns. It generically suffices to determine matrices N and consequently
C, as well as matrix X, because R is not too large, by hypothesis.

The last step consists of computing the best rank-1 approximate of matrix
X, α βT, as in the proof of Proposition ??, which will yield A and B.

Now if all three factor matrices are structured, one can show that their
estimation can be carried out with the help of rank-1 approximates as now
pointed out.

Proposition 10 Let T be a tensor of order 3, with 3 structured matrix fac-
tors. Then under the same conditions as in Prop. ??, its SCanD can be
computed by solving two overdetermined linear systems, and by computing R
rank-1 matrix approximates.

Proof. If the three matrix factors are structured, the system of equations
to solve is the following:

UN =

ω(A)
∑

i=1

ω(B)
∑

j=1

α(i) β(j)A(i)⊙B(j) (9)

ΣVH =

ω(C)
∑

k=1

γ(k)C(k)N (10)
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The first system (??) can be solved for N, α(i) and β(j) under the same con-
ditions as in Proposition ??, with the help of R matrix rank-1 approximates.
Then the value of N can be plugged back into (??), which then becomes
linear in the unknowns γ(k), and can be solved in the LS sense.

There is however yet another case where the CanD can be computed by
solely resorting to matrix SVD’s, as shown in the proposition below.

Proposition 11 Let T be a tensor of order 4, with 2 structured matrix fac-
tors. Then under the same conditions as in Prop. ??, its SCanD can be
computed by solving an overdetermined linear system, and by computing R+1
rank-1 matrix approximates.

Proof. Consider a I × J × K × L tensor, and its IJ × KL unfolding
matrix:

T(2,2) = (A⊙B)(C⊙D)T

where A, B, C, D all have R columns. We assume that both A and B are
structured, which means that we have

T(2,2) =

ω(A)
∑

i=1

ω(B)
∑

j=1

αiβj (A(i)⊙B(j))(C⊙D)T

As in the proof of Proposition ??, we consider the SVD of matrix T(2,2) =
UΣVH. Hence there exists a R × R invertible matrix, N, such that UN =
A⊙B and N−1ΣVH = C⊙D. Our linear system contains IJR equations
and R2 − 1 + ω(A)ω(B) unknowns, Nij and Xpq, if we set N11 = 1. Once
this over-determined system has been solved in the Least Squares (LS) sense,
matrices N and X are known. Next we obtain again αi and βj via a rank-one
approximation of matrix X.

It remains to solve N−1ΣVH = (C⊙D)T. Following the same lines as
in the proof of Proposition ??, denote F = V∗ΣN−T and f(r) its columns,
1 ≤ r ≤ R, each of dimension KL. The rest of the proof is similar to that of
Proposition ??, viz, the columns a(r) and b(r) are obtained by computing the
best rank-1 approximation of the K×L matrices Unvec{f(r)}, respectively.

Remark 1 An alternative approach would be to use the orthogonality equa-
tions

〈MVH,C(n)T〉 = 0, ω(C) < n ≤ KR (11)

〈A(p)⊙B(q),UN〉 = 0 (12)
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either for {1 ≤ p ≤ IR and ω(B) < j ≤ JR} or for {ω(A) < i ≤ IR and 1 ≤
j ≤ JR}.

5 Solutions requiring Higher Order rank-1

approximates

From the proofs derived in the previous section, it is clear that our propo-
sitions can be extended to tensors having three structured matrices, or to
tensors of order larger than 3. One such instance is given below.

Proposition 12 Let T be a tensor of order d and dimensions Kµ, 1 ≤ µ ≤
d, with m structured matrix factors, m > 0, and d − m unstructured. Then
its SCanD can be computed by solving an overdetermined linear system, and
by computing rank-1 approximations of one tensor of order m and R tensors
of order d − m, provided the necessary conditions below are met:

m
∏

µ=1

ω(A(µ)) −
1

4

∏

K2
µ ≤ 0 (13)

R2 − (
m
∏

µ=1

Kµ)R +
m
∏

µ=1

ω(A(µ)) − 1 ≤ 0 (14)

Proof. Tensor T is unfolded into a K1 . . . Km × Km+1 . . . Kd unfolding
matrix, denoted T, and denote A(µ) the µth factor matrix of size Kµ × R,
each defined with ω(A(µ)) parameters. Write the SVD of T as UΣVH, and
consider the identity

UN = A(1) ⊙ . . .⊙A(m)

where N is an unknown R × R invertible matrix. Similarly to (??), there
are K1 . . . KmRm equations, allowing to compute the R2 − 1 +

∏m

µ=1 ω(A(µ))

unknowns Nij and Xi1..im

def
= α

(1)
i1

. . . α
(m)
im

. Compute the coefficient vectors

α(i), 1 ≤ i ≤ m, via a rank-1 approximation of tensor X, whose entries are
Xi1..im .

On the orther hand, as in the proof of Proposition ??, use equation
V∗ΣN−T = A(m+1) ⊙ . . .⊙A(d) column-wise, in order to obtain the columns
of the remaining factor matrices. Each column is obtained with the help of
a rank-1 approximation of a tensor of order d − m.
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Now, a better bound on rank R can be obtained by isolating two struc-
tured matrices on one side (in fact the two having the strongest structure).

Proposition 13 Let T be a tensor of order d and dimensions Kµ, 1 ≤
µ ≤ d, with m structured matrix factors, m > 0, and d − m unstructured.
Assume that modes are sorted in such a way that ω(A(1) ≤ ω(A(1) ≤ · · · ≤
ω(A(d). Then A(1) and A(2) can be computed by solving an overdetermined
linear system, and by computing R rank-1 matrix approximations, provided
the necessary conditions below are met:

ω(A(1))ω(A(2)) −
1

4
K2

1K
2
2 ≤ 0 (15)

R2 − (K1K2)R + ω(A(1))ω(A(2)) − 1 ≤ 0 (16)

These conditions may be less restrictive on R, if ω(A(1)) and ω(A(2)) are small
compared to the other ω(A(µ)). The proof is similar to that of Proposition
??.

6 Solutions with refinements

The solutions that we provided above are valid when the model is exact.
Most of these solutions still work when the model is inaccurate, or when
data are corrupted by noise. However, it might be useful in some cases
to run an iterative refinement, starting with the solution obtained by the
previous algorithms, by iteratively minimizing the mismatch criterion

||T(1) − (A⊙B)CT||2

by a local descent algorithm. In particular, two cases can take advantage of
such refinements.

First the case when all matrix factors are structured, seen in Proposition
??. Second, the case of linked matrix factors. Consider for instance a model
where

fq(A,B,C) = 0, 1 ≤ q ≤ Q

for known differentiable functions fq. If the noise is not too large, one can
assume to be in a neighborhood of the set defined by these equations and
resort to the implicit function theorem to obtain a set of linear equations in
the perturbations of matrices (A,B,C).
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The simplest instance of linked matrices is encountered with symmetric
tensors, i.e. when A = B = C. The idea is thus to ignore this dependency,
to compute the three factors, and to run afterwards a local refinement by
minimizing the polynomial ||T(1) − (A⊙A)AT||2. This approach has shown
very satisfactory results.

7 Examples and computer results

In this section, we provide more precise results for particular structures, and
especially the triangular case in Section ??. In addition, we report results of
computer simulations. Three matrix factors are randomly generated, among
which one or two are structured. The trial is repeated several times (at least
5 times) and the median of the relative error

||T(1) − (A⊙B)CT||/||T(1)||.

serves as a performance index. In the noiseless case, the experience is con-
ducted for R ranging from 8 to 17 or 18. By construction, R is the rank of
tensor T. In the noisy case, R is fixed to 5, and the noise level is varied.

7.1 One banded Toeplitz factor

Assume the K × R matrix factor C is Toeplitz lower triangular with band-
width ω(C) = K −R+1. If the first matrix C(1) in the basis is the identity,
assuming γ(1) = 1 means that we can assume C has ones on its diagonal.
Beside the identity matrix I, the next basis matrices C(ℓ) have ones on their
ℓth subdiagonal, and are null elsewhere: C(ℓ)ij = δ(i − j − ℓ), i > j, where
δ(·) denotes the Kronecker delta. In other words, we have

C = I +

ω(C)
∑

ℓ=2

γ(ℓ)C(ℓ)

In other words, we have assumed the constraint γ(1) = 1 in Lemma ??.
The remaining KR − ω(C) − 1 basis matrices may be obtained in a non
unique manner by completion, under the orthonormality constraint. The
rank condition (??) becomes, as a function of ω(C):

ω(C)2 − (K + 1) ω(C) + 2 K ≤ 0
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It can be checked that this condition admits solutions only for K > 5. For
instance, for K = 20, the above condition becomes 2 < ω(C) < 19.

Figure 1: Relative reconstruction error for a 20× 20× 20 tensor. Left: one Lower
triangular Toeplitz banded factor; Right: one Hankel factor.

7.2 One Hankel factor

Assume the K ×R matrix factor C is Hankel. It is characterized by ω(C) =
K+R−1 free parameters. The ℓth basis matrix 1 ≤ ℓ ≤ ω(C) is Hankel with
a single nonzero antidiagonal, that is: C(ℓ)ij = δ(i + j − ℓ − 1), 1 ≤ i ≤ K,
1 ≤ j ≤ R. The remaining KR − ω(C) basis matrices are obtained in a non
unique manner by completion, under the orthonormality constraint. The
exact way they are obtained is irrelevant; what is important is to have a
full orthonormal basis. According to Lemma ??, we have hence assumed the
constraint γ(1) = 1, which means here C11 = 1.

7.3 Two banded Toeplitz factors

We considered next a more general banded Toeplitz case. We took two
factors with the same structure, i.e. I = J and ω(A) = ω(B) = ω. The rank
condition (??) can be expressed as a function of ω as R2 − I2 R+ω2 −1 ≤ 0.

14



Figure 2: Relative reconstruction error for a 20 × 20 × 20 tensor. Bottom: one
Toeplitz factor; Top: two Toeplitz factors.

Simulations have been run for I = 20, 8 ≤ R ≤ 19, and ω = 18, with
12 subdiagonals and 5 superdiagonals. The computer experiments reported
in Fig. ?? have been executed under these conditions, with one or two
structured matrices, the other factors being drawn randomly.

7.4 Triangular factors

In the case of triangular matrix factors, the bound given in Proposition ??

can be improved. In fact, the upper bound ω(A)ω(B) on the dimension of
the space spanned by A(i)⊙B(j) is too loose.

Similarly to Lemma ??, we have

Lemma 14 Let T be a tensor of dimensions I × J × K and rank R >
1, admitting the CanD T = (A,B,C) · I. where matrices A and B are
respectively lower and upper triangular, and C is full. then one can choose
any two constraints among the three below:

Diag{N} = I, Diag{A} = I, Diag{B} = I,

Proposition 15 Consider the tensor of Lemma ??. Then, the calculation
of the three matrix factors may be calculated by solving R linear systems,
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provided the necessary condition below is satisfied:

2 ≤ I ≤ R ≤ J

Moreover, this condition is generically sufficient.

Proof. From Lemma ??, we may assume that diagonal terms of both A

and B are equal to 1. From lemma ??, we use the equation UN = A⊙B.
In the latter, there is no coupling between the unknown in various columns.
So consider the rth column, 1 ≤ r ≤ R. We have IJ equations with R
unknowns in N, I − r unknowns in A and r − 1 in B; as a consequence, the
number of unknowns is constant and equal to I + R − 1.

Among those equations, (r − 1)(J − r) have a zero right hand side, I +
J − 2 have linear terms in A and B, and one is equal to 1. So we have
(r − 1)(J − r) + I + J − 1 linear equations. In the worst case, we have only
I + J − 1 linear equations (when r = 1, or r = J if this can happen). In
this worst cases (first and last columns), the number of linear equations is at
least as large as the number of unknowns if I +J −1 ≥ I +R−1. Yet, this is
clearly satisfied when J ≥ R, which is true by hypothesis in our proposition.
As a conclusion, if J > R, matrices N, A and B can be obtained by solving
R independent overdetermined linear systems. If J = R, the system is over
determined for all columns of N except for the first and the last.

7.5 Presence of noise

In order to have an idea of the influence of noise, which destroys the structure
that is exploited by the various algorithms presented, Monte Carlo simula-
tions have been carried out as follows.

• Generate randomly the nonzero entries of factor matrices A,. B and
C according to the same uniform distribution.

• Compute tensor T = (A,B,C) · I.

• Draw randomly the entries of a full tensor E of same dimensions as T
according to a zero-mean normal distribution.

• Normalize tensors T and E by their Frobenius norm

• for various noise levels, k, decompose the tensor Tε = T+ kE.
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Figure 3: Relative reconstruction error for a 5 × 5 × 5 tensor of rank 5, with one
lower triangular factor, and on upper triangular factor, and one full factor, in the
presence of noise.

The relative error ||Tε − T||/||T|| is reported in figures ?? and ?? as a
function of the noise level k, for one single Toeplitz band factor, and two
triangular factors, respectively.

Note that these performances can be dramatically improved by running
a refinement as described in Section ??.

7.6 Concluding remarks

When two matrices are structured, their identification conditions are easier
to meet than in the case when only one is structured. Mainly necessary con-
ditions have been given in this paper. But in some cases (like in the Toeplitz
banded case, or the case with two triangular upper and lower factors), they
are also sufficient. Sufficiency proofs will be provided in a forthcoming full
paper. In addition, the presentation has been made in the real field for the
sake of simplicity, but it extends straightforwardly to the complex field.

Maple and Matlab computer codes will be made available after publi-
cation.
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Figure 4: Relative reconstruction error for a 20 × 20 × 20 tensor of rank 5, with
one Toeplitz Band factor, and 2 full factors, in the presence of noise.
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